1932

Abstract

In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041612
2016-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041612.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041612&mimeType=html&fmt=ahah

Literature Cited

  1. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP. 1.  2014. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev. 43:41230–47 [Google Scholar]
  2. Zheng YB, Kiraly B, Weiss PS, Huang TJ. 2.  2012. Molecular plasmonics for biology and nanomedicine. Nanomedicine 7:5751–70 [Google Scholar]
  3. Csaki A, Schneider T, Wirth J, Jahr N, Steinbrück A. 3.  et al. 2011. Molecular plasmonics: Light meets molecules at the nanoscale. Philos. Trans. R. Soc. A 369:19503483–96 [Google Scholar]
  4. Prodan E, Radloff C, Halas NJ, Nordlander P. 4.  2003. A hybridization model for the plasmon response of complex nanostructures. Science 302:5644419–22 [Google Scholar]
  5. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. 5.  2004. Plasmon hybridization in nanoparticle dimers. Nano Lett. 4:5899–903 [Google Scholar]
  6. Prodan E, Nordlander P. 6.  2004. Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120:115444–54 [Google Scholar]
  7. Witlicki EH, Johnsen C, Hansen SW, Silverstein DW, Bottomley VJ. 7.  et al. 2011. Molecular logic gates using surface-enhanced Raman-scattered light. J. Am. Chem. Soc. 133:197288–91 [Google Scholar]
  8. Zheng YB, Yang Y-W, Jensen L, Fang L, Juluri BK. 8.  et al. 2009. Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett. 9:2819–25 [Google Scholar]
  9. Wurtz GA, Evans PR, Hendren W, Atkinson R, Dickson W. 9.  et al. 2007. Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 7:51297–303 [Google Scholar]
  10. Van Duyne RP. 10.  2004. Molecular plasmonics. Science 306:5698985–86 [Google Scholar]
  11. Lauchner A, Schlather AE, Manjavacas A, Cui Y, McClain MJ. 11.  et al. 2015. Molecular plasmonics. Nano Lett. 15:96208–14 [Google Scholar]
  12. Willets KA, Van Duyne RP. 12.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:1267–97 [Google Scholar]
  13. Kelly KL, Coronado E, Zhao LL, Schatz GC. 13.  2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107:3668–77 [Google Scholar]
  14. Haynes CL, Van Duyne RP. 14.  2001. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105:245599–611 [Google Scholar]
  15. Naik GV, Shalaev VM, Boltasseva A. 15.  2013. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25:243264–94 [Google Scholar]
  16. Lounis SD, Runnerstrom EL, Llordés A, Milliron DJ. 16.  2014. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J. Phys. Chem. Lett. 5:91564–74 [Google Scholar]
  17. Homola J, Yee SS, Gauglitz G. 17.  1999. Surface plasmon resonance sensors: review. Sens. Actuators B 54:1–23–15 [Google Scholar]
  18. Mock JJ, Smith DR, Schultz S. 18.  2003. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 3:4485–91 [Google Scholar]
  19. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 19.  2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:6442–53 [Google Scholar]
  20. Moskovits M. 20.  1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57:3783–826 [Google Scholar]
  21. Le Ru EC, Blackie E, Meyer M, Etchegoin PG. 21.  2007. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111:3713794–803 [Google Scholar]
  22. Haes AJ, Zou S, Zhao J, Schatz GC, Van Duyne RP. 22.  2006. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128:3310905–14 [Google Scholar]
  23. Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y. 23.  2001. Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 17:3578–80 [Google Scholar]
  24. Wiederrecht GP, Wurtz GA, Hranisavljevic J. 24.  2004. Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles. Nano Lett. 4:112121–25 [Google Scholar]
