1932

Abstract

A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071015-041641
2016-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/9/1/annurev-anchem-071015-041641.html?itemId=/content/journals/10.1146/annurev-anchem-071015-041641&mimeType=html&fmt=ahah

Literature Cited

  1. Mariño K, Bones J, Kattla JJ, Rudd PM. 1.  2010. A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6:10713–23 [Google Scholar]
  2. Adibekian A, Stallforth P, Hecht M, Werz DB, Gagneux P, Seeberger PH. 2.  2011. Comparative bioinformatics analysis of the mammalian and bacterial glycomes. Chem. Sci. 2:2337–44 [Google Scholar]
  3. Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. 3.  2009. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:6580–92 [Google Scholar]
  4. de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N. 4.  2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell 12:4470–81 [Google Scholar]
  5. Smith DF, Cummings RD. 5.  2014. Investigating virus-glycan interactions using glycan microarrays. Curr. Opin. Virol. 7:79–87 [Google Scholar]
  6. Astronomo RD, Burton DR. 6.  2010. Carbohydrate vaccines: developing solutions to sticky situations?. Nat. Rev. Drug Discov. 9:4308–24 [Google Scholar]
  7. Lepenies B, Seeberger PH. 7.  2010. The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharmacol. Immunotoxicol. 32:2196–207 [Google Scholar]
  8. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S. 8.  et al. 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280:98606–16 [Google Scholar]
  9. Pang P, Chiu PCN, Lee C, Chang L, Panico M. 9.  et al. 2011. Human sperm binding is mediated by the sialyl-LewisX oligosaccharide on the zona pellucida. Science 333:60501761–64 [Google Scholar]
  10. Ratner DM, Adams EW, Su J, O'Keefe BR, Mrksich M, Seeberger PH. 10.  2004. Probing protein-carbohydrate interactions with microarrays of synthetic oligosaccharides. ChemBioChem 5:3379–83 [Google Scholar]
  11. Wang D, Liu S, Trummer BJ, Deng C, Wang A. 11.  2002. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells. Nat. Biotechnol. 20:3275–81 [Google Scholar]
  12. Fukui S, Feizi T, Galustian C, Lawson AM, Chai W. 12.  2002. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20:101011–17 [Google Scholar]
  13. Stowell SR, Arthur CM, McBride R, Berger O, Razi N. 13.  et al. 2014. Microbial glycan microarrays define key features of host-microbial interactions. Nat. Chem. Biol. 10:6470–76 [Google Scholar]
  14. Palma AS, Liu Y, Zhang H, Zhang Y, McCleary BV. 14.  et al. 2015. Unravelling glucan recognition systems by glycome microarrays using the designer approach and mass spectrometry. Mol. Cell. Proteomics 14:4974–88 [Google Scholar]
  15. Song X, Heimburg-Molinaro J, Cummings RD, Smith DF. 15.  2014. Chemistry of natural glycan microarrays. Curr. Opin. Chem. Biol. 18:70–77 [Google Scholar]
  16. Geissner A, Anish C, Seeberger PH. 16.  2014. Glycan arrays as tools for infectious disease research. Curr. Opin. Chem. Biol. 18:38–45 [Google Scholar]
  17. Rillahan CD, Paulson JC. 17.  2011. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80:1797–823 [Google Scholar]
  18. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME. 18.  et al. 2004. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. PNAS 101:4917033–38 [Google Scholar]
  19. Seeberger PH, Werz DB. 19.  2007. Synthesis and medical applications of oligosaccharides. Nature 446:71391046–51 [Google Scholar]
  20. Boltje TJ, Buskas T, Boons GJ. 20.  2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1:8611–22 [Google Scholar]
  21. Palma AS, Feizi T, Childs RA, Chai W, Liu Y. 21.  2014. The neoglycolipid (NGL)-based oligosaccharide microarray system poised to decipher the meta-glycome. Curr. Opin. Chem. Biol. 18:87–94 [Google Scholar]
  22. Wang L, Cummings RD, Smith DF, Huflejt M, Campbell CT. 22.  et al. 2014. Cross-platform comparison of glycan microarray formats. Glycobiology 24:6507–17 [Google Scholar]
  23. Byrd-Leotis L, Liu R, Bradley KC, Lasanajak Y, Cummings SF. 23.  et al. 2014. Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. PNAS 111:22E2241–50 [Google Scholar]
  24. Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM. 24.  et al. 2010. Shotgun glycomics: a microarray strategy for functional glycomics. Nat. Methods 8:185–90 [Google Scholar]
