1932

Abstract

Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T and T* agents, T exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041514
2016-06-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041514.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041514&mimeType=html&fmt=ahah

Literature Cited

  1. Weissleder R, Ross BD, Rehemtulla R, Gambhir SS. 1.  2010. Molecular Imaging: Principles and Practice Shelton, CT: People's Med. Pub. House
  2. Ahrens ET, Rothbacher U, Jacobs RE, Fraser SE. 2.  1998. A model for MRI contrast enhancement using T1 agents. PNAS 95:8443–48 [Google Scholar]
  3. Mills PH, Ahrens ET. 3.  2007. Theoretical MRI contrast model for T2 agents. Magn. Reson. Med. 57:442–47 [Google Scholar]
  4. Ali MM, Liu G, Shah T, Flask CA, Pagel MD. 4.  2008. Using two chemical exchange saturation transfer magnetic resonance imaging contrast agents for molecular imaging studies. Acc. Chem. Res. 42:915–24 [Google Scholar]
  5. Nelson SJ, Ozhinsky E, Li Y, Park IW, Crane J. 5.  2013. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J. Magn. Reson. 229:187–97 [Google Scholar]
  6. Dua P, Chaudhari KN, Lee CH, Chaudhari NK, Hong S-W. 6.  et al. 2011. Evaluation of toxicity and gene expression changes triggered by oxide nanoparticles. Bull. Korean Chem. Soc. 32:2051–57 [Google Scholar]
  7. Allen MJ, MacRenaris KW, Venkatasubramanian PN, Meade TJ. 7.  2004. Cellular delivery of MRI contrast agents. Chem. Biol. 11:301–7 [Google Scholar]
  8. Yoo B, Pagel MD. 8.  2008. An overview of responsive MRI contrast agents for molecular imaging. Front. Biosci. 13:1733–52 [Google Scholar]
  9. Hingorani DV, Bernstein AS, Pagel MD. 9.  2014. A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol. Imaging 10:245–65 [Google Scholar]
  10. Hingorani DV, Yoo B, Bernstein AS, Pagel MD. 10.  2014. Detecting enzyme activities with exogenous MRI contrast agents. Chem. Eur. J. 20:9840–50 [Google Scholar]
  11. Bulte JWM, Kraitchman DL, Ben-Hur T. 11.  2004. Use of iron oxide MR contrast agents for monitoring stem cell therapy. Focus on Stem Cell Research DA Greer 1–32 Hauppauge, NY: Nova Sci. [Google Scholar]
  12. Ferrauto G, Delli Castelli D, Di Gregorio E, Langereis S, Burdinski D. 12.  et al. 2014. Lanthanide-loaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J. Am. Chem. Soc. 136:638–41 [Google Scholar]
  13. Terreno E, Cabella C, Carrera C, Delli Castelli D, Mazzon R. 13.  et al. 2007. From spherical to osmotically shrunken paramagnetic liposomes: an improved generation of LIPOCEST MRI agents with highly shifted water protons. Angew. Chem. Int. Ed. 46:966–68 [Google Scholar]
  14. Ali MM, Yoo B, Pagel MD. 14.  2009. Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Mol. Pharm. 6:1409–16 [Google Scholar]
  15. Davis TW, O'Neal JM, Pagel MD, Zweifel BS, Mehta PP. 15.  et al. 2004. Synergy between celecoxib and radiotherapy results from inhibition of COX-2-derived PGE2, a survival factor for tumor and associated vasculature. Cancer Res. 64:279–85 [Google Scholar]
  16. Kassner A, Thornhill R. 16.  2011. Measuring the integrity of the human blood-brain barrier using magnetic resonance imaging. Methods Mol. Biol. 686:229–45 [Google Scholar]
  17. Brown RW, Cheng Y-CN, Haake EM, Thompson MR, Venkatesan R. 17.  2014. Magnetic Resonance Imaging: Physical Principles and Sequence Design Hoboken, NJ: Wiley, 2nd ed..
  18. Carr DH, Brown J, Bydder GM, Weinmann H-J, Speck U. 18.  et al. 1984. Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours. Lancet 323:484–86 [Google Scholar]
  19. Edelman RR, Mattle HP, Atkinson DJ, Hill T, Finn JP. 19.  et al. 1990. Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiologica 176:211–20 [Google Scholar]
  20. Carr DH, Brown J, Bydder GM, Steiner RH, Weinmann HJ. 20.  et al. 1984. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. Am. J. Roentgenol. 143:215–24 [Google Scholar]
  21. Fiel RJ, Button TM, Gilani S, Mark EH, Musser DA. 21.  et al. 1987. Proton relaxation enhancement by manganese(III)TPPS4 in a model tumor system. Magn. Reson. Imaging 5:149–56 [Google Scholar]
  22. Laurent S, Vander Elst L, Muller RN. 22.  2013. Superparamagnetic iron oxide nanoparticles for MRI. Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging A Merbach, L Helm, E Toth 427–47 Hoboken, NJ: Wiley [Google Scholar]
  23. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. 23.  2015. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 115:10907–37 [Google Scholar]
  24. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. 24.  2007. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 242:647–49 [Google Scholar]
  25. Dydak U, Criswell SR. 25.  2015. Imaging modalities for manganese toxicity. Issues Toxicol. 22:477–512 [Google Scholar]
  26. Lee H, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. 26.  2015. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115:10637–89 [Google Scholar]
  27. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarksi MD, Li KCP. 27.  1998. Detection of tumor angiogenesis in vivo by α3-targeted magnetic resonance imaging. Nat. Med. 4:623–26 [Google Scholar]
  28. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D. 28.  et al. 2000. Magnetic resonance contrast enhancement of neovasculature with α3-targeted nanoparticles. Magn. Reson. Med. 44:433–39 [Google Scholar]
  29. Hilger I, Trost R, Reichenbach JR, Linss W, Lisy M-R. 29.  et al. 2007. MR imaging of Her-2/neu protein using magnetic nanoparticles. Nanotechnology 18:135103 [Google Scholar]
  30. Kinoshita M, Yoshioka Y, Okita Y, Hashimoto N, Yoshimine T. 30.  2010. MR molecular imaging of HER-2 in a murine tumor xenograft by SPIO labeling of anti-HER-2 affibody. Contrast Media Mol. Imaging 5:18–22 [Google Scholar]
  31. Frullano L, Catana C, Benner T, Sherry AD, Caravan P. 31.  2010. Bimodal MRI-PET agent for quantitative pH imaging. Angew. Chem. Int. Ed. 49:2382–84 [Google Scholar]
  32. Jing L, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao M. 32.  2014. Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv. Mater. 26:6367–86 [Google Scholar]
  33. Lee S, Chen X. 33.  2009. Dual-modality probes for molecular imaging. Mol. Imaging 8:287–100 [Google Scholar]
  34. Pagel MD. 34.  2011. The hope and hype of multimodality imaging contrast agents. Nanomedicine 6:945–48 [Google Scholar]
  35. Raghunand N, Zhang S, Sherry AD, Gillies RJ. 35.  2002. In vivo magnetic resonance imaging of tissue pH using a novel pH-sensitive contrast agent, GdDOTA-4AmP. Acad. Radiol. 9:S481–83 [Google Scholar]
  36. Esqueda AC, López JA, Andreu-de-Riguer G, Alvarado-Monzón JC, Ratnakar J. 36.  et al. 2009. A new gadolinium based MRI zinc sensor. J. Am. Chem. Soc. 131:11387–91 [Google Scholar]
  37. Vold RL, Daniel AS, Chan SO. 37.  1970. Magnetic resonance measurements of proton exchange in aqueous urea. J. Am. Chem. Soc. 92:6771–76 [Google Scholar]
  38. Granot J, Fiat D. 38.  1974. Effect of chemical exchange on the transverse relaxation rate of nuclei in solution containing paramagnetic ions. J. Magn. Reson. 15:540–48 [Google Scholar]
  39. Aime S, Nano R, Grandi M. 39.  1988. A new class of contrast agents for magnetic resonance imaging based on selective reduction of water-T2 by chemical exchange. Investig. Radiol. 23:S267–70 [Google Scholar]
  40. Soesbe TC, Merritt ME, Green KN, Rojas-Quijano FA, Sherry AD. 40.  2011. T2 exchange agents: a new class of paramagnetic MRI contrast agent that shortens water T2 by chemical exchange rather than relaxation. Magn. Reson. Med. 66:1697–703 [Google Scholar]
  41. Sherry AD, Wu Y. 41.  2013. The importance of water exchange rates in the design of responsive agents for MRI. Curr. Opin. Chem. Biol. 17:167–74 [Google Scholar]
  42. Geraldes CFGC. 42.  2012. Lanthanide shift reagents. The Rare Earth Elements: Fundamentals and Applications DA Atwood 501–20 Hoboken, NJ: Wiley [Google Scholar]
  43. Soesbe TC, Ratnakar SJ, Milne M, Zhang S, Do QN. 43.  et al. 2014. Maximizing T2-exchange in Dy3+DOTA-(amide)x chelates: fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI. Magn. Reson. Med. 71:1179–85 [Google Scholar]
  44. Yadav NN, Xu J, Bar-Shir A, Qin Q, Chan KWY. 44.  et al. 2014. Natural D-glucose as a biodegradable MRI relaxation agent. Magn. Reson. Med. 72:823–28 [Google Scholar]
  45. Daryaei I, Pagel MD. 45.  2014. New type of responsive MRI contrast agent that modulates T2ex relaxation: detection of nitric oxide. Proc. Am. Chem. Soc. 247:498 (Abstr.) [Google Scholar]
  46. Cai K, Haris M, Singh A, Kogan F, Greenberg JH. 46.  et al. 2012. Magnetic resonance imaging of glutamate. Nat. Methods 18:302–6 [Google Scholar]
  47. Kogan F, Haris M, Debrosse C, Sing A, Nanga RP. 47.  et al. 2014. In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. J. Magn. Reson. Imaging 40:596–602 [Google Scholar]
  48. Ling W, Regatta RR, Navon G, Jerschow A. 48.  2008. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). PNAS 105:2266–70 [Google Scholar]
  49. Vinogradov E, Sherry AD, Lenkinski RE. 49.  2013. CEST: from basic principles to applications, challenges, and opportunities. J. Magn. Reson. 229:155–72 [Google Scholar]
  50. Dula AN, Smith SA, Gore JC. 50.  2013. Application of chemical exchange saturation transfer (CEST) MRI for endogenous contrast at 7 Tesla. J. Neuroimaging 23:526–32 [Google Scholar]
  51. Ward KM, Aletras AH, Balaban RS. 51.  2000. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143:79–87 [Google Scholar]
  52. Bryant RG. 52.  1996. The dynamics of water-protein interactions. Annu. Rev. Biophys. Biomol. Struct. 25:29–53 [Google Scholar]
  53. Sheth VR, Liu G, Li Y, Pagel MD. 53.  2012. Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media Mol. Imaging 7:26–34 [Google Scholar]
  54. Wang X, Wu Y, Soesbe TC, Yu J, Zhao P. 54.  et al. 2015. A pH-responsive MRI agent that can be activated beyond the tissue magnetization transfer window. Angew. Chem. Int. Ed. 54:8662–64 [Google Scholar]
  55. McVicar, Li AX, Suchy M, Hudson RM, Menon RS, Bartha R. 55.  2013. Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent. Magn. Reson. Med. 70:1016–25 [Google Scholar]
  56. Tereno E, Stancanello J, Longo D, Delli Castelli D, Milone L. 56.  et al. 2009. Methods for an improved detection of the CEST MRI effect. Contrast Media Mol. Imaging 4:237–47 [Google Scholar]
  57. Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD. 57.  2010. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110:2960–3018 [Google Scholar]
  58. Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA. 58.  et al. 2015. A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol. Imaging 10:446–55 [Google Scholar]
  59. Chan KY, McMahon MT, Kato Y, Liu G, Bulte JWM. 59.  et al. 2012. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn. Reson. Med. 68:1764–73 [Google Scholar]
  60. Liang Y, Bar-Shir A, Song X, Gilad AA, Walczak P, Bulte JWM. 60.  2015. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 42:144–50 [Google Scholar]
  61. Dorsey SM, Haris M, Singh A, Witschey WRT, Rodell CB, Kogan F. 61.  2015. Visualization of injectable hydrogels using chemical exchange saturation transfer MRI. ACS Biomater. Sci. Eng. 1:227–37 [Google Scholar]
  62. Bar-Shir A, Liu G, Greenberg MW, Bulte JWM, Gilad AA. 62.  2013. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat. Protoc. 8:2380–91 [Google Scholar]
  63. Bar-Shir A, Liang Y, Chan KWY, Gilad AA, Bulte JWM. 63.  2015. Supercharged green fluorescent proteins as bimodal reporter genes for CEST MRI and optical imaging. Chem. Commun. 51:4869–71 [Google Scholar]
  64. Yoo B, Pagel MD. 64.  2006. A PARACEST MRI contrast agent to detect enzyme activity. J. Am. Chem. Soc. 128:14032–33 [Google Scholar]
  65. Yoo B, Raam MS, Rosenblum RM, Pagel MD. 65.  2007. Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol. Imaging 2:189–98 [Google Scholar]
  66. Hingorani DV, Randtke EA, Pagel MD. 66.  2013. A catalyCEST MRI contrast agent that detects the enzyme-catalyzed creation of a covalent bond. J. Am. Chem. Soc. 135:6396–98 [Google Scholar]
  67. Chauvin T, Durand P, Bernier M, Meudal H, Doan BT. 67.  et al. 2008. Detection of enzymatic activity by PARACEST MRI: a general approach to target a large variety of enzymes. Angew. Chem. Int. Ed. 47:4370–72 [Google Scholar]
  68. Li Y, Sheth VR, Liu G, Pagel MD. 68.  2011. A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity. Contrast Media Mol. Imaging 6:219–28 [Google Scholar]
  69. Liu G, Liang Y, Bar-Shir A, Chan KWY, Galpoththawela CS. 69.  et al. 2011. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. J. Am. Chem. Soc. 133:16326–29 [Google Scholar]
  70. Airan RD, Bar-Shir A, Liu G, Pelled G, McMahon MT. 70.  et al. 2012. MRI biosensor for protein kinase A encoded by a single synthetic gene. Magn. Reson. Med. 68:1919–23 [Google Scholar]
  71. Oskolkov N, Bar-Shir A, Chan KWY, Song X, van Zinjl PCM. 71.  et al. 2014. Biophysical characterization of human protamine-1 as a responsive CEST MR contrast agent. ACS Macro Lett. 4:34–38 [Google Scholar]
  72. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V. 72.  et al. 2013. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19:1067–72 [Google Scholar]
  73. Cai K, Haris M, Kogan F, Greenberg JH, Hariharan H. 73.  et al. 2012. Magnetic resonance imaging of glutamate. Nat. Med. 18:302–6 [Google Scholar]
  74. Haris M, Cai K, Singh A, Hariharan H, Reddy R. 74.  2011. In vivo mapping of brain myo-inositol. NeuroImage 54:2079–85 [Google Scholar]
  75. Kogan F, Haris M, Singh A, Debrosse C, Nanga RP. 75.  et al. 2014. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn. Reson. Med. 71:164–72 [Google Scholar]
  76. Tsitovich PB, Burns PJ, McKay AM, Morrow JR. 76.  2014. Redox-activated MRI contrast agents based on lanthanide and transition metal ions. J. Inorg. Biochem. 133:143–54 [Google Scholar]
  77. Trokowski R, Ren J, Kálmán FK, Sherry AD. 77.  2005. Selective sensing of zinc ions with a PARACEST contrast agent. Angew. Chem. Int. Ed. 44:6920–23 [Google Scholar]
  78. Angelovski G, Chauvin T, Pohmann R, Logothetis NK, Tóth E. 78.  2011. Calcium-responsive paramagnetic CEST agents. Bioorg. Med. Chem. 19:1097–105 [Google Scholar]
  79. Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD. 79.  2010. A responsive europium(III) chelate that provides a direct readout of pH by MRI. J. Am. Chem. Soc. 132:14002–3 [Google Scholar]
  80. Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD. 80.  2012. Measuring in vivo tumor pHe with CEST-FISP MRI. Magn. Reson. Med. 67:760–68 [Google Scholar]
  81. Longo DL, Dastru W, Digilio G, Keupp J, Langereis S. 81.  et al. 2011. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T. Magn. Reson. Med. 65:202–11 [Google Scholar]
  82. McVicar N, Li AX, Suchy M, Hudson RHE, Menon RS, Bartha R. 82.  2013. Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent. Magn. Reson. Med. 70:1016–25 [Google Scholar]
  83. Delli Castelli D, Terreno E, Silvio A. 83.  2011. YbIII-HPDO3A: a dual pH- and temperature-responsive CEST agent. Angew. Chem. Int. Ed. 50:1798–800 [Google Scholar]
  84. Breitmaier E, Voelter W. 84.  1978. 13C NMR Spectroscopy: Methods and Applications in Organic Chemistry Weinheim, Ger: Verlag Chemie
  85. de Graaf RA, Rothman DL, Behar KL. 85.  2011. State of the art direct 13C and indirect 1H-[13C] NMR spetroscopy in vivo: a practical guide. NMR Biomed. 24:958–72 [Google Scholar]
  86. Muller S, Beckmann N. 86.  1989. 13C spectroscopic imaging: a simple approach to in vivo 13C investigations. Magn. Reson. Med. 12:3400–6 [Google Scholar]
  87. Golman K, Ardenkjær-Larsen JH, Petersson JS, Månsson S, Leunbach I. 87.  2003. Molecular imaging with endogenous substances. PNAS 100:10435–39 [Google Scholar]
  88. Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L. 88.  et al. 2003. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. PNAS 100:10158–63 [Google Scholar]
  89. Ardenkjær-Larsen JH, Macholl S, Johannesson H. 89.  2008. Dynamic nuclear polarization with trityls at 1.2 K. Appl. Magn. Reson. 34:509–22 [Google Scholar]
  90. Eichhorn TR, Takado Y, Salameh N, Capozzi A, Cheng T. 90.  et al. 2013. Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging. PNAS 110:18064–69 [Google Scholar]
  91. Duckett SB, Mewis ER. 91.  2012. Application of parahydrogen-induced polarization techniques in NMR spectroscopy and imaging. Acc. Chem. Res. 45:1247–57 [Google Scholar]
  92. Bhattacharya P, Chekmenev EY, Perman WH, Harris KC, Lin A, Norton V. 92.  2007. Towards hyperpolarized 13C-succinate imaging of brain cancer. J. Magn. Reson. 186:150–55 [Google Scholar]
  93. Reineri F, Boi T, Aime S. 93.  2015. Parahydrogen induced polarization of 13C carboxylate resonance in acetate and pyruvate. Nat. Commun. 6:5858 [Google Scholar]
  94. Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov K. 94.  2015. RF-SABRE: a way to continuous spin hyperpolarization at high magnetic fields. J. Phys. Chem. B 119:13619–29 [Google Scholar]
  95. Levitt MH. 95.  2012. Singlet nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63:89–105 [Google Scholar]
  96. Rodrigues TB, Serrao EM, Kennedy BWC, Hu D-E, Kettunen MI, Brindle KM. 96.  2014. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20:93–97 [Google Scholar]
  97. Sriram R, Kurhanewicz J, Vigneron DB. 97.  2014. Hyperpolarized carbon-13 MRI and MRS studies. eMagRes 3:311–24 [Google Scholar]
  98. Golman K, in ‘t Zandt R, Thaning M. 98.  2006. Real-time metabolic imaging. PNAS 103:11270–75 [Google Scholar]
  99. Barb AW, Hekmatyar SK, Glushka JN, Prestegard JH. 99.  2013. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate. J. Magn. Reson. 228:59–65 [Google Scholar]
  100. Schroeder MA, Ali MA, Hulikova A, Supuran CT, Clarke K. 100.  et al. 2013. Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics. PNAS 110:E958–67 [Google Scholar]
  101. Lodi A, Woods MS, Ronen MS. 101.  2013. Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR Biomed. 26:299–306 [Google Scholar]
  102. Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM. 102.  2012. Phosphocholine and hyperpolarized lactate provide magnetic resonance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neuro-Oncology 14:315–25 [Google Scholar]
  103. Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM. 103.  2008. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60:253–57 [Google Scholar]
  104. Karlsson M, Jensen PR, in ‘t Zandt R, Gisselsson A, Hansson G. 104.  et al. 2010. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Int. J. Cancer 127:729–36 [Google Scholar]
  105. Zacharias NM, Chan HR, Sallasuta N, Ross BR, Bhattacharya P. 105.  2011. Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-13C diethyl succinate. J. Am. Chem. Soc. 134:934–43 [Google Scholar]
  106. Keshari KR, Wilson DM, Chen AP, Bok R, Larson PEZ. 106.  et al. 2009. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. 131:17591–96 [Google Scholar]
  107. Jamin Y, Gabellieri C, Smyth L, Reynolds S, Robinson SP. 107.  et al. 2009. Hyperpolarized 13C magnetic resonance detection of carboxypeptidase G2 activity. Magn. Reson. Med. 62:1300–4 [Google Scholar]
  108. Gallagher FA, Kettunen MI, Day SE, Hu E-D, Ardenkjær-Larsen JH. 108.  et al. 2008. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–43 [Google Scholar]
  109. Gallagher FA, Kettunen MA, Brindle MK. 109.  2011. Imaging pH with hyperpolarized 13C. NMR Biomed. 24:1006–15 [Google Scholar]
  110. Bohndiek SE, Kettunen MI, Hu D, Kennedy BWC, Boren J,. 110.  et al. 2011. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J. Am. Chem. Soc. 133:11795–801 [Google Scholar]
  111. Keshari KR, Sai V, Wang ZJ, Vanbrocklin HF, Kurhanewicz J, Wilson DM. 111.  2013. Hyperpolarized [1-13C] dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J. Nucl. Med. 54:922–28 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041514
Loading
/content/journals/10.1146/annurev-anchem-071015-041514
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error