  25. Fofang NT, Grady NK, Fan Z, Govorov AO, Halas NJ. 25.  2011. Plexciton dynamics: exciton–plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. Nano Lett. 11:41556–60 [Google Scholar]
  26. Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T. 26.  2015. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 114:15157401 [Google Scholar]
  27. Liu GL, Long Y-T, Choi Y, Kang T, Lee LP. 27.  2007. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 4:121015–17 [Google Scholar]
  28. Chen H, Shao L, Woo KC, Wang J, Lin H-Q. 28.  2012. Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer. J. Phys. Chem. C 116:2614088–95 [Google Scholar]
  29. Zhao J, Das A, Schatz GC, Sligar SG, Van Duyne RP. 29.  2008. Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J. Phys. Chem. C 112:3413084–88 [Google Scholar]
  30. Wu L, Reinhard BM. 30.  2014. Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications. Chem. Soc. Rev. 43:113884–97 [Google Scholar]
  31. Lee SE, Chen Q, Bhat R, Petkiewicz S, Smith JM. 31.  et al. 2015. Reversible aptamer-Au plasmon rulers for secreted single molecules. Nano Lett. 15:74564–70 [Google Scholar]
  32. Huang F, Baumberg JJ. 32.  2010. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers. Nano Lett. 10:51787–92 [Google Scholar]
  33. Aksu S, Huang M, Artar A, Yanik AA, Selvarasah S. 33.  et al. 2011. Flexible plasmonics on unconventional and nonplanar substrates. Adv. Mater. 23:384422–30 [Google Scholar]
  34. Olcum S, Kocabas A, Ertas G, Atalar A, Aydinli A. 34.  2009. Tunable surface plasmon resonance on an elastomeric substrate. Opt. Express 17:108542–47 [Google Scholar]
  35. Novo C, Funston AM, Gooding AK, Mulvaney P. 35.  2009. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131:4114664–66 [Google Scholar]
  36. Luther JM, Jain PK, Ewers T, Alivisatos AP. 36.  2011. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10:5361–66 [Google Scholar]
  37. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A. 37.  et al. 2011. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11:104415–20 [Google Scholar]
  38. Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Félidj N. 38.  et al. 2005. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 127:4616022–23 [Google Scholar]
  39. Leroux Y, Lacroix JC, Fave C, Trippe G, Félidj N. 39.  et al. 2008. Tunable electrochemical switch of the optical properties of metallic nanoparticles. ACS Nano 2:4728–32 [Google Scholar]
  40. Leroux Y, Lacroix JC, Fave C, Stockhausen V, Félidj N. 40.  et al. 2009. Active plasmonic devices with anisotropic optical response: a step toward active polarizer. Nano Lett. 9:52144–48 [Google Scholar]
  41. 41.  Deleted in proof
  42. Pala RA, Shimizu KT, Melosh NA, Brongersma ML. 42.  2008. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8:51506–10 [Google Scholar]
  43. Zheng YB, Kiraly B, Cheunkar S, Huang TJ, Weiss PS. 43.  2011. Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling. Nano Lett. 11:52061–65 [Google Scholar]
  44. Baudrion A-L, Perron A, Veltri A, Bouhelier A, Adam P-M, Bachelot R. 44.  2013. Reversible strong coupling in silver nanoparticle arrays using photochromic molecules. Nano Lett. 13:1282–86 [Google Scholar]
  45. Jiang N, Shao L, Wang J. 45.  2014. (Gold nanorod core)/(polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 26:203282–89 [Google Scholar]
  46. Yang A, Hoang TB, Dridi M, Deeb C, Mikkelsen MH. 46.  et al. 2015. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 6:6939 [Google Scholar]
  47. Hao E, Schatz GC. 47.  2004. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120:1357–66 [Google Scholar]
  48. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD. 48.  et al. 2008. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130:3812616–17 [Google Scholar]
  49. Nie S, Emory SR. 49.  1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:53031102–6 [Google Scholar]
