1932

Abstract

Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041633
2016-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041633.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041633&mimeType=html&fmt=ahah

Literature Cited

  1. Barth JV, Costantini G, Kern K. 1.  2005. Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–79 [Google Scholar]
  2. Binnig G, Quate CF, Gerber CH. 2.  1986. Atomic force microscope. Phys. Rev. Lett. 56:930–33 [Google Scholar]
  3. Binnig G, Rohrer H. 3.  1987. Scanning tunneling microscopy-from birth to adolescence. Rev. Model. Phys. 59:615–25 [Google Scholar]
  4. Stroscio JA, Eigler DM. 4.  1991. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254:1319–26 [Google Scholar]
  5. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ. 5.  2008. The force needed to move an atom on a surface. Science 319:1066–69 [Google Scholar]
  6. Binnig G, Rohrer H, Gerber CH, Weibel E. 6.  1983. 7×7 Reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50:120–23 [Google Scholar]
  7. Giessibl FJ. 7.  1995. Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy. Science 267:68–71 [Google Scholar]
  8. Tersoff J, Hamann DR. 8.  1983. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50:251998 [Google Scholar]
  9. Giessibl FJ. 9.  2003. Advances in atomic force microscopy. Rev. Model. Phys. 75:949–83 [Google Scholar]
  10. Zandvliet HJW, van Houselt A. 10.  2009. Scanning tunneling spectroscopy. Annu. Rev. Anal. Chem. 2:37–55 [Google Scholar]
  11. Stipe BC, Rezaei MA, Ho W. 11.  1998. Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–35 [Google Scholar]
  12. Hirjibehedin CF, Lutz CP, Heinrich AJ. 12.  2006. Spin coupling in engineered atomic structures. Science 312:57761021–24 [Google Scholar]
  13. Hirjibehedin CF, Lin C-Y, Otte AF, Ternes M, Lutz CP. 13.  et al. 2007. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317:58421199–203 [Google Scholar]
  14. Vitali L, Levita G, Ohmann R, Comisso A, De Vita A, Kern K. 14.  2010. Portrait of the potential barrier at metal-organic nanocontacts. Nat. Mater. 9:4320–23 [Google Scholar]
  15. Della Pia A, Riello M, Floris A, Stassen D, Jones TS. 15.  et al. 2014. Anomalous coarsening driven by reversible charge transfer at metal–organic interfaces. ACS Nano 8:1212356–64 [Google Scholar]
  16. Mohn F, Gross L, Moll N, Meyer G. 16.  2012. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7:227–31 [Google Scholar]
  17. Gross L, Moll N, Mohn F, Curioni A, Meyer G. 17.  et al. 2011. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107:086101 [Google Scholar]
  18. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. 18.  2009. The chemical structure of a molecule resolved by atomic force microscopy. Science 325:1110–14 [Google Scholar]
  19. Lu X, Grobis M, Khoo KH, Louie SG, Crommie MF. 19.  2003. Spatially mapping the spectral density of a single C60 molecule. Phys. Rev. Lett. 90:096802 [Google Scholar]
  20. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB. 20.  1968. Molecular beams of macroions. J. Chem. Phys. 49:2240 [Google Scholar]
  21. Karas M, Bachmann D, Hillenkamp F. 21.  1985. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57:142935–39 [Google Scholar]
  22. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 22.  1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:492664–71 [Google Scholar]
  23. Dongre AR, Somogyi A, Wysocki VH. 23.  1996. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31:4339–50 [Google Scholar]