  25. van Diepen A, Smit CH, van Egmond L, Kabatereine NB, Pinot de Moira A. 25.  et al. 2012. Differential anti-glycan antibody responses in Schistosoma mansoni–infected children and adults studied by shotgun glycan microarray. PLOS Negl. Trop. Dis. 6:11e1922 [Google Scholar]
  26. Yu Y, Lasanajak Y, Song X, Hu L, Ramani S. 26.  et al. 2014. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteom. 13:112944–60 [Google Scholar]
  27. Adams EW, Ratner DM, Bokesch HR, McMahon JB, O'Keefe BR, Seeberger PH. 27.  2004. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: glycan-dependent gp120/protein interactions. Chem. Biol. 11:6875–81 [Google Scholar]
  28. Wang C, Huang Y, Ren C, Lin C, Hung J. 28.  et al. 2008. Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. PNAS 105:3311661–66 [Google Scholar]
  29. Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R, Menéndez-Arias L. 29.  2013. Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin. PLOS ONE 8:4e59550 [Google Scholar]
  30. Bryan MC, Fazio F, Lee H, Huang C, Chang A. 30.  et al. 2004. Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 126:288640–41 [Google Scholar]
  31. Culf AS, Cuperlovic-Culf M, Ouellette RJ. 31.  2006. Carbohydrate microarrays: survey of fabrication techniques. OMICS 10:3289–310 [Google Scholar]
  32. Khan ZM, Liu Y, Neu U, Gilbert M, Ehlers B. 32.  et al. 2014. Crystallographic and glycan microarray analysis of human polyomavirus 9 VP1 identifies N-glycolyl neuraminic acid as a receptor candidate. J. Virol. 88:116100–11 [Google Scholar]
  33. Klein F, Gaebler C, Mouquet H, Sather DN, Lehmann C. 33.  et al. 2012. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209:81469–79 [Google Scholar]
  34. Gao C, Liu Y, Zhang H, Zhang Y, Fukuda MN. 34.  et al. 2014. Carbohydrate sequence of the prostate cancer–associated antigen F77 assigned by a mucin O-glycome designer array. J. Biol. Chem. 289:2316462–77 [Google Scholar]
  35. Hanashima S, Götze S, Liu Y, Ikeda A, Kojima-Aikawa K. 35.  et al. 2015. Defining the interaction of human soluble lectin ZG16p and mycobacterial phosphatidylinositol mannosides. ChemBioChem 16:101502–11 [Google Scholar]
  36. Dyukova VI, Shilova NV, Galanina OE, Rubina A, Bovin NV. 36.  2006. Design of carbohydrate multiarrays. Biochim. Biophys. Acta Gen. Subj. 1760:4603–9 [Google Scholar]
  37. Liu Y, Childs RA, Palma AS, Campanero-Rhodes MA, Stoll MS. 37.  et al. 2012. Neoglycolipid-based oligosaccharide microarray system: preparation of NGLs and their noncovalent immobilization on nitrocellulose-coated glass slides for microarray analyses. Methods Mol. Biol. 808:117–36 [Google Scholar]
  38. Grainger DW, Greef CH, Gong P, Lochhead MJ. 38.  2007. Current microarray surface chemistries. Methods Mol. Biol. 381:37–57 [Google Scholar]
  39. Pereira CL, Geissner A, Anish C, Seeberger PH. 39.  2015. Chemical synthesis elucidates the immunological importance of a pyruvate modification in the capsular polysaccharide of Streptococcus pneumoniae serotype 4. Angew. Chem. Int. Ed. 54:3410016–19 [Google Scholar]
  40. Lee H, Chen C, Tsai T, Li S, Lin K. 40.  et al. 2014. Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc. 136:4816844–53 [Google Scholar]
  41. Matthies S, Stallforth P, Seeberger PH. 41.  2015. Total synthesis of legionaminic acid as basis for serological studies. J. Am. Chem. Soc. 137:82848–51 [Google Scholar]
  42. Schumann B, Pragani R, Anish C, Pereira CL, Seeberger PH. 42.  2014. Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective thioglycoside activation. Chem. Sci. 5:51992–2002 [Google Scholar]
  43. Götze S, Azzouz N, Tsai Y, Groß U, Reinhardt A. 43.  et al. 2014. Diagnosis of toxoplasmosis using a synthetic glycosylphosphatidylinositol glycan. Angew. Chem. Int. Ed. 53:5013701–5 [Google Scholar]
  44. Götze S, Reinhardt A, Geissner A, Azzouz N, Tsai Y. 44.  et al. 2015. Investigation of the protective properties of glycosylphosphatidylinositol-based vaccine candidates in a Toxoplasma gondii mouse challenge model. Glycobiology 25:9984–91 [Google Scholar]
  45. Lee M, Shin I. 45.  2005. Facile preparation of carbohydrate microarrays by site-specific, covalent immobilization of unmodified carbohydrates on hydrazide-coated glass slides. Org. Lett. 7:194269–72 [Google Scholar]