  50. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I. 50.  et al. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:91667–70 [Google Scholar]
  51. Le Ru EC, Etchegoin PG. 51.  2012. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 63:165–87 [Google Scholar]
  52. Stockman M. 52.  2006. Electromagnetic theory of SERS. Surface-Enhanced Raman Scattering K Kneipp, M Moskovits, H Kneipp 47–65 Berlin: Springer [Google Scholar]
  53. Stranahan SM, Willets KA. 53.  2010. Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10:93777–84 [Google Scholar]
  54. Weber ML, Willets KA. 54.  2011. Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2:141766–70 [Google Scholar]
  55. Weber ML, Litz JP, Masiello DJ, Willets KA. 55.  2012. Super-resolution imaging reveals a difference between SERS and luminescence centroids. ACS Nano 6:21839–48 [Google Scholar]
  56. Titus EJ, Weber ML, Stranahan SM, Willets KA. 56.  2012. Super-resolution SERS imaging beyond the single-molecule limit: an isotope-edited approach. Nano Lett. 12:105103–10 [Google Scholar]
  57. Willets KA. 57.  2014. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43:113854–64 [Google Scholar]
  58. Ausman LK, Schatz GC. 58.  2009. On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. J. Chem. Phys. 131:8084708 [Google Scholar]
  59. Payton JL, Morton SM, Moore JE, Jensen L. 59.  2014. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc. Chem. Res. 47:188–99 [Google Scholar]
  60. Lombardi JR, Birke RL, Lu T, Xu J. 60.  1986. Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J. Chem. Phys. 84:84174–80 [Google Scholar]
  61. Morton SM, Jensen L. 61.  2009. Understanding the molecule—surface chemical coupling in SERS. J. Am. Chem. Soc. 131:114090–98 [Google Scholar]
  62. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. 62.  2009. The electronic properties of graphene. Rev. Mod. Phys. 81:1109–62 [Google Scholar]
  63. Ju L, Geng B, Horng J, Girit C, Martin M. 63.  et al. 2011. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nano 6:10630–34 [Google Scholar]
  64. Koppens FHL, Chang DE, García de Abajo FJ. 64.  2011. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11:83370–77 [Google Scholar]
  65. Politano A, Chiarello G. 65.  2014. Plasmon modes in graphene: status and prospect. Nanoscale 6:1910927–40 [Google Scholar]
  66. García de Abajo FJ. 66.  2014. Graphene plasmonics: challenges and opportunities. ACS Photonics 1:3135–52 [Google Scholar]
  67. Marini A, Silveiro I, García de Abajo FJ. 67.  2015. Molecular sensing with tunable graphene plasmons. ACS Photonics 2:7876–82 [Google Scholar]
  68. Ling X, Huang S, Deng S, Mao N, Kong J. 68.  et al. 2015. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc. Chem. Res. 48:71862–70 [Google Scholar]
  69. Bao Y, Zu S, Zhang Y, Fang Z. 69.  2015. Active control of graphene-based unidirectional surface plasmon launcher. ACS Photonics 2:81135–40 [Google Scholar]
  70. Manjavacas A, Thongrattanasiri S, Greffet J-J, García de Abajo FJ. 70.  2014. Graphene optical-to-thermal converter. Appl. Phys. Lett. 105:21211102 [Google Scholar]
  71. Manjavacas A, Marchesin F, Thongrattanasiri S, Koval P, Nordlander P. 71.  et al. 2013. Tunable molecular plasmons in polycyclic aromatic hydrocarbons. ACS Nano 7:43635–43 [Google Scholar]
  72. Guidez EB, Aikens CM. 72.  2013. Origin and TDDFT benchmarking of the plasmon resonance in acenes. J. Phys. Chem. C 117:4121466–75 [Google Scholar]
  73. Bernadotte S, Evers F, Jacob CR. 73.  2013. Plasmons in molecules. J. Phys. Chem. C 117:41863–78 [Google Scholar]
  74. Link S, El-Sayed MA. 74.  1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103:408410–26 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041612
Loading
/content/journals/10.1146/annurev-anchem-071015-041612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error