1932

Abstract

Objects of cultural heritage significance are created using a wide variety of materials, or mixtures of materials, and often exhibit heterogeneity on multiple length scales. The effective study of these complex constructions thus requires the use of a suite of complementary analytical technologies. Moreover, because of the importance and irreplaceability of most cultural heritage objects, researchers favor analytical techniques that can be employed noninvasively, i.e., without having to remove any material for analysis. As such, analytical imaging has emerged as an important approach for the study of cultural heritage. Imaging technologies commonly employed, from the macroscale through the micro- to nanoscale, are discussed with respect to how the information obtained helps us understand artists’ materials and methods, the cultures in which the objects were created, how the objects may have changed over time, and importantly, how we may develop strategies for their preservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041500
2017-06-12
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-071015-041500.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041500&mimeType=html&fmt=ahah

Literature Cited

  1. Chen Q, Pugno NM. 1.  2013. Bio-mimetic mechanisms of natural hierarchical materials: a review. J. Mech. Behav. Biomed. Mater 193–33 [Google Scholar]
  2. Fratzl P, Weinkamer R. 2.  2007. Nature's hierarchical materials. Prog. Mater. Sci. 52:1263–334 [Google Scholar]
  3. Torquato S. 3.  2013. Random Heterogeneous Materials: Microstructure and Macroscopic Properties Berlin: Springer Sci. & Bus.
  4. De la Rie ER. 4.  1987. The influence of varnishes on the appearance of paintings. Stud. Conserv. 32:1–13 [Google Scholar]
  5. Berns RS, de la Rie ER. 5.  2003. The effect of the refractive index of a varnish on the appearance of oil paintings. Stud. Conserv. 48:251–62 [Google Scholar]
  6. 6. Craddock PT. 1983. Three thousand years of copper alloys: from the Bronze Age to the Industrial Revolution. Application of Science in Examination of Works of Art PA England, Lv Zelst 59–67 Boston, MA: Mus. Fine Arts [Google Scholar]
  7. Scott DA. 7.  2002. Copper and Bronze in Art: Corrosion, Colorants and Conservation Los Angeles, CA: Getty Conserv. Inst.
  8. Pérez‐Arantegui J, Molera J, Larrea A, Pradell T, Vendrell‐Saz M. 8.  et al. 2001. Luster pottery from the thirteenth century to the sixteenth century: a nanostructured thin metallic film. J. Am. Ceram. Soc. 84:442–46 [Google Scholar]
  9. Pradell T. 9.  2016. Lustre and nanostructures—ancient technologies revisited. Nanoscience and Cultural Heritage P Dillmann, L Bellot-Gurlet, I Nenner 3–39 Paris: Atlantis [Google Scholar]
  10. Blalock HM. 10.  1979. Social Statistics New York: McGraw-Hill
  11. Bertrand L, Robinet L, Thoury M, Janssens K, Cohen SX, Schöder S. 11.  2011. Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl. Phys. A 106:377–96 [Google Scholar]
  12. Artioli G. 12.  2010. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science Oxford, UK: Oxford Univ. Press
  13. Ciliberto E, Spoto G. 13.  2000. Modern Analytical Methods in Art and Archaeology New York: John Wiley & Sons
  14. Creagh DC, Bradley D. 14.  2007. Physical Techniques in the Study of Art, Archaeology and Cultural Heritage Amsterdam: Elsevier
  15. Janssens K, Van Grieken R. 15.  2004. Non-Destructive Microanalysis of Cultural Heritage Materials Amsterdam: Elsevier
  16. Madariaga JM. 16.  2015. Analytical chemistry in the field of cultural heritage. Anal. Methods 7:4848–76 [Google Scholar]
  17. Mantler M, Schreiner M. 17.  2000. X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17 [Google Scholar]
  18. Cotte M, Susini J, Dik J, Janssens K. 18.  2010. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc. Chem. Res. 43:705–14 [Google Scholar]
  19. Janssens K, Alfeld M, van der Snickt G, Nolf WD, Vanmeert F. 19.  et al. 2013. The use of synchrotron radiation for the characterization of artists’ pigments and paintings. Annu. Rev. Anal. Chem. 6:399–425 [Google Scholar]
  20. Janssens K, Adams F. 20.  2000. Applications in art and archaeology. Microscopic X-Ray Fluorescence Analysis K Janssens, F Adams, A Rindby 291–314 Chichester, UK: John Wiley & Sons [Google Scholar]
  21. Janssens K, Dik J, Cotte M, Susini J. 21.  2010. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 43:814–25 [Google Scholar]
  22. Derrick MR, Stulik D, Landry JM. 22.  2000. Infrared Spectroscopy in Conservation Science Los Angeles, CA: Getty Conserv. Inst.
  23. Smith GD, Clark RJH. 23.  2001. Raman microscopy in art history and conservation science. Rev. Conserv. 2:92–106 [Google Scholar]
  24. Bersani D, Lottici P. 24.  2016. Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 47:499–530 [Google Scholar]
  25. Casadio F, Daher C, Bellot-Gurlet L. 25.  2016. Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374:1–51 [Google Scholar]
  26. Crina Anca Sandu I, de Sá MH, Pereira MC. 26.  2011. Ancient ‘gilded’ art objects from European cultural heritage: a review on different scales of characterization. Surf. Interface Anal. 43:1134–51 [Google Scholar]
  27. Janssens K, Legrand S, Van der Snickt G, Vanmeert F. 27.  2016. Virtual archaeology of altered paintings: multiscale chemical imaging tools. Elements 12:39–44 [Google Scholar]
  28. Kirsh A, Levenson RS. 28.  2002. Seeing Through Paintings: Physical Examination in Art Historical Studies New Haven, CT: Yale Univ. Press
  29. Stoner JH, Rushfield R. 29.  2013. Conservation of Easel Paintings London: Routledge
  30. O'Connor S, Brooks M. 30.  2007. X-Radiography of Textiles, Dress and Related Objects London: Routledge
  31. Berg I. 31.  2008. Looking through pots: recent advances in ceramics X-radiography. J. Archaeol. Sci. 35:1177–88 [Google Scholar]
  32. Verri G, Saunders D. 32.  2014. Xenon flash for reflectance and luminescence (multispectral) imaging in cultural heritage applications. Br. Mus. Tech. Bull. 8:83–92 [Google Scholar]
  33. De la Rie ER. 33.  1982. Fluorescence of paint and varnish layers (Part 1). Stud. Conserv. 27:1–7 [Google Scholar]
  34. Nevin A, Comelli D, Valentini G, Anglos D, Burnstock A. 34.  et al. 2007. Time-resolved fluorescence spectroscopy and imaging of proteinaceous binders used in paintings. Anal. Bioanal. Chem. 388:1897–905 [Google Scholar]
  35. Mairinger F. 35.  2000. The ultraviolet and fluorescence study of paintings and manuscripts. Radiation in Art and Archeometry DC Creagh, DA Bradley 56–75 Amsterdam: Elsevier [Google Scholar]
  36. Cosentino A. 36.  2015. Effects of different binders on technical photography and infrared refelctography of 54 historical pigments. Int. J. Conserv. Sci. 6:287–98 [Google Scholar]
  37. van Asperen de Boer JRJ. 37.  1968. Infrared reflectography: a method for the examination of paintings. Appl. Opt. 7:1711–14 [Google Scholar]
  38. Mairinger F. 38.  2000. The infrared examination of paintings. Radiation in Art and Archeometry DC Creagh, DA Bradley 40–55 Amsterdam: Elsevier [Google Scholar]
  39. Spring M, Grout R, White R. 39.  2003. “Black Earths”: a study of unusual black and dark grey pigments used by artists in the sixteenth century. Natl. Gallery Tech. Bull. 24:96–113 [Google Scholar]
  40. Turner N. 40.  2005. The manuscript painting techniques of Jean Bourdichon. A Masterpiece Reconstructed: The Hours of Louis XII T Kren, M Evans 63–79 Los Angeles, CA: J. Paul Getty Trust [Google Scholar]
  41. Hoeniger C. 41.  1991. The identification of blue pigments in early Sienese paintings by color infrared photography. J. Am. Inst. Conserv. 30:115–24 [Google Scholar]
  42. Cosentino A. 42.  2014. Identification of pigments by multispectral imaging; a flowchart method. Herit. Sci. 2:1–12 [Google Scholar]
  43. Mirti P, Appolonia L, Casoli A, Ferrari R, Laurenti E. 43.  et al. 1995. Spectrochemical and structural studies on a Roman sample of Egyptian blue. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51:437–46 [Google Scholar]
  44. Pozza G, Ajò D, Chiari G, De Zuane F, Favaro M. 44.  2000. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple. J. Cult. Herit. 1:393–98 [Google Scholar]
  45. Verri G. 45.  2009. The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging. Anal. Bioanal. Chem. 394:1011–21 [Google Scholar]
  46. Verri G, Opper T, Deviese T. 46.  2010. The ‘Treu Head’: a case study in Roman sculptural polychromy. Br. Mus. Tech. Res. Bull. 4:39–54 [Google Scholar]
  47. Malzbender T, Gelb D, Wolters H. 47.  2001. Polynomial texture maps Presented at Annu. Meet. SIGGRAPH, 28th New York:
  48. Malzbender T, Wilburn B, Gelb D, Ambrisco B. 48.  2006. Surface enhancement using real-time photometric stereo and reflectance transformation. Proc. 17th Eurographics Conference on Rendering Techniques245–50 Geneva: Eurographics Assoc. [Google Scholar]
  49. Padfield J, Saunders D, Malzbender T. 49.  2005. Polynomial texture mapping: a new tool for examining the surface of paintings. ICOM Committee Conserv 1:504–10 [Google Scholar]
  50. Mudge M, Malzbender T, Schroer C, Lum M. 50.  2006. New reflection transformation imaging methods for rock art and multiple-viewpoint display. Proceedings of the 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage M Ioannides, D Arnold, F Niccolucci 195–200 Geneva: Eurographics Assoc. [Google Scholar]
  51. Earl G, Martinez K, Malzbender T. 51.  2010. Archaeological applications of polynomial texture mapping: analysis, conservation and representation. J. Archaeol. Sci. 37:2040–50 [Google Scholar]
  52. Manfredi M, Bearman G, Williamson G, Kronkright D, Doehne E. 52.  et al. 2014. A new quantitative method for the non-invasive documentation of morphological damage in paintings using RTI surface normals. Sensors 14:12271–84 [Google Scholar]
  53. Cossairt O, Huang X, Matsuda N, Stratis H, Broadway M. 53.  et al. 2015. Surface shape studies of the art of Paul Gauguin. Digit. Herit. 2:13–20 [Google Scholar]
  54. Artal-Isbrand P, Klausmeyer P. 54.  2013. Evaluation of the relief line and the contour line on Greek red-figure vases using reflectance transformation imaging and three-dimensional laser scanning confocal microscopy. Stud. Conserv. 58:338–59 [Google Scholar]
  55. Caine M, Magen M. 55.  2011. Pixels and parchment: the application of RTI and infrared imaging to the Dead Sea Scrolls. Electronic Visualisation and the Arts S Dunn, J Bowen, K Ng 140–46 Proc. EVA Conf. London: [Google Scholar]
  56. Cucci C, Casini A, Picollo M, Stefani L. 56.  2013. Extending hyperspectral imaging from Vis to NIR spectral regions: a novel scanner for the in-depth analysis of polychrome surfaces Proc. SPIE 8790, Opt. Arts Archit. Archaeol. IV, 879009
  57. Fischer C, Kakoulli I. 57.  2006. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud. Conserv. 51:3–16 [Google Scholar]
  58. Kubik M. 58.  2007. Hyperspectral imaging: a new technique for the non-invasive study of artworks. Phys. Tech. Study Art Archaeol. Cult. Herit. 2:199–259 [Google Scholar]
  59. Liang H. 59.  2012. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 106:309–23 [Google Scholar]
  60. Cucci C, Delaney JK, Picollo M. 60.  2016. Reflectance hyperspectral imaging for investigation of works of art: old master paintings and illuminated manuscripts. Acc. Chem. Res. 49:2070–79 [Google Scholar]
  61. Thoury M, Delaney JK, de la Rie ER, Palmer M, Morales K, Krueger J. 61.  2011. Near-infrared luminescence of cadmium pigments: in situ identification and mapping in paintings. Appl. Spectrosc. 65:939–51 [Google Scholar]
  62. Delaney JK, Walmsley E, Berrie BH, Fletcher CF. 62.  2005. Multispectral imaging of paintings in the infrared to detect and map blue pigments. Scientific Examination of Art: Modern Techniques in Conservation and Analysis120–36 Washington, DC: Natl. Acad. Press [Google Scholar]
  63. Legrand S, Vanmeert F, Van der Snickt G, Alfeld M, De Nolf W. 63.  et al. 2014. Examination of historical paintings by state-of-the-art hyperspectral imaging methods: from scanning infra-red spectroscopy to computed X-ray laminography. Herit. Sci. 2:13 [Google Scholar]
  64. Delaney JK, Ricciardi P, Glinsman LD, Facini M, Thoury M. 64.  et al. 2014. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 59:91–101 [Google Scholar]
  65. Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M. 65.  et al. 2010. Visible and infrared imaging spectroscopy of Picasso's Harlequin Musician: mapping and identification of artist materials in situ. Appl. Spectrosc 64:584–94 [Google Scholar]
  66. Szafran Y, Rivers L, Phenix A, Learner T, Landau EG, Martin S. 66.  2014. Jackson Pollock's Mural: The Transitional Moment Los Angeles, CA: Getty Publ.
  67. Casini A, Bacci M, Cucci C, Lotti F, Porcinai S. 67.  et al. 2005. Fiber optic reflectance spectroscopy and hyper-spectral image spectroscopy: two integrated techniques for the study of the Madonna dei Fusi Proc. SPIE 5857, Opt. Methods Arts Archaeol., 58570M
  68. Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P. 68.  et al. 2013. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst 138:4838–48 [Google Scholar]
  69. Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M. 69.  et al. 2012. Near infrared reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew. Chem. Int. Ed. 51:5607–10 [Google Scholar]
  70. Moens L, Bohlen AV, Vandenabeele P. 70.  2000. X-Ray fluorescence. Modern Analytical Methods in Art and Archaeology E Cilberto, G Spoto 55–80 New York: John Wiley & Sons [Google Scholar]
  71. Bronk H, Röhrs S, Bjeoymikhov A, Langhoff N, Schmalz J. 71.  et al. 2001. ArtTAX—a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological artifacts. Fresenius J. Anal. Chem. 371:307–16 [Google Scholar]
  72. Schreiner M, Frühmann B, Jembrih-Simburger D, Linke R. 72.  2004. X-rays in art and archaeology: an overview. Powder Diffr 19:3–11 [Google Scholar]
  73. Glinsman LD. 73.  2005. The practical application of air-path X-ray fluorescence spectrometry in the analysis of museum objects. Rev. Conserv. 6:3–17 [Google Scholar]
  74. Woll AR, Mass J, Bisulca C, Huang R, Bilderback DH. 74.  et al. 2006. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source. Appl. Phys. A Mater. Sci. Process. 83:235–38 [Google Scholar]
  75. Namowicz C, Trentelman K, McGlinchey C. 75.  2009. XRF of cultural heritage materials: round-robin IV—paint on canvas. Powder Diffr 24:124–29 [Google Scholar]
  76. Speakman RJ, Little NC, Creel D, Miller MR, Iñañez JG. 76.  2011. Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. J. Archaeol. Sci. 38:3483–96 [Google Scholar]
  77. Shackley MS. 77.  2011. An introduction to X-ray fluorescence (XRF) analysis in archaeology. X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology MSE Shackley 7–44 New York: Springer [Google Scholar]
  78. Hocquet F-P, Calvo del Castillo H, Cervera Xicotencatl A, Bourgeois C, Oger C. 78.  et al. 2011. Elemental 2D imaging of paintings with a mobile EDXRF system. Anal. Bioanal. Chem. 399:3109–16 [Google Scholar]
  79. Shugar AN, Mass JL. 79.  eds; 2012. Handheld XRF for Art and Archaeology Leuven, Belg.: Leuven Univ. Press [Google Scholar]
  80. Trentelman K, Bouchard M, Ganio M, Namowicz C, Patterson CS, Walton M. 80.  2010. The examination of works of art using in situ XRF line and area scans. X‐Ray Spectrom 39:159–66 [Google Scholar]
  81. Alfeld M, Janssens K, Dik J, de Nolf W, van der Snickt G. 81.  2011. Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. J. Anal. At. Spectrom. 26:899–909 [Google Scholar]
  82. Cabal Rodriguez AE, Leyva Pernia D, Schalm O, Van Espen PJ. 82.  2012. Possibilities of energy-resolved X-ray radiography for the investigation of paintings. Anal. Bioanal. Chem. 402:1471–80 [Google Scholar]
  83. Alfeld M, de Nolf W, Cagno S, Appel K, Siddons DP. 83.  et al. 2013. Revealing hidden paint layers in oil paintings by means of scanning macro-XRF: a mock-up study based on Rembrandt's “An Old Man in Military Costume.”. J. Anal. At. Spectrom. 28:40–51 [Google Scholar]
  84. Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G. 84.  et al. 2013. A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J. Anal. At. Spectrom. 28:760–67 [Google Scholar]
  85. Herm C. 85.  2008. Mobile micro-X-ray fluorescence analysis (XRF) on Medieval paintings. CHIMIA Int. J. Chem. 62:887–98 [Google Scholar]
  86. Howard DL, de Jonge MD, Lau D, Hay D, Varcoe-Cocks M. 86.  et al. 2012. High-definition X-ray fluorescence elemental mapping of paintings. Anal. Chem. 84:3278–86 [Google Scholar]
  87. Janssens K, Vittiglio G, Deraedt I, Aerts A, Vekemans B. 87.  et al. 2000. Use of microscopic XRF for non-destructive analysis in art and archaeometry. X-Ray Spectrom 29:73–91 [Google Scholar]
  88. Woll AR, Bilderback DH, Gruner S, Gao N, Huang R. 88.  et al. 2005. Confocal X-ray fluorescence (XRF) microscopy: a new technique for the nondestructive compositional depth profiling of paintings. Mater. Res. Soc. Symp. Proc. 852:25.1–10 [Google Scholar]
  89. Dik J, Janssens K, Van Der Snickt G, van der Loeff L, Rickers K, Cotte M. 89.  2008. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80:6436–42 [Google Scholar]
  90. Bergmann U, Knox KT. 90.  2009. Pseudo-color enhanced X-ray fluorescence imaging of the Archimedes Palimpsest Proc. SPIE 7247, Doc. Recognit. Retr. XVI 724702
  91. Bergmann U. 91.  2007. Archimedes brought to light. Phys. World 20:39–42 [Google Scholar]
  92. Trentelman K, Janssens K, van der Snickt G, Szafran Y, Woollett AT, Dik J. 92.  2015. Rembrandt's An Old Man in Military Costume: the underlying image re-examined. Appl. Phys. A 121:801–11 [Google Scholar]
  93. Keune K, Boon JJ. 93.  2007. Analytical imaging studies of cross sections of paintings affected by lead soap aggregate formation. Stud. Conserv. 52:161–76 [Google Scholar]
  94. Spring M, Higgitt C, Saunders D. 94.  2005. Investigation of pigment-medium interaction processes in oil paint containing degraded smalt. Natl. Gallery Tech. Bull. 26:56–70 [Google Scholar]
  95. Trentelman K, Stodulski L, Lints R, Kim C. 95.  1999. A comparative study of the composition and corrosion of branches from Eastern Han dynasty money trees. Stud. Conserv. 44:170–83 [Google Scholar]
  96. Spring M, Ricci C, Peggie DA, Kazarian SG. 96.  2008. ATR-FTIR imaging for the analysis of organic materials in paint cross sections: case studies on paint samples from the National Gallery, London. Anal. Bioanal. Chem. 392:37–45 [Google Scholar]
  97. Joseph E, Ricci C, Kazarian S, Mazzeo R, Prati S, Ioele M. 97.  2010. Macro-ATR-FT-IR spectroscopic imaging analysis of paint cross-sections. Vib. Spectrosc. 53:274–78 [Google Scholar]
  98. Joseph E, Prati S, Sciutto G, Ioele M, Santopadre P, Mazzeo R. 98.  2010. Performance evaluation of mapping and linear imaging FTIR microspectroscopy for the characterisation of paint cross sections. Anal. Bioanal. Chem. 396:899–910 [Google Scholar]
  99. Prati S, Sciutto G, Bonacini I, Mazzeo R. 99.  2016. New frontiers in application of FTIR microscopy for characterization of cultural heritage materials. Top. Curr. Chem. 374:1–32 [Google Scholar]
  100. Mass J, Sedlmair J, Patterson CS, Carson D, Buckley B, Hirschmugl C. 100.  2013. SR-FTIR imaging of the altered cadmium sulfide yellow paints in Henri Matisse's Le Bonheur de vivre (1905–6)—examination of visually distinct degradation regions. Analyst 138:6032–43 [Google Scholar]
  101. Schmidt Patterson C, Carson D, Phenix A, Khanjian H, Trentelman K. 101.  et al. 2013. Synchrotron-based imaging FTIR spectroscopy in the evaluation of painting cross-sections. ePreserv. Sci. 10:1–9 [Google Scholar]
  102. Unger M, Mattson E, Patterson CS, Alavi Z, Carson D, Hirschmugl CJ. 102.  2013. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications. Appl. Phys. A Mater. Sci. Process. 111:135–45 [Google Scholar]
  103. Cotte M, Checroun E, Mazel V, Solé VA, Richardin P. 103.  et al. 2009. Combination of FTIR and X-rays synchrotron-based micro-imaging techniques for the study of ancient paintings. A practical point of view. ePreserv. Sci. 6:1–9 [Google Scholar]
  104. Coupry C, Lautie A, Revault M, Dufilho J. 104.  1994. Contribution of Raman spectroscopy to art and history. J. Raman Spectrosc. 25:89–94 [Google Scholar]
  105. Clark RJH. 105.  1995. Raman microscopy: application to the identification of pigments on Medieval manuscripts. Chem. Soc. Rev. 24:187–96 [Google Scholar]
  106. Hayez V, Guillaume J, Hubin A, Terryn H. 106.  2004. Micro-Raman spectroscopy for the study of corrosion products on copper alloys: setting up a reference database for studying works of art. J. Raman Spectrosc. 35:732–38 [Google Scholar]
  107. Edwards HG, Chalmers JM. 107.  2005. Raman Spectroscopy in Archaeology and Art History Cambridge, UK: RSC
  108. Leona M, Stenger J, Ferloni E. 108.  2006. Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 37:981–92 [Google Scholar]
  109. Whitney AV, Van Duyne RP, Casadio F. 109.  2006. An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J. Raman Spectrosc. 37:993–1002 [Google Scholar]
  110. Vandenabeele P, Edwards HG, Moens L. 110.  2007. A decade of Raman spectroscopy in art and archaeology. Chem. Rev. 107:675–86 [Google Scholar]
  111. Aibéo CL, Goffin S, Schalm O, van der Snickt G, Laquière N. 111.  et al. 2008. Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings. J. Raman Spectrosc. 38:1091–98 [Google Scholar]
  112. Neff D, Bellot‐Gurlet L, Dillmann P, Reguer S, Legrand L. 112.  2006. Raman imaging of ancient rust scales on archaeological iron artefacts for long‐term atmospheric corrosion mechanisms study. J. Raman Spectrosc. 37:1228–37 [Google Scholar]
  113. Conti C, Colombo C, Matteini M, Realini M, Zerbi G. 113.  2010. Micro‐Raman mapping on polished cross sections: a tool to define the penetration depth of conservation treatment on cultural heritage. J. Raman Spectrosc. 41:1254–60 [Google Scholar]
  114. McCann LI, Trentelman K, Possley T, Golding B. 114.  1999. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. J. Raman Spectrosc. 30:121–32 [Google Scholar]
  115. Cianchetta I, Maish J, Saunders D, Walton M, Mehta A. 115.  et al. 2015. Investigating the firing protocol of Athenian pottery production: a Raman study of replicate and ancient sherds. J. Raman Spectrosc. 46:996–1002 [Google Scholar]
  116. Fayard B, Pouyet E, Berruyer G, Bugnazet D, Cornu C. 116.  et al. 2013. The new ID21 XANES full-field end-station at ESRF. J. Phys. Conf. Ser. 425:Pt. 19192001 [Google Scholar]
  117. Bertrand L, Languille M-A, Cohen SX, Robinet L, Gervais C. 117.  et al. 2011. European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J. Synchrotron Radiat. 18:765–72 [Google Scholar]
  118. Bertrand L, Cotte M, Stampanoni M, Thoury M, Marone F, Schöder S. 118.  2012. Development and trends in synchrotron studies of ancient and historical materials. Phys. Rep. 519:51–96 [Google Scholar]
  119. Bertrand L. 119.  2007. Synchrotron imaging for archaeology, art history, conservation, and palaeontology. Phys. Tech. Study Art Archaeol. Cult. Herit. 2:97–114 [Google Scholar]
  120. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C. 120.  et al. 2011. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 1. Artificially aged model samples. Anal. Chem. 83:1214–23 [Google Scholar]
  121. Monico L, Van der Snickt G, Janssens K, De Nolf W, Miliani C. 121.  et al. 2011. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods. 2. Original paint layer samples. Anal. Chem. 83:1224–31 [Google Scholar]
  122. Monico L, Janssens K, Alfeld M, Cotte M, Vanmeert F. 122.  et al. 2015. Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J. Anal. At. Spectrom. 30:613–26 [Google Scholar]
  123. Meirer F, Liu Y, Pouyet E, Fayard B, Cotte M. 123.  et al. 2013. Full-field XANES analysis of Roman ceramics to estimate firing conditions—a novel probe to study hierarchical heterogeneous materials. J. Anal. At. Spectrom. 28:1870–83 [Google Scholar]
  124. Cianchetta I, Trentelman K, Maish J, Saunders D, Foran B. 124.  et al. 2015. Evidence for an unorthodox firing sequence employed by the Berlin Painter: deciphering ancient ceramic firing conditions through high-resolution material characterization and replication. J. Anal. At. Spectrom. 30:666–76 [Google Scholar]
  125. Sciau P, Goudeau P. 125.  2015. Ceramics in art and archaeology: a review of the materials science aspects. Eur. Phys. J. B 88:132–43 [Google Scholar]
  126. Andrews J, Meirer F, Liu Y, Mester Z, Pianetta P. 126.  2011. Transmission X-Ray microscopy for full-field nano imaging of biomaterials. Microsc. Res. Tech. 74:671–81 [Google Scholar]
  127. Mirguet C, Roucau C, Sciau P. 127.  2009. Transmission electron microscopy a powerful means to investigate the glazed coating of ancient ceramics. J. Nano Res. 8:141–46 [Google Scholar]
  128. Sciau P. 128.  2016. Nano-crystallization in decorative layers of Greek and Roman ceramics. Nanoscience and Cultural Heritage P Dillmann, L Bellot-Gurlet, I Nenner 41–58 Paris: Atlantis [Google Scholar]
  129. Walton MS, Svoboda M, Mehta A, Webb S, Trentelman K. 129.  2010. Material evidence for the use of Attic white-ground lekythoi ceramics in cremation burials. J. Archaeol. Sci. 37:936–40 [Google Scholar]
  130. Freestone I, Meeks N, Sax M, Higgitt C. 130.  2007. The Lycurgus Cup—a Roman nanotechnology. Gold Bull 40:270–77 [Google Scholar]
  131. Baglioni P, Chelazzi D, Giorgi R, Xing H, Poggi G. 131.  2016. Alkaline nanoparticles for the deacidification and pH control of books and manuscripts. Nanoscience and Cultural Heritage P Dillmann, L Bellot-Gurlet, I Nenner 253–81 Paris: Atlantis [Google Scholar]
  132. Poggi G, Toccafondi N, Chelazzi D, Canton P, Giorgi R, Baglioni P. 132.  2016. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. J. Colloid Interface Sci. 473:1–8 [Google Scholar]
  133. Baglioni P, Chelazzi D. 133.  2013. Nanoscience for the Conservation of Works of Art Cambridge, UK: RSC
  134. Colombini MP, Modugno F. 134.  2009. Organic Mass Spectrometry in Art and Archaeology Wiley Online
  135. Dowsett M, Adriaens A. 135.  2004. The role of SIMS in cultural heritage studies. Nuclear Instrum. Methods Phys. B 226:38–52 [Google Scholar]
  136. McPhail DS. 136.  2006. Some applications of SIMS in conservation science, archaeometry and cosmochemistry. Appl. Surface Sci. 252:7107–12 [Google Scholar]
  137. Mazel V, Richardin P. 137.  2009. ToF-SIMS Study of Organic Materials in Cultural Heritage: Identification and Chemical Imaging Hoboken, NJ: Wiley
  138. Kirby DP, Buckley M, Promise E, Trauger SA, Holdcraft TR. 138.  2013. Identification of collagen-based materials in cultural heritage. Analyst 138:4849–58 [Google Scholar]
  139. Keune K, Boon JJ. 139.  2004. Imaging secondary ion mass spectrometry of a paint cross section taken from an Early Netherlandish painting by Rogier van der Weyden. Anal. Chem. 76:1374–85 [Google Scholar]
  140. Richardin P, Mazel V, Walter P, Laprévote O, Brunelle A. 140.  2011. Identification of different copper green pigments in Renaissance paintings by cluster-TOF-SIMS imaging analysis. J. Am. Soc. Mass Spectrom. 22:1729–36 [Google Scholar]
  141. Walton MS, Trentelman K, Cummings M, Poretti G, Maish J. 141.  et al. 2013. Material evidence for multiple firings of ancient Athenian red-figure pottery. J. Am. Ceram. Soc. 96:2031–35 [Google Scholar]
  142. Walton M, Trentelman K, Cianchetta I, Maish J, Saunders D. 142.  et al. 2015. Zn in Athenian black gloss ceramic slips: a trace element marker for fabrication technology. J. Am. Ceram. Soc. 98:430–36 [Google Scholar]
  143. Cianchetta I, Trentelman K, Walton MS, Maish J, Mehta A. 143.  et al. 2016. Reverse engineering ancient Greek ceramics: morphological and spectral characterization of replicates. J. Am. Ceram. Soc. 99:1792–801 [Google Scholar]
  144. Richter GMA. 144.  1923. The Craft of Athenian Pottery: An Investigation of the Technique of Black-Figured and Red-Figured Athenian Vases New Haven, CT: Yale Univ. Press
  145. Noble JV. 145.  1965. The Techniques of Painted Attic Pottery New York: Watson-Guptill
  146. De Nolf W, Janssens K. 146.  2010. Micro X‐ray diffraction and fluorescence tomography for the study of multilayered automotive paints. Surf. Interface Anal. 42:411–18 [Google Scholar]
  147. De Nolf W, Dik J, Van der Snickt G, Wallert A, Janssens K. 147.  2011. High energy X-ray powder diffraction for the imaging of (hidden) paintings. J. Anal. At. Spectrom. 26:910–16 [Google Scholar]
  148. Ifa D, Gumaelius L, Eberlin L, Manicke N, Cooks R. 148.  2007. Forensic analysis of inks by imaging desorption electrospray ionization (DESI) mass spectrometry. Analyst 132:461–67 [Google Scholar]
  149. Fukunaga K, Picollo M. 149.  2010. Terahertz spectroscopy applied to the analysis of artists’ materials. Appl. Phys. A 100:591–97 [Google Scholar]
  150. Jackson JB, Bowen J, Walker G, Labaune J, Mourou G. 150.  et al. 2011. A survey of terahertz applications in cultural heritage conservation science. IEEE Trans. Terahertz Sci. Tech. 1:220–31 [Google Scholar]
  151. Targowski P, Iwanicka M. 151.  2012. Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106:265–77 [Google Scholar]
  152. Rosi F, Miliani C, Braun R, Harig R, Sali D. 152.  et al. 2013. Noninvasive analysis of paintings by mid‐infrared hyperspectral imaging. Angew. Chem. 125:5366–69 [Google Scholar]
  153. Chen C-H, Lin Z, Tian R, Shi R, Cooks RG, Ouyang Z. 153.  2015. Real-time sample analysis using a sampling probe and miniature mass spectrometer. Anal. Chem. 87:8867–73 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041500
Loading
/content/journals/10.1146/annurev-anchem-071015-041500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error