  46. Reinhardt A, Yang Y, Claus H, Pereira CL, Cox AD. 46.  et al. 2015. Antigenic potential of a highly conserved Neisseria meningitidis lipopolysaccharide inner core structure defined by chemical synthesis. Chem. Biol. 22:138–49 [Google Scholar]
  47. Park S, Gildersleeve JC, Blixt O, Shin I. 47.  2013. Carbohydrate microarrays. Chem. Soc. Rev. 42:104310–26 [Google Scholar]
  48. Tateno H, Mori A, Uchiyama N, Yabe R, Iwaki J. 48.  et al. 2008. Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology 18:10789–98 [Google Scholar]
  49. Grant OC, Smith HM, Firsova D, Fadda E, Woods RJ. 49.  2013. Presentation, presentation, presentation! Molecular-level insight into linker effects on glycan array screening data. Glycobiology 24:117–25 [Google Scholar]
  50. Liang P, Wang S, Wong C. 50.  2007. Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J. Am. Chem. Soc. 129:3611177–84 [Google Scholar]
  51. Oyelaran O, Li Q, Farnsworth D, Gildersleeve JC. 51.  2009. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies. J. Proteome Res. 8:73529–38 [Google Scholar]
  52. Gerland B, Goudot A, Pourceau G, Meyer A, Dugas V. 52.  et al. 2012. Synthesis of a library of fucosylated glycoclusters and determination of their binding toward Pseudomonas aeruginosa lectin B (PA-IIL) using a DNA-based carbohydrate microarray. Bioconjug. Chem. 23:81534–47 [Google Scholar]
  53. Goudot A, Pourceau G, Meyer A, Gehin T, Vidal S. 53.  et al. 2013. Quantitative analysis (Kd and IC50) of glycoconjugates interactions with a bacterial lectin on a carbohydrate microarray with DNA direct immobilization (DDI). Biosens. Bioelectron. 40:1153–60 [Google Scholar]
  54. Scurr DJ, Horlacher T, Oberli MA, Werz DB, Kroeck L. 54.  et al. 2010. Surface characterization of carbohydrate microarrays. Langmuir 26:2217143–55 [Google Scholar]
  55. Muthana SM, Xia L, Campbell CT, Zhang Y, Gildersleeve JC. 55.  2015. Competition between serum IgG, IgM, and IgA anti-glycan antibodies. PLOS ONE 10:3e0119298 [Google Scholar]
  56. Martin CE, Broecker F, Eller S, Oberli MA, Anish C. 56.  et al. 2013. Glycan arrays containing synthetic Clostridium difficile lipoteichoic acid oligomers as tools toward a carbohydrate vaccine. Chem. Commun. 49:647159 [Google Scholar]
  57. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM. 57.  et al. 2006. Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281:95771–79 [Google Scholar]
  58. Levan S, De S, Olson R. 58.  2013. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J. Mol. Biol. 425:5944–57 [Google Scholar]
  59. Šulák O, Cioci G, Lameignère E, Balloy V, Round A. 59.  et al. 2011. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLOS Pathog. 7:9e1002238 [Google Scholar]
  60. Hsu T, Cheng S, Yang W, Chin S, Chen B. 60.  et al. 2009. Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. J. Biol. Chem. 284:5034479–89 [Google Scholar]
  61. Hromatka BS, Ngeleza S, Adibi JJ, Niles RK, Tshefu AK, Fisher SJ. 61.  2013. Histopathologies, immunolocalization, and a glycan binding screen provide insights into Plasmodium falciparum interactions with the human placenta. Biol. Reprod. 88:6154 [Google Scholar]
  62. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP. 62.  2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68:3547–59 [Google Scholar]
  63. Takahara K, Arita T, Tokieda S, Shibata N, Okawa Y. 63.  et al. 2012. Difference in fine specificity to polysaccharides of Candida albicans mannoprotein between mouse SIGNR1 and human DC-SIGN. Infect. Immun. 80:51699–706 [Google Scholar]
  64. Park S, Lee M, Shin I. 64.  2009. Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjugate Chem. 20:1155–62 [Google Scholar]
  65. Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K. 65.  et al. 2007. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J. 50:61118–28 [Google Scholar]
  66. Moller IE, Pettolino FA, Hart C, Lampugnani ER, Willats WGT, Bacic A. 66.  2012. Glycan profiling of plant cell wall polymers using microarrays. J. Vis. Exp.70e4238
  67. Fei Y, Sun Y, Li Y, Yu H, Lau K. 67.  et al. 2015. Characterization of receptor binding profiles of influenza A viruses using an ellipsometry-based label-free glycan microarray assay platform. Biomolecules 5:31480–98 [Google Scholar]
