1932

Abstract

Surface second harmonic generation (SHG) is a coherent, nonlinear optical technique that is well suited for investigations of biomolecular interactions at interfaces. SHG is surface specific due to the intrinsic symmetry constraints on the nonlinear process, providing a distinct analytical advantage over linear spectroscopic methods, such as fluorescence and UV-Visible absorbance spectroscopies. SHG has the ability to detect low concentrations of analytes, such as proteins, peptides, and small molecules, due to its high sensitivity, and the second harmonic response can be enhanced through the use of target molecules that are resonant with the incident (ω) and/or second harmonic (2ω) frequencies. This review describes the theoretical background of SHG, and then it discusses its sensitivity, limit of detection, and the implementation of the method. It also encompasses the applications of surface SHG directed at the study of protein-surface, small-molecule–surface, and nanoparticle-membrane interactions, as well as molecular chirality, imaging, and immunoassays. The versatility, high sensitivity, and surface specificity of SHG show great potential for developments in biosensors and bioassays.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041453
2017-06-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-071015-041453.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041453&mimeType=html&fmt=ahah

Literature Cited

  1. Evron T, Peterson SM, Urs NM, Bai Y, Rochelle LK. 1.  et al. 2014. G protein and β-arrestin signaling bias at the ghrelin receptor. J. Biol. Chem. 289:33442–55 [Google Scholar]
  2. Juszczak M, Roszczyk M, Kowalska E, Stempniak B. 2.  2014. The influence of melatonin receptors antagonists, luzindole and 4-phenyl-2-propionamidotetralin (4-P-PDOT), on melatonin-dependent vasopressin and adrenocorticotropic hormone (ACTH) release from the rat hypothalamo-hypophysial system. In vitro and in vivo studies. J. Physiol. Pharmacol 65:777–84 [Google Scholar]
  3. Fukui H, Sueyoshi M, Haritani M, Nakazawa M, Naitoh S. 3.  et al. 1995. Natural infection with attaching and effacing Escherichia coli (O 103:H) in chicks. Avian Dis 39:912–18 [Google Scholar]
  4. Negrete OA, Chu D, Aguilar HC, Lee B. 4.  2007. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. J. Virol. 81:10804–14 [Google Scholar]
  5. Sela-Culang I, Kunik V, Ofran Y. 5.  2013. The structural basis of antibody-antigen recognition. Front. Immunol. 4:1–13 [Google Scholar]
  6. Van Regenmortel MHV. 6.  2014. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J. Mol. Recognit. 27:627–39 [Google Scholar]
  7. Hall WP, Ngatia SN, Van Duyne RP. 7.  2011. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J. Phys. Chem. C 115:1410–14 [Google Scholar]
  8. Ladd J, Boozer C, Yu Q, Chen S, Homola J, Jiang S. 8.  2004. DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20:8090–95 [Google Scholar]
  9. Kudryashov AV, Paxton AH, Ilchenko VS, Aschke L, Washio K. 9.  et al. 2014. Interfacing whispering gallery mode microresonators for environmental biosensing. Proc. SPIE 8960:89600O [Google Scholar]
  10. Kodoyianni V. 10.  2010. Label-free analysis of biomolecular interactions using SPR imaging. BioTechniques 50:32–40 [Google Scholar]