  24. Englander SW. 24.  2006. Hydrogen exchange and mass spectrometry: a historical perspective. J. Am. Soc. Mass Spectrom. 17:111481–89 [Google Scholar]
  25. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. 25.  2008. Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1:293–327 [Google Scholar]
  26. Petrotchenko EV, Borchers CH. 26.  2010. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom. Rev. 29:6862–76 [Google Scholar]
  27. Pierson NA, Chen L, Valentine SJ, Russell DH, Clemmer DE. 27.  2011. Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133:3513810–13 [Google Scholar]
  28. Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A. 28.  et al. 2012. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337:61001348–52 [Google Scholar]
  29. Smith LP, Parkins WE, Forrester AT. 29.  1947. On the separation of isotopes in quantity by electromagnetic means. Phys. Rev. 72:11989–1002 [Google Scholar]
  30. Cooks RG, Jo SC, Green J. 30.  2004. Collisions of organic ions at surfaces. Appl. Surf. Sci. 231–32:13–21 [Google Scholar]
  31. Johnson GE, Hu Q, Laskin J. 31.  2011. Soft landing of complex molecules on surfaces. Annu. Rev. Anal. Chem. 4:83–104 [Google Scholar]
  32. Cyriac J, Pradeep T, Kang H, Souda R, Cooks RG. 32.  2012. Low-energy ionic collisions at molecular solids. Chem. Rev. 112:5356–411 [Google Scholar]
  33. Verbeck G, Hoffmann W, Walton B. 33.  2012. Soft-landing preparative mass spectrometry. Analyst 137:194393–407 [Google Scholar]
  34. Johnson GE, Gunaratne D, Laskin J. 34.  2015. Soft- and reactive landing of ions onto surfaces: concepts and applications. Mass Spectrom. Rev. 2015:1–41 [Google Scholar]
  35. Kahle S, Deng Z, Malinowski N, Tonnoir C, Forment-Aliaga A. 35.  et al. 2012. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett. 12:518–21 [Google Scholar]
  36. Kley CS, Dette C, Rinke G, Patrick CE, Cechal J. 36.  et al. 2014. Atomic-scale observation of multi-conformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase. Nano Lett. 14:563–69 [Google Scholar]
  37. Grill V, Shen J, Evans C, Cooks RG. 37.  2001. Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev. Sci. Instrum. 72:83149–79 [Google Scholar]
  38. Alvarez J, Cooks RG, Barlow SE, Gaspar DJ, Futrell JH, Laskin J. 38.  2005. Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 77:113452–60 [Google Scholar]
  39. Rauschenbach S, Stadler FL, Lunedei E, Malinowski N, Koltsov S. 39.  et al. 2006. Electrospray ion beam deposition of clusters and biomolecules. Small 2:540–47 [Google Scholar]
  40. Volny M, Turecek F. 40.  2006. High efficiency in soft landing of biomolecular ions on a plasma-treated metal surface: Are double-digit yields possible?. J. Mass Spectrom. 41:1124–26 [Google Scholar]
  41. Swarbrick JC, Taylor JB, O'Shea JN. 41.  2006. Electrospray deposition in vacuum. Appl. Surf. Sci. 252:155622–26 [Google Scholar]
  42. O'Sullivan MC, Sprafke JK, Kondratuk DV, Rinfray C, Claridge TDW. 42.  et al. 2011. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469:72–75 [Google Scholar]
  43. Saywell A, Magnano G, Satterley CJ, Perdigão LMA, Britton AJ. 43.  et al. 2010. Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat. Commun. 1:75 [Google Scholar]
  44. O'Shea JN, Taylor JB, Swarbrick JC, Magnano G, Mayor LC, Schulte K. 44.  2007. Electrospray deposition of carbon nanotubes in vacuum. Nanotechnology 18:3035707 [Google Scholar]
  45. Kelly RT, Tolmachev AV, Page JS, Tang K, Smith RD. 45.  2010. The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 29:294 [Google Scholar]
  46. Pauly M, Sroka M, Reiss J, Rinke G, Albarghash A, Vogelgesang R. 46.  et al. 2014. A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst 139:1856–67 [Google Scholar]
  47. Gunaratne KDD, Prabhakaran V, Ibrahim YM, Norheim RV, Johnson GE, Laskin J. 47.  2015. Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst 140:92957–63 [Google Scholar]
  48. Lin B, Sunner J. 48.  1994. Ion transport by viscous gas flow through capillaries. J. Am. Soc. Mass Spectrom. 5:873–85 [Google Scholar]
  49. Page JS, Marginean I, Baker ES, Kelly RT, Tang K, Smith RD. 49.  2009. Biases in ion transmission through an electrospray ionization–mass spectrometry capillary inlet. J. Am. Soc. Mass Spectrom. 20:122265–72 [Google Scholar]
  50. Schneider BB, Javaheri H, Covey TR. 50.  2006. Ion sampling effects under conditions of total solvent consumption. Rapid Commun. Mass Spectrom. 20:1538–44 [Google Scholar]
  51. Page JS, Tang K, Kelly RT, Smith RD. 51.  2008. Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal. Chem. 80:51800–5 [Google Scholar]
  52. Konermann L, Ahadi E, Rodriguez AD, Vahidi S. 52.  2013. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85:2–9 [Google Scholar]
  53. Cox JT, Marginean I, Smith RD, Tang K. 53.  2015. On the ionization and ion transmission efficiencies of different ESI-MS interfaces. J. Am. Soc. Mass Spectrom. 26:155–62 [Google Scholar]
  54. Brune H. 54.  1998. Microscopic view of epitaxial metal growth: nucleation and aggregation. Surface Sci. Rep. 31:4–6121–229 [Google Scholar]
  55. Barth JV. 55.  2007. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58:375–407 [Google Scholar]
  56. Barth JV. 56.  2000. Transport of adsorbates at metal surfaces: from thermal migration to hot precursors. Surface Sci. Rep. 40:375–149 [Google Scholar]
  57. Weckesser J, Barth JV, Kern K. 57.  2001. Mobility and bonding transition of C60 on Pd(110). Phys. Rev. B 64:16161403 [Google Scholar]
  58. Schunack M, Linderoth TR, Rosei F, Lægsgaard E, Stensgaard I, Besenbacher F. 58.  2002. Long jumps in the surface diffusion of large molecules. Phys. Rev. Lett. 88:15156102 [Google Scholar]
  59. Miller SA, Luo H, Pachuta SJ, Cooks RG. 59.  1997. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 275:53051447–50 [Google Scholar]
  60. Laskin J, Wang P, Hadjar O, Futrell JH, Alvarez J, Cooks RG. 60.  2007. Charge retention by peptide ions soft-landed onto self-assembled monolayer surfaces. Int. J. Mass Spectrom. 265:237–43 [Google Scholar]
  61. Johnson GE, Priest T, Laskin J. 61.  2011. Charge retention by gold clusters on surfaces prepared using soft landing of mass selected ions. ACS Nano 6:1573–82 [Google Scholar]
  62. Gologan B, Green JR, Alvarez J, Laskin J, Cooks RG. 62.  2005. Ion/surface reactions and ion soft-landing. Phys. Chem. Chem. Phys. 7:71490–500 [Google Scholar]
  63. Rauschenbach S, Vogelgesang R, Malinowski N, Gerlach JW, Benyoucef M. 63.  et al. 2009. Electrospray ion beam deposition: soft-landing and fragmentation of functional molecules at solid surfaces. ACS Nano 3:2901–10 [Google Scholar]
  64. Dubey G, Urcuyo R, Abb S, Rinke G, Burghard M. 64.  et al. 2014. Chemical modification of graphene via hyperthermal molecular reaction. J. Am. Chem. Soc. 136:13482–85 [Google Scholar]
  65. Rinke G, Rauschenbach S, Harnau L, Albarghash A, Pauly M, Kern K. 65.  2014. Active control of protein conformation on metals by hyperthermal surface interaction. Nanoletters 14:5609–15 [Google Scholar]
  66. Räder HJ, Rouhanipour A, Talarico AM, Palermo V, Samori P, Müllen K. 66.  2006. Processing of giant graphene molecules by soft-landing mass spectrometry. Nat. Mater. 5:4276–80 [Google Scholar]
  67. Rauschenbach S, Rinke G, Malinowski N, Weitz RT, Dinnebier R. 67.  et al. 2012. Crystalline inverted membranes grown on surfaces by electrospray ion beam deposition in vacuum. Adv. Mater. 24:2761–67 [Google Scholar]
  68. Hauptmann N, Hamann C, Tang H, Berndt R. 68.  2013. Switching and charging of a ruthenium dye on Ag(111). Phys. Chem. Chem. Phys. 15:10326–30 [Google Scholar]
  69. Hauptmann N, Scheil K, Gopakumar TG, Otte FL, Schütt C. 69.  et al. 2013. Surface control of alkyl chain conformations and 2D chiral amplification. J. Am. Chem. Soc. 135:8814–17 [Google Scholar]
  70. Rinke G, Rauschenbach S, Schrettl S, Hoheisel TN, Blohm J. 70.  et al. 2015. Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. Int. J. Mass. Spectrom. 377:228–34 [Google Scholar]
  71. Abb S, Harnau L, Gutzler R, Rauschenbach S, Kern K. 71.  2016. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides. Nat. Commun. 7:10335 [Google Scholar]
  72. Böttcher A, Weis P, Jester S-S, Löffler D, Bihlmeier A. 72.  et al. 2005. Solid C58 films. Phys. Chem. Chem. Phys. 7:2816–20 [Google Scholar]
  73. Thontasen N, Levita G, Malinowski N, Deng Z, Rauschenbach S, Kern K. 73.  2010. Grafting crown ether alkali host–guest complexes at surfaces by electrospray ion beam deposition. J. Phys. Chem. C 114:17768–72 [Google Scholar]
  74. Gunaratne KDD, Johnson GE, Andersen A, Dan Du WZ, Prabhakaran V. 74.  et al. 2014. Controlling the charge state and redox properties of supported polyoxometalates via soft landing of mass-selected ions. J. Phys. Chem. C 118:27611–22 [Google Scholar]
  75. Witten TA Jr, Sander LM. 75.  1981. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47:191400 [Google Scholar]
  76. Dil H, Lobo-Checa J, Laskowski R, Blaha P, Berner S. 76.  et al. 2008. Surface trapping of atoms and molecules with dipole rings. Science 319:58711824–26 [Google Scholar]
  77. Grimley TB. 77.  1967. The indirect interaction between atoms or molecules adsorbed on metals. Proc. Phys. Soc. 90:751 [Google Scholar]
  78. Lau KH, Kohn W. 78.  1978. Indirect long-range oscillatory interaction between adsorbed atoms. Surf. Sci. 75:69 [Google Scholar]
  79. Silly F, Pivetta M, Ternes M, Patthey F, Pelz JP, Schneider WD. 79.  2004. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys. Rev. Lett. 92:016101 [Google Scholar]
  80. von Hofe T, Kröger J, Berndt R. 80.  2006. Adsorption geometry of Cu(111)-Cs studied by scanning tunneling microscopy. Phys. Rev. B 73:245434 [Google Scholar]
  81. Ziegler M, Kröger J, Berndt R, Filinov A, Bonitz M. 81.  2008. Scanning tunneling microscopy and kinetic Monte Carlo investigation of cesium superlattices on Ag(111). Phys. Rev. B 78:245427 [Google Scholar]
  82. Yokoyama T, Takahashi T, Shinozaki K. 82.  2007. Quantitative analysis of long-range interactions between adsorbed dipolar molecules on Cu(111). Phys. Rev. Lett. 98:206102 [Google Scholar]
  83. Fernandez-Torrente I, Monturet S, Franke KJ, Fraxedas J, Lorente N, Pascual JI. 83.  2007. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99:176103 [Google Scholar]
  84. Ternes M, Weber C, Pivetta M, Patthey F, Pelz JP. 84.  et al. 2004. Scanning-tunneling spectroscopy of surface-state electrons scattered by a slightly disordered two-dimensional dilute “solid”: Ce on Ag(111). Phys. Rev. Lett. 93:146805 [Google Scholar]
  85. Negulyaev NN, Stepanyuk VS, Niebergall L, Bruno P, Pivetta M. 85.  et al. 2009. Melting of two-dimensional adatom superlattices stabilized by long-range electronic interactions. Phys. Rev. Lett. 102:246102 [Google Scholar]
  86. Ternes M, Pivetta M, Patthey F, Schneider WD. 86.  2010. Creation, electronic properties, disorder, and melting of two-dimensional surface-state-mediated adatom superlattices. Prog. Surf. Sci. 85:1 [Google Scholar]
  87. Wagner C, Green MFB, Leinen P, Deilmann T, Krüger P. 87.  et al. 2015. Scanning quantum dot microscopy. Phys. Rev. Lett. 115:026101 [Google Scholar]
  88. Mohn F, Gross L, Moll N, Meyer G. 88.  2012. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7:227–31 [Google Scholar]
  89. Wysocki VH, Joyce KE, Jones CM, Beardsley RL. 89.  2008. Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J. Am. Soc. Mass Spectrom. 19:190–208 [Google Scholar]
  90. Wang P, Hadjar O, Laskin J. 90.  2007. Covalent immobilization of peptides on self-assembled monolayer surfaces using soft-landing of mass-selected ions. J. Am. Chem. Soc. 129:288682–83 [Google Scholar]
  91. Wang P, Hadjar O, Gassman PL, Laskin J. 91.  2008. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. Phys. Chem. Chem. Phys. 10:111512–22 [Google Scholar]
  92. Pepi F, Tata A, Garzoli S, Giacomello P, Ragno R. 92.  et al. 2011. Chemically modified multiwalled carbon nanotubes electrodes with ferrocene derivatives through reactive landing. J. Phys. Chem. C 115:114863–71 [Google Scholar]
  93. Krasheninnikov AV, Nordlund K. 93.  2010. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107:071301 [Google Scholar]
  94. Wilhelm RA, Gruber E, Ritter R, Heller R, Facsko S, Aumayr F. 94.  2014. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes. Phys. Rev. Lett. 112:15153201 [Google Scholar]
  95. Ouyang Z, Takats Z, Blake TA, Gologan B, Guymon AJ. 95.  et al. 2003. Preparing protein microarrays by soft-landing of mass-selected ions. Science 301:56381351–54 [Google Scholar]
  96. Wang P, Laskin J. 96.  2008. Helical peptide arrays on self-assembled monolayer surfaces through soft and reactive landing of mass-selected ions. Angew Chem. Int. Ed. 47:6678–80 [Google Scholar]
  97. Luo H, Miller SA, Cooks RG, Pachuta SJ. 97.  1998. Soft landing of polyatomic ions for selective modification of fluorinated self-assembled monolayer surfaces. Int. J. Mass Spectrom. 174:1–3193–217 [Google Scholar]
  98. Gologan B, Takats Z, Alvarez J, Wiseman JM, Talaty N. 98.  et al. 2004. Ion soft-landing into liquids: protein identification, separation, and purification with retention of biological activity. J. Am. Soc. Mass Spectrom. 15:121874–84 [Google Scholar]
  99. Clemmer DE, Hudgins RR, Jarrold MF. 99.  1995. Naked protein conformations – cytochrome c in the gas-phase. J. Am. Chem. Soc. 117:10141–42 [Google Scholar]
  100. Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF. 100.  1997. Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119:2240–48 [Google Scholar]
  101. Hoaglund-Hyzer CS, Counterman AE, Clemmer DE. 101.  1999. Anhydrous protein ions. Chem. Rev. 99:103037–80 [Google Scholar]
  102. Wyttenbach T, Pierson NA, Clemmer DE, Bowers MT. 102.  2014. Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65:175–96 [Google Scholar]
  103. Deng Z, Thontasen N, Malinowski N, Rinke G, Harnau L. 103.  et al. 2012. A close look at proteins: submolecular resolution of two- and three-dimensionally folded cytochrome c at surfaces. Nano Lett. 12:2452–58 [Google Scholar]
  104. Gross L, Mohn F, Moll N, Schuler B, Criado A. 104.  et al. 2012. Bond-order discrimination by atomic force microscopy. Science 337:1326 [Google Scholar]
  105. Weiss C, Wagner C, Kleimann C, Rohlfing M, Tautz FS, Temirov R. 105.  2010. Imaging Pauli repulsion in scanning tunneling microscopy. Phys. Rev. Lett. 105:086103 [Google Scholar]
  106. Hapala P, Temirov R, Tautz FS, Jelínek P. 106.  2014. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 113:226101 [Google Scholar]
  107. Longchamp J-N, Latychevskaia T, Escher C, Fink H-W. 107.  2013. Graphene unit cell imaging by holographic coherent diffraction. Phys. Rev. Lett. 110:25255501 [Google Scholar]
  108. Chapman HN, Fromme P, Barty A, White TA, Kirian RA. 108.  et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:733273–77 [Google Scholar]
  109. Lutz J-F, Ouchi M, Liu DR, Sawamoto M. 109.  2013. Sequence-controlled polymers. Science 341:61461238149 [Google Scholar]
  110. Goodman CM, Choi S, Shandler S, DeGrado WF. 110.  2007. Foldamers as versatile frameworks for the design and evolution of function. Nat. Chem. Biol. 3:5252–62 [Google Scholar]
  111. Lingenfelder M, Tomba G, Costantini G, Colombi Ciacchi L, De Vita A, Kern K. 111.  2007. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem. Int. Ed. 46:244492–95 [Google Scholar]
  112. Rauschenbach S, Rinke G, Gutzler R, Abb S, Albargash A. 112.  et al. 2016. Molecular nanostructures through two-dimensional folding of polypeptides at surfaces. Submitted [Google Scholar]
  113. Wei T, Carignano MA, Szleifer I. 113.  2011. Lysozyme adsorption on polyethylene surfaces: Why are long simulations needed?. Langmuir 27:1912074–81 [Google Scholar]
  114. Zhong D, Franke J-H, Podiyanachari SK, Blömker T, Zhang H. 114.  et al. 2011. Linear alkane polymerization on a gold surface. Science 334:213–16 [Google Scholar]
  115. Tanaka H, Kawai T. 115.  2009. Partial sequencing of a single DNA molecule with a scanning tunneling microscope. Nat. Nanotechnol. 4:518–22 [Google Scholar]
  116. Wagner C, Temirov R. 116.  2015. Tunnelling junctions with additional degrees of freedom: an extended toolbox of scanning probe microscopy. Prog. Surf. Sci. 90:194 [Google Scholar]
  117. Gross L, Mohn F, Liljeroth P, Repp J, Giessibl FJ, Meyer G. 117.  2009. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324:1428–31 [Google Scholar]
  118. Tersoff J, Hamann DR. 118.  1985. Theory of the scanning tunneling microscope. Phys. Rev. B 31:805–13 [Google Scholar]
  119. Lang ND. 119.  1986. Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B 34:5947–50 [Google Scholar]
  120. Stipe BC, Rezaei MA, Ho W. 120.  1998. Single-molecule vibrational spectroscopy and microscopy. Science 280:1732–35 [Google Scholar]
  121. Heinrich AJ, Gupta JA, Lutz CP, Eigler DM. 121.  2004. Single-atom spin-flip spectroscopy. Science 306:466–69 [Google Scholar]
  122. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM. 122.  2002. Molecule cascades. Science 298:1381–87 [Google Scholar]
  123. Natterer FD, Patthey F, Brune H. 123.  2013. Distinction of nuclear spin states with the scanning tunneling microscope. Phys. Rev. Lett. 111:175303 [Google Scholar]
  124. Vitali L, Levita G, Ohmann R, Comisso A, De Vita A, Kern K. 124.  2010. Portrait of the potential barrier at metal–organic nanocontacts. Nat. Mater. 9:320–23 [Google Scholar]
  125. Loth S, Etzkorn M, Lutz CP, Eigler DM, Heinrich AJ. 125.  2010. Measurement of fast electron spin relaxation times with atomic resolution. Science 329:1628–30 [Google Scholar]
  126. Grosse C, Etzkorn M, Kuhnke K, Loth S, Kern K. 126.  2013. Quantitative mapping of fast voltage pulses in tunnel junctions by plasmonic luminescence. Appl. Phys. Lett. 103:183108 [Google Scholar]
  127. Yan S, Choi D-J, Burgess JAJ, Rolf-Pissarczyk S, Loth S. 127.  2015. Control of quantum magnets by atomic exchange bias. Nat. Nanotechnol. 10:40–45 [Google Scholar]
  128. Hölscher H, Langkat SM, Schwarz A, Wiesendanger R. 128.  2002. Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett. 81:4428 [Google Scholar]
  129. Hauptmann N, Hamann C, Tang H, Berndt R. 129.  2013. Soft-landing electrospray deposition of the ruthenium dye N3 on Au(111). J. Phys. Chem. C 117:9734–38 [Google Scholar]
  130. Kley CS, Dette C, Rinke G, Patrick CE, Čechal J. 130.  et al. 2014. Atomic-scale observation of multiconformational binding and energy level alignment of ruthenium-based photosensitizers on TiO2 anatase. Nano Lett. 14:563–69 [Google Scholar]
  131. Sessoli R, Gatteschi D, Caneschi A, Novak MA. 131.  1993. Magnetic bistability in a metal-ion cluster. Nature 365:141–43 [Google Scholar]
  132. Mannini M, Pineider F, Sainctavit P, Cartier dit Moulin C, Arrio M-A, Cornia A. 132.  2009. XMCD of a single layer of single molecule magnets. Eur. Phys. J. 169:1167–73 [Google Scholar]
  133. Mannini M, Sainctavit P, Sessoli R, Cartier dit Moulin C, Pineider F. 133.  et al. 2008. XAS and XMCD investigation of Mn12 monolayers on gold. Chem. Eur. J. 14:7530–35 [Google Scholar]
  134. Ternes M. 134.  2015. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17:063016 [Google Scholar]
  135. Nie Z, Li G, Goodwin MP, Gao L, Cyriac J, Cooks RG. 135.  2009. In situ SIMS analysis and reactions of surfaces prepared by soft landing of mass-selected cations and anions using an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 20:949–56 [Google Scholar]
  136. Cyriac J, Wleklinski M, Li G, Liang Gao, Cooks RG. 136.  2012. In situ Raman spectroscopy of surfaces modified by ion soft landing. Analyst 137:61363–69 [Google Scholar]
  137. Chen Y, Deng K, Qiu X, Wang C. 137.  2013. Visualizing cyclic peptide hydration at the single-molecule level. Sci. Rep. 3:2461 [Google Scholar]
  138. Li A, Luo Q, Park S-J, Cooks RG. 138.  2014. Synthesis and catalytic reactions of nanoparticles formed by electrospray ionization of coinage metals. Angew Chem. 126:3211–14 [Google Scholar]
  139. Laskin j, Wang P, Hadjar O. 139.  2010. Soft-landing of CoIII(salen)+ and NnIII(salen)+ on self-assembled monolayer surfaces. J. Phys. Chem. C 114:5305–11 [Google Scholar]
  140. Hamann C, Woltmann R, Hong I-P, Hauptmann N, Karan S, Berndt R. 140.  2011. Ultrahigh vacuum deposition of organic molecules by electrospray ionization. Rev. Sci. Instr. 82:3033903 [Google Scholar]
  141. Mayor LC, Saywell A, Magnano G, Satterley CJ, Schnadt J, O'Shea JN. 141.  2009. Adsorption of a Ru(ii) dye complex on the Au(111) surface: photoemission and scanning tunneling microscopy. J. Chem. Phys. 130:164704 [Google Scholar]
  142. Assig M, Etzkorn M, Enders A, Stiepany W, Ast CR, Kern K. 142.  2013. A 10 mK scanning tunneling microscope operating in ultra-high vacuum and high magnetic fields. Rev. Sci. Instrum. 84:3033903 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041633
Loading
/content/journals/10.1146/annurev-anchem-071015-041633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error