  68. Frederiksen RF, Yoshimura Y, Storgaard BG, Paspaliari DK, Petersen BO. 68.  et al. 2015. A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Galβ1-4GlcNAc) and LacdiNAc (GalNAcβ1-4GlcNAc) motifs found on vertebrate and insect cells. J. Biol. Chem. 290:95354–66 [Google Scholar]
  69. Vidal-Melgosa S, Pedersen HL, Schückel J, Arnal G, Dumon C. 69.  et al. 2015. A new versatile microarray-based method for high throughput screening of carbohydrate-active enzymes. J. Biol. Chem. 290:149020–36 [Google Scholar]
  70. Park S, Shin I. 70.  2007. Carbohydrate microarrays for assaying galactosyltransferase activity. Org. Lett. 9:91675–78 [Google Scholar]
  71. Brzezicka K, Echeverria B, Serna S, van Diepen A, Hokke CH, Reichardt N. 71.  2015. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans. ACS Chem. Biol. 10:51290–302 [Google Scholar]
  72. Yan S, Serna S, Reichardt N, Paschinger K, Wilson IBH. 72.  2013. Array-assisted characterization of a fucosyltransferase required for the biosynthesis of complex core modifications of nematode N-glycans. J. Biol. Chem. 288:2921015–28 [Google Scholar]
  73. Blixt O, Allin K, Bohorov O, Liu X, Andersson-Sand H. 73.  et al. 2008. Glycan microarrays for screening sialyltransferase specificities. Glycoconj. J. 25:159–68 [Google Scholar]
  74. Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt N. 74.  2011. MALDI-TOF mass spectrometric analysis of enzyme activity and lectin trapping on an array of N-glycans. Angew. Chem. Int. Ed. 50:81801–4 [Google Scholar]
  75. Ban L, Pettit N, Li L, Stuparu AD, Cai L. 75.  et al. 2012. Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat. Chem. Biol. 8:9769–73 [Google Scholar]
  76. Oyelaran O, Gildersleeve JC. 76.  2009. Glycan arrays: recent advances and future challenges. Curr. Opin. Chem. Biol. 13:4406–13 [Google Scholar]
  77. Huebner M, Wutz K, Szkola A, Niessner R, Seidel M. 77.  2013. A glyco-chip for the detection of ricin by an automated chemiluminescence read-out system. Anal. Sci. 29:4461–66 [Google Scholar]
  78. Szkola A, Linares EM, Worbs S, Dorner BG, Dietrich R. 78.  et al. 2014. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay. Analyst 139:225885–92 [Google Scholar]
  79. Takeuchi O, Akira S. 79.  2010. Pattern recognition receptors and inflammation. Cell 140:6805–20 [Google Scholar]
  80. Yang R, Rabinovich GA, Liu F. 80.  2008. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10:e17 [Google Scholar]
  81. Crouch E, Hartshorn K, Horlacher T, McDonald B, Smith K. 81.  et al. 2009. Recognition of mannosylated ligands and influenza A virus by human surfactant protein D: contributions of an extended site and residue 343. Biochemistry 48:153335–45 [Google Scholar]
  82. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S. 82.  et al. 2012. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51:4210472–98 [Google Scholar]
  83. Sancho D, Reis e Sousa C. 83.  2012. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30:1491–529 [Google Scholar]
  84. Thiel S. 84.  2007. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol. Immunol. 44:163875–88 [Google Scholar]
  85. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine J. 85.  et al. 2010. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16:3295–301 [Google Scholar]
  86. Krarup A, Mitchell DA, Sim RB. 86.  2008. Recognition of acetylated oligosaccharides by human L-ficolin. Immunol. Lett. 118:2152–56 [Google Scholar]
  87. Gout E, Garlatti V, Smith DF, Lacroix M, Dumestre-Pérard C. 87.  et al. 2010. Carbohydrate recognition properties of human ficolins: glycan array screening reveals the sialic acid binding specificity of M-ficolin. J. Biol. Chem. 285:96612–22 [Google Scholar]
  88. Horlacher T, Oberli MA, Werz DB, Kröck L, Bufali S. 88.  et al. 2010. Determination of carbohydrate-binding preferences of human galectins with carbohydrate microarrays. ChemBioChem 11:111563–73 [Google Scholar]
  89. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O. 89.  et al. 2008. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283:1510109–23 [Google Scholar]
  90. Knirel YA, Gabius H, Blixt O, Rapoport EM, Khasbiullina NR. 90.  et al. 2014. Human tandem-repeat-type galectins bind bacterial non-βGal polysaccharides. Glycoconj. J. 31:17–12 [Google Scholar]