  11. Prabowo BA, Chang Y-F, Lee Y-Y, Su L-C, Yu C-J. 11.  et al. 2014. Application of an OLED integrated with BEF and giant birefringent optical (GBO) film in a SPR biosensor. Sens. Actuators B 198:424–30 [Google Scholar]
  12. Janshoff A, Steinem C, Sieber M, Galla H-H. 12.  1996. Specific binding of peanut agglutinin to GM1-doped solid supported lipid bilayers investigated by shear wave resonator measurements. Eur. Biophys. J. 25:105–13 [Google Scholar]
  13. Ogi H. 13.  2013. Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc. Jpn. Acad. B 89:401–17 [Google Scholar]
  14. Zhou B, Zhang Z, Zhang Y, Li R, Xiao Q. 14.  et al. 2009. Binding of cationic porphyrin to human serum albumin studied using comprehensive spectroscopic methods. J. Pharm. Sci. 98:105–13 [Google Scholar]
  15. Lu P-P, Meng Z-Y, Wang M-W, Liu T, Wang X. 15.  et al. 2007. Interactions between drug and human serum albumin investigated using surface plasmon resonance technology. Zhongguo Yaolixue Yu Dulixue Zazhi 21:147–51 [Google Scholar]
  16. Heinz TF, Loy MMT, Thompson WA. 16.  1985. Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation. Phys. Rev. Lett. 54:63–66 [Google Scholar]
  17. Heskett D, Song KJ, Burns A, Plummer EW, Dai HL. 17.  1986. Coverage dependent phase transition of pyridine on Ag(110) observed by second harmonic generation. J. Chem. Phys. 85:7490–92 [Google Scholar]
  18. Nguyen TT, Rembert K, Conboy JC. 18.  2009. Label-free detection of drug-membrane association using ultraviolet-visible sum-frequency generation. J. Am. Chem. Soc. 131:1401–3 [Google Scholar]
  19. Stokes G, Conboy JC. 19.  2014. Measuring selective estrogen receptor modulator (SERM)–membrane interactions with second harmonic generation. J. Am. Chem. Soc. 136:1409–17 [Google Scholar]
  20. Nguyen TT, Conboy JC. 20.  2011. High-throughput screening of drug-lipid membrane interactions via counter-propagating second harmonic generation imaging. Anal. Chem. 83:5979–88 [Google Scholar]
  21. Kriech MA, Conboy JC. 21.  2003. Label-free chiral detection of melittin binding to a membrane. J. Am. Chem. Soc. 125:1148–49 [Google Scholar]
  22. Salafsky JS, Eisenthal KB. 22.  2000. Second harmonic spectroscopy: detection and orientation of molecules at a biomembrane interface. Chem. Phys. Lett. 319:435–39 [Google Scholar]
  23. Liu Y, Yan ECY, Eisenthal KB. 23.  2001. Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers. Biophys. J. 80:1004–12 [Google Scholar]
  24. Liu Y, Yan ECY, Zhao X, Eisenthal KB. 24.  2001. Surface potential of charged liposomes determined by second harmonic generation. Langmuir 17:2063–66 [Google Scholar]
  25. Shang X, Liu Y, Yan E, Eisenthal KB. 25.  2001. Effects of counterions on molecular transport across liposome bilayer: probed by second harmonic generation. J. Phys. Chem. B 105:12816–22 [Google Scholar]
  26. Liu J, Subir M, Nguyen K, Eisenthal KB. 26.  2008. Second harmonic studies of ions crossing liposome membranes in real time. J. Phys. Chem. B 112:15263–66 [Google Scholar]
  27. Zeng J, Eckenrode HM, Dounce SM, Dai H-L. 27.  2013. Time-resolved molecular transport across living cell membranes. Biophys. J. 104:139–45 [Google Scholar]
  28. Rao Y, Kwok SJJ, Lombardi J, Turro NJ, Eisenthal KB. 28.  2014. Label-free probe of HIV-1 TAT peptide binding to mimetic membranes. PNAS 111:12684–88 [Google Scholar]
  29. Salafsky JS, Eisenthal KB. 29.  2000. Protein adsorption at interfaces detected by second harmonic generation. J. Phys. Chem. B 104:7752–55 [Google Scholar]
  30. Wilhelm MJ, Sheffield JB, Gonella G, Wu Y, Spahr C. 30.  et al. 2014. Real-time molecular uptake and membrane-specific transport in living cells by optical microscopy and nonlinear light scattering. Chem. Phys. Lett. 605–606:158–63 [Google Scholar]
  31. Gomopoulos N, Lutgebaucks C, Sun Q, Macias-Romero C, Roke S. 31.  2013. Label-free second harmonic and hyper Rayleigh scattering with high efficiency. Opt. Express 21:815–21 [Google Scholar]
  32. Roke S. 32.  2011. Nonlinear spectroscopy of bio-interfaces. Int. J. Mater. Res. 102:906–12 [Google Scholar]
  33. Roke S, Gonella G. 33.  2012. Nonlinear light scattering and spectroscopy of particles and droplets in liquids. Annu. Rev. Phys. Chem. 63:353–78 [Google Scholar]
  34. Karam TE, Haber LH. 34.  2014. Molecular adsorption and resonance coupling at the colloidal gold nanoparticle interface. J. Phys. Chem. C 118:642–49 [Google Scholar]
  35. Nguyen TT, Sly KL, Conboy JC. 35.  2012. Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation. Anal. Chem. 84:201–8 [Google Scholar]
  36. Shen YR. 36.  1984. The Principles of Nonlinear Optics Hoboken, NJ: John Wiley & Sons
  37. Watry MR, Brown MG, Richmond GL. 37.  2001. Probing molecular structure at liquid surfaces with vibrational sum frequency spectroscopy. Appl. Spectrosc. 55:321A–40A [Google Scholar]
  38. Reiser KM, Stoller P, Celliers P, Rubenchik A, Bratton C, Yankelevich D. 38.  2003. Second harmonic generation in collagen. Proc. SPIE 5212:149–56 [Google Scholar]
  39. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA. 39.  2002. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 81:493–508 [Google Scholar]
  40. Zhuo Z-Y, Liao C-S, Huang C-H, Yu J-Y, Tzeng Y-Y. 40.  et al. 2010. Second harmonic generation imaging—a new method for unraveling molecular information of starch. J. Struct. Biol. 171:88–94 [Google Scholar]
  41. Eisenthal KB. 41.  1996. Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem. Rev. 96:1343–60 [Google Scholar]
  42. Conboy JC, Daschbach JL, Richmond GL. 42.  1994. Total internal reflection second-harmonic generation: probing the alkane water interface. Appl. Phys. A 59:623–29 [Google Scholar]
  43. Conboy JC, Richmond GL. 43.  1995. Total internal reflection second harmonic generation from the interface between two immiscible electrolyte solutions. Electrochim. Acta 40:2881–86 [Google Scholar]
  44. Simpson GJ, Westerbuhr SG, Rowlen KL. 44.  2000. Molecular orientation and angular distribution probed by angle-resolved absorbance and second harmonic generation. Anal. Chem. 72:887–98 [Google Scholar]
  45. Corn RM. 45.  1992. In situ second harmonic generation studies of molecular orientation at electrode surfaces. Adsorption of Molecules and Metal Electrodes J Lipkowski, P Ross 391–408 New York: VCH [Google Scholar]
  46. Simpson GJ. 46.  2001. New tools for surface second-harmonic generation. Appl. Spectrosc. 55:16A–32A [Google Scholar]
  47. Yamada S, Lee IYS. 47.  1998. Recent progress in analytical SHG spectroscopy. Anal. Sci. 14:1045–51 [Google Scholar]
  48. Shen YR. 48.  1994. Nonlinear optical studies of surfaces. Appl. Phys. A 59:541–43 [Google Scholar]
  49. Shen YR. 49.  1989. Optical second harmonic generation at interfaces. Annu. Rev. Phys. Chem. 40:327–50 [Google Scholar]
  50. Heinz TF, Loy MMT, Thompson WA. 50.  1985. Second-harmonic generation: a probe of symmetry and order in crystalline surfaces. Springer Ser. Opt. Sci. 49:311–16 [Google Scholar]
  51. Sly KL, Mok S-W, Conboy JC. 51.  2013. Second harmonic correlation spectroscopy: a method for determining surface binding kinetics and thermodynamics. Anal. Chem. 85:8429–35 [Google Scholar]
  52. Haes AJ, Van Duyne RP. 52.  2002. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124:10596–604 [Google Scholar]
  53. Dick B, Gierulski A, Marowsky G, Reider GA. 53.  1985. Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission. Appl. Phys. B 38:107–16 [Google Scholar]
  54. Guyot-Sionnest P, Shen YR, Heinz TF. 54.  1987. Comments on “Determination of the nonlinear optical susceptibility χ(2) of surface layers” by B. Dick et al. Appl. Phys. B 42:237–38 [Google Scholar]
  55. Kriech MA, Conboy JC. 55.  2004. Counterpropagating second-harmonic generation: a new technique for the investigation of molecular chirality at surfaces. J. Opt. Soc. Am. B 21:1013–22 [Google Scholar]
  56. Rao Y, Hong S-Y, Turro NJ, Eisenthal KB. 56.  2011. Molecular orientational distribution at interfaces using second harmonic generation. J. Phys. Chem. C 115:11678–83 [Google Scholar]
  57. Rao Y, Kwok SJJ, Lombardi J, Turro NJ, Eisenthal KB. 57.  2014. Label-free probe of HIV-1 TAT peptide binding to mimetic membranes. PNAS 111:12684–88 [Google Scholar]
  58. Matar G, Duboisset J, Benichou E, Bachelier G, Russier-Antoine I. 58.  et al. 2010. Second Harmonic Generation, a new approach for analyzing the interfacial properties of a short tryptophan-rich peptide. Chem. Phys. Lett. 500:161–66 [Google Scholar]
  59. Eckenrode HM, Dai H-L. 59.  2004. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-l-lysine on polystyrene sulfate microspheres. Langmuir 20:9202–9 [Google Scholar]
  60. Salafsky JS. 60.  2003. Second-harmonic generation as a probe of conformational change in molecules. Chem. Phys. Lett. 381:705–9 [Google Scholar]
  61. Moree B, Connell K, Mortensen RB, Liu CT, Benkovic SJ, Salafsky J. 61.  2015. Protein conformational changes are detected and resolved site specifically by second-harmonic generation. Biophys. J. 109:806–15 [Google Scholar]
  62. Moree B, Yin G, Lázaro DF, Munari F, Strohäker T. 62.  et al. 2015. Small molecules detected by second-harmonic generation modulate the conformation of monomeric α-synuclein and reduce its aggregation in cells. J. Biol. Chem. 290:27582–93 [Google Scholar]
  63. Salafsky JS, Cohen B. 63.  2008. A second-harmonic-active unnatural amino acid as a structural probe of biomolecules on surfaces. J. Phys. Chem. B 112:15103–7 [Google Scholar]
  64. Zhao S, Walker DS, Reichert WM. 64.  1993. Cooperativity in the binding of avidin to biotin-lipid-doped Langmuir-Blodgett films. Langmuir 9:3166–73 [Google Scholar]
  65. Saad JS, Loeliger E, Luncsford P, Liriano M, Tai J. 65.  et al. 2007. Point mutations in the HIV-1 matrix protein turn off the myristyl switch. J. Mol. Biol. 366:574–85 [Google Scholar]
  66. Sly KL, Conboy JC. 66.  2014. Determination of multivalent protein–ligand binding kinetics by second-harmonic correlation spectroscopy. Anal. Chem. 86:11045–54 [Google Scholar]
  67. Sakamaki K, Sawada K, Koshimizu U, Nishimune Y. 67.  1989. Identification of peanut agglutinin receptors on mouse testicular germ cells. Biol. Reprod. 41:1097–102 [Google Scholar]
  68. Devlin TM. 68.  1997. Textbook of Biochemistry with Clinical Correlations Hoboken, NJ: Wiley, 4th ed..
  69. Giordmaine JA, Rentzepis PM. 69.  1967. Correlation of optical activity and nonlinear polarizability. J. Chim. Phys. 64:215–21 [Google Scholar]
  70. Simon HJ, Bloembergen N. 70.  1968. Second-harmonic light generation in crystals with natural optical activity. Phys. Rev. 171:1104–14 [Google Scholar]
  71. Verbiest T, Kauranen M, Van Elshocht S, Persoons A. 71.  1999. Optical susceptibilities of chiral systems and chiral thin films. Nonlin. Opt. 22:155–60 [Google Scholar]
  72. Persoons A, Kauranen M, Van Elshocht S, Verbiest T, Ma L. 72.  et al. 1998. Chiral effects in second-order nonlinear optics. Mol. Cryst. Liq. Cryst. Sci. Technol. A 315:395–400 [Google Scholar]
  73. Kauranen M, Verbiest T, Maki JJ, Persoons A. 73.  1996. Chirality effects in second-order nonlinear optics. NATO Advanced Research Workshop on Photoactive Organic Materials: Science and Applications F Kajzar, VM Agranovich, CY-C Lee 129–44 Dordrecht, Neth.: Kluwer [Google Scholar]
  74. Hicks JM, Petralli-Mallow T. 74.  1999. Nonlinear optics of chiral surface systems. Appl. Phys. B 68:589–93 [Google Scholar]
  75. Petralli-Mallow T, Wong TM, Byers JD, Yee HI, Hicks JM. 75.  1993. Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study. J. Phys. Chem. 97:1383–88 [Google Scholar]
  76. Hicks JM, Petralli-Mallow T, Byers JD. 76.  1994. Consequences of chirality in second-order non-linear spectroscopy at surfaces. Faraday Discuss. Pap. 99:341–57 [Google Scholar]
  77. Byers JD, Hicks JM. 77.  1994. Electronic spectral effects on chiral surface second harmonic generation. Chem. Phys. Lett. 231:216–24 [Google Scholar]
  78. Byers JD, Yee HI, Hicks JM. 78.  1994. A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers. J. Chem. Phys. 101:6233–41 [Google Scholar]
  79. Byers JD, Yee HI, Petralli-Mallow T, Hicks JM. 79.  1994. Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers. Phys. Rev. B 49:14643–47 [Google Scholar]
  80. Yamada T, Haruyama Y, Kasai K, Terui T, Tanaka S. 80.  et al. 2012. Orientation of a bacteriorhodopsin thin film deposited by dip coating technique and its chiral SHG as studied by SHG interference technique. Chem. Phys. Lett. 530:113–19 [Google Scholar]
  81. Tao Y, Cheben P, Aldea-Nunzi G, Rao Bobbara S, Nunzi J-M. 81.  et al. 2013. Second harmonic generation of chiral-modified silver nanoparticles. Proc. SPIE 8915:891513 [Google Scholar]
  82. Kriech MA, Conboy JC. 82.  2005. Using the intrinsic chirality of a molecule as a label-free probe to detect molecular adsorption to a surface by second harmonic generation. Appl. Spectrosc. 59:746–53 [Google Scholar]
  83. Dawson CR, Drake AF, Helliwell J, Hider RC. 83.  1978. The interaction of bee melittin with lipid bilayer membranes. Biochim. Biophys. Acta 510:75–86 [Google Scholar]
  84. Frey S, Tamm LK. 84.  1991. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys. J. 60:922–30 [Google Scholar]
  85. Buckley P, Edison AS, Kemple MD, Prendergast FG. 85.  1993. 13Cα-NMR assignments of melittin in methanol and chemical shift correlations with secondary structure. J. Biomol. NMR 3:639–52 [Google Scholar]
  86. Lam YH, Wassall SR, Morton CJ, Smith R, Separovic F. 86.  2001. Solid-state NMR structure determination of melittin in a lipid environment. Biophys. J. 81:2752–61 [Google Scholar]
  87. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 87.  2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81:1475–85 [Google Scholar]
  88. Kubota S, Yang JT. 88.  1986. Conformation and aggregation of melittin: effect of pH and concentration of sodium dodecyl sulfate. Biopolymers 25:1493–504 [Google Scholar]
  89. Maulet Y, Cox JA. 89.  1983. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry 22:5680–86 [Google Scholar]
  90. Terwilling TC, Eisenberg D. 90.  1982. The structure of melittin: structure determination and partial refinement. J. Biol. Chem. 257:6010–15 [Google Scholar]
  91. Dempsey CE, Watts A. 91.  1987. A deuterium and phosphorus-31 nuclear magnetic resonance study of the interaction of melittin with dimyristoylphosphatidylcholine bilayers and the effects of contaminating phospholipase A2. Biochemistry 26:5803–11 [Google Scholar]
  92. Sharifian M, Wilhelm MJ, Dai H-L. 92.  2016. Label-free optical method for quantifying molecular transport across cellular membranes in vitro. J. Phys. Chem. Lett. 7:3406–11 [Google Scholar]
  93. Mitchell SA. 93.  2009. Indole adsorption to a lipid monolayer studied by optical second harmonic generation. J. Phys. Chem. B 113:10693–707 [Google Scholar]
  94. Hellwarth R, Christensen P. 94.  1974. Nonlinear optical microscopic examination of structure in polycrystalline zinc selenide. Opt. Commun. 12:318–22 [Google Scholar]
  95. Motreff A, Raffy G, Del Guerzo A, Belin C, Dussauze M. 95.  et al. 2010. Chemisorption of fluorous copper(II)-carboxylate complexes on SiO2 surfaces: versatile binding layers applied to the preparation of porphyrin monolayers. Chem. Commun. 46:2617–19 [Google Scholar]
  96. Iwamoto M, Manaka T. 96.  2011. Probing and modeling of carrier motion in organic devices by optical second harmonic generation. Thin Solid Films 519:961–63 [Google Scholar]
  97. Kriech MA, Conboy JC. 97.  2005. Imaging chirality with surface second harmonic generation microscopy. J. Am. Chem. Soc. 127:2834–35 [Google Scholar]
  98. Macias-Romero C, Didier MEP, Jourdain P, Marquet P, Magistretti P. 98.  et al. 2014. High throughput second harmonic imaging for label-free biological applications. Opt. Express 22:31102 [Google Scholar]
  99. Bouevitch O, Lewis A, Pinevsky I, Wuskell JP, Loew LM. 99.  1993. Probing membrane potential with nonlinear optics. Biophys. J. 65:672–79 [Google Scholar]
  100. Ben-Oren I, Peleg G, Lewis A, Minke B, Loew L. 100.  1996. Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys. J. 71:1616–20 [Google Scholar]
  101. Moreaux L, Sandre O, Blanchard-Desce M, Mertz J. 101.  2000. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt. Lett. 25:320–22 [Google Scholar]
  102. Srivastava A, Eisenthal KB. 102.  1998. Kinetics of molecular transport across a liposome bilayer. Chem. Phys. Lett. 292:345–51 [Google Scholar]
  103. Yan ECY, Eisenthal KB. 103.  2000. Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. Biophys. J. 79:898–903 [Google Scholar]
  104. Peleg G, Lewis A, Linial M, Loew LM. 104.  1999. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. PNAS 96:6700–4 [Google Scholar]
  105. Goldsmith PF. 105.  1998. Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications Hoboken, NJ: Wiley/IEEE
  106. Troiano JM, Kuech TR, Vartanian AM, Torelli MD, Sen A. 106.  et al. 2016. On electronic and charge interference in second harmonic generation responses from gold metal nanoparticles at supported lipid bilayers. J. Phys. Chem. C 120:20659–67 [Google Scholar]
  107. Perrenoud-Rinuy J, Brevet P-F, Girault HH. 107.  2002. Second harmonic generation study of myoglobin and hemoglobin and their protoporphyrin IX chromophore at the water/1,2-dichloroethane interface. Phys. Chem. Chem. Phys. 4:4774–81 [Google Scholar]
  108. Kumal RR, Abu-Laban M, Landry CR, Kruger B, Zhang Z. 108.  et al. 2016. Plasmon-enhanced photocleaving dynamics in colloidal microRNA-functionalized silver nanoparticles monitored with second harmonic generation. Langmuir 32:10394–401 [Google Scholar]
  109. Walter SR, Geiger FM. 109.  2010. DNA on stage: showcasing oligonucleotides at surfaces and interfaces with second harmonic and vibrational sum frequency generation. J. Phys. Chem. Lett. 1:9–15 [Google Scholar]
  110. Doughty B, Kazer SW, Eisenthal KB. 110.  2011. Binding and cleavage of DNA with the restriction enzyme ecor1 using time-resolved second harmonic generation. PNAS 108:19979–84 [Google Scholar]
  111. Doughty B, Rao Y, Kazer SW, Kwok SJJ, Turro NJ, Eisenthal KB. 111.  2013. Binding of the anti-cancer drug daunomycin to DNA probed by second harmonic generation. J. Phys. Chem. B 117:15285–89 [Google Scholar]
  112. Doughty B, Rao Y, Kazer SW, Kwok SJJ, Turro NJ, Eisenthal KB. 112.  2013. Probing the relative orientation of molecules bound to DNA through controlled interference using second-harmonic generation. PNAS 110:5756–58 [Google Scholar]
  113. Yang L, McStay D, Quinn PJ. 113.  1996. Surface second harmonic generation (SSHG): a new scheme for immunoassay. Proc. SPIE 2676:290–96 [Google Scholar]
  114. Ditcham WGF, Al-Obaidi AHR, McStay D, Mottram TT, Brownlie J, Thompson I. 114.  2001. An immunosensor with potential for the detection of viral antigens in body fluids, based on surface second harmonic generation. Biosens. Bioelectron. 16:221–24 [Google Scholar]
  115. Pecora R. 115.  1964. Doppler shifts in light scattering from pure liquids and polymer solutions. J. Chem. Phys. 40:1604–14 [Google Scholar]
  116. Pecora R. 116.  1985. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy New York: Plenum
  117. Cummins HZ, Pike ER. 117.  1973. Photon Correlation and Light Beating Spectroscopy 3 New York: Plenum
  118. Cummins HZ, Knable N, Yeh Y. 118.  1964. Observation of diffusion broadening of Rayleigh scattered light. Phys. Rev. Lett. 12:150–53 [Google Scholar]
  119. Bismuto E, Gratton E, Lamb DC. 119.  2001. Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophys. J. 81:3510–21 [Google Scholar]
  120. Chattopadhyay K, Saffarian S, Elson EL, Frieden C. 120.  2005. Measuring unfolding of proteins in the presence of denaturant using fluorescence correlation spectroscopy. Biophys. J. 88:1413–22 [Google Scholar]
  121. Starr TE, Thompson NL. 121.  2001. Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys. J. 80:1575–84 [Google Scholar]
  122. Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW. 122.  1977. Lateral diffusion in planar lipid bilayers. Science 195:305–6 [Google Scholar]
  123. Hansen RL, Harris JM. 123.  1998. Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy. Anal. Chem. 70:4247–56 [Google Scholar]
  124. Kuttner YY, Kozer N, Segal E, Schreiber G, Haran G. 124.  2005. Separating the contribution of translational and rotational diffusion to protein association. J. Am. Chem. Soc. 127:15138–44 [Google Scholar]
  125. Rodriguez-Maldonado L, Fernandez-Nieves A, Fernandez-Barbero A. 125.  2005. Dynamic light scattering from high molecular weight poly-l-lysine molecules. Colloids Surf. A 270–271:335–39 [Google Scholar]
  126. Nordmeier E. 126.  1993. Static and dynamic light-scattering solution behavior of pullulan and dextran in comparison. J. Phys. Chem. 97:5770–85 [Google Scholar]
  127. Kelly CV, Wakefield DL, Holowka DA, Craighead HG, Baird BA. 127.  2014. Near-field fluorescence cross-correlation spectroscopy on planar membranes. ACS Nano 8:7392–404 [Google Scholar]
  128. Macháň R, Jurkiewicz P, Olżyńska A, Olšinová M, Cebecauer M. 128.  et al. 2014. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH4. Langmuir 30:6171–79 [Google Scholar]
  129. Thompson NL, Axelrod D. 129.  1983. Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 43:103–14 [Google Scholar]
  130. Asiala SM, Schultz ZD. 130.  2014. Surface enhanced Raman correlation spectroscopy of particles in solution. Anal. Chem. 86:2625–32 [Google Scholar]
  131. Brun N, Ponçot M, Bourson P. 131.  2013. Raman correlation spectroscopy: a method studying physical properties of polystyrene by the means of multivariate analysis. Chemom. Intell. Lab. Syst. 128:77–82 [Google Scholar]
  132. Riese DO, Vos WL, Wegdam GH, Poelwijk FJ, Abernathy DL, Grübel G. 132.  2000. Photon correlation spectroscopy: X rays versus visible light. Phys. Rev. E 61:1676–80 [Google Scholar]
  133. Dierker SB, Pindak R, Fleming RM, Robinson IK, Berman L. 133.  1995. X-ray photon corelation spectroscopy study of Brownian motion of gold colloids in glycerol. Phys. Rev. Lett. 75:449–52 [Google Scholar]
  134. Eisebitt S, Lörgen M, Eberhardt W, Lüning J, Stöhr J. 134.  et al. 2003. Polarization effects in coherent scattering from magnetic specimen: implications for x-ray holography, lensless imaging, and correlation spectroscopy. Phys. Rev. B 68:104419 [Google Scholar]
  135. Grübel G, Abernathy DL, Riese DO, Vos WL, Wegdam GH. 135.  2000. Dynamics of dense, charge-stabilized suspensions of colloidal silica studied by correlation spectroscopy with coherent X-rays. J. Appl. Crystallogr. 33:424–27 [Google Scholar]
  136. Gassin P-M, Martin-Gassin G, Benichou E, Brevet P-F. 136.  2014. Tracking molecular aggregates at a liquid interface by nonlinear correlation spectroscopy. J. Phys. Chem. C 118:1135–41 [Google Scholar]
  137. Zhao X, Eisenthal KB. 137.  1995. Monolayer orientational fluctuations and a new phase transition at the air water interface detected by second harmonic generation. J. Chem. Phys. 102:5818–26 [Google Scholar]
  138. Frostell-Karlsson Å, Remaeus A, Roos H, Andersson K, Borg P. 138.  et al. 2000. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem 431986–92 [Google Scholar]
  139. Murtaza R, Jackman HL, Alexander B, Lleshi-Tali A, Winnie AP, Igic R. 139.  2001. Simultaneous determination of mepivacaine, tetracaine, and p-butylaminobenzoic acid by high-performance liquid chromatography. J. Pharmacol. Toxicol. Methods 46:131–36 [Google Scholar]
  140. Shi J, Yang T, Kataoka S, Zhang Y, Diaz AJ, Cremer PS. 140.  2007. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 129:5954–61 [Google Scholar]
  141. Svennerholm A-M, Wiklund G. 141.  1983. Rapid GM1-enzyme-linked immunosorbant assay with visual reading for identification of Escherichia coli heat-labile enterotoxin. J. Clin. Microbiol. 17:596–600 [Google Scholar]
  142. Vornholt W, Hartmann M, Keusgen M. 142.  2007. SPR studies of carbohydrate–lectin interactions as useful tool for screening on lectin sources. Biosens. Bioelectron. 22:2983–88 [Google Scholar]
  143. Jung H, Yang T, Lasagna MD, Shi J, Reinhart GD, Cremer PS. 143.  2008. Impact of hapten presentation on antibody binding at lipid membrane interfaces. Biophys. J. 94:3094–103 [Google Scholar]
  144. Nielsen UB, Geierstanger BH. 144.  2004. Multiplexed sandwich assays in microarray format. J. Immunol. Methods 290:107–20 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041453
Loading
/content/journals/10.1146/annurev-anchem-071015-041453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error