  91. Varki A. 91.  2011. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology 21:91121–24 [Google Scholar]
  92. Maglinao M, Eriksson M, Schlegel MK, Zimmermann S, Johannssen T. 92.  et al. 2014. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation. J. Control. Release 175:36–42 [Google Scholar]
  93. Powlesland AS, Ward EM, Sadhu SK, Guo Y, Taylor ME, Drickamer K. 93.  2006. Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J. Biol. Chem. 281:2920440–49 [Google Scholar]
  94. Macauley MS, Crocker PR, Paulson JC. 94.  2014. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14:10653–66 [Google Scholar]
  95. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P, Winzer K. 95.  2006. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8:61095–104 [Google Scholar]
  96. Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J. 96.  et al. 2008. Structural basis of the preferential binding for Globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J. Mol. Biol. 383:4837–53 [Google Scholar]
  97. Lameignere E, Malinovská L, Sláviková M, Duchaud E, Mitchell EP. 97.  et al. 2008. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem. J. 411:2307 [Google Scholar]
  98. Zecconi A, Scali F. 98.  2013. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett. 150:1–212–22 [Google Scholar]
  99. Hermans SJ, Baker HM, Sequeira RP, Langley RJ, Baker EN, Fraser JD. 99.  2012. Structural and functional properties of staphylococcal superantigen-like protein 4. Infect. Immun. 80:114004–13 [Google Scholar]
  100. Hu H, Armstrong PCJ, Khalil E, Chen Y, Straub A. 100.  et al. 2011. GPVI and GPIbα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet activation and direct toward glycans as potential inhibitors. PLOS ONE 6:4e19190 [Google Scholar]
  101. Chung MC, Wines BD, Baker H, Langley RJ, Baker EN, Fraser JD. 101.  2007. The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol. Microbiol. 66:61342–55 [Google Scholar]
  102. de Haas CJC, Weeterings C, Vughs MM, de Groot PG, Van Strijp JA, Lisman T. 102.  2009. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibα and αIIbβ3. J. Thromb. Haemost. 7:111867–74 [Google Scholar]
  103. Byres E, Paton AW, Paton JC, Löfling JC, Smith DF. 103.  et al. 2008. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456:7222648–52 [Google Scholar]
  104. van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. 104.  2014. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol. Rev. 38:4598–632 [Google Scholar]
  105. Rogers GN, Paulson JC. 105.  1983. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:2361–73 [Google Scholar]
  106. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P. 106.  et al. 2006. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355:51143–55 [Google Scholar]
  107. Belser JA, Blixt O, Chen L, Pappas C, Maines TR. 107.  et al. 2008. Contemporary North American influenza H7 viruses possess human receptor specificity: implications for virus transmissibility. PNAS 105:217558–63 [Google Scholar]
  108. Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y. 108.  et al. 2009. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 27:9797–99 [Google Scholar]
  109. Liu Y, Childs RA, Matrosovich T, Wharton S, Palma AS. 109.  et al. 2010. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J. Virol. 84:2212069–74 [Google Scholar]
  110. Bradley KC, Jones CA, Tompkins SM, Tripp RA, Russell RJ. 110.  et al. 2011. Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (novel 2009 H1N1). Virology 413:2169–82 [Google Scholar]
  111. Stevens J, Blixt O, Chen L, Donis RO, Paulson JC, Wilson IA. 111.  2008. Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. J. Mol. Biol. 381:51382–94 [Google Scholar]
  112. Crusat M, Liu J, Palma AS, Childs RA, Liu Y. 112.  et al. 2013. Changes in the hemagglutinin of H5N1 viruses during human infection—influence on receptor binding. Virology 447:1–2326–37 [Google Scholar]
  113. de Vries RP, Zhu X, McBride R, Rigter A, Hanson A. 113.  et al. 2014. Hemagglutinin receptor specificity and structural analyses of respiratory droplet transmissible H5N1 viruses. J. Virol. 88:1768–73 [Google Scholar]
  114. Sauer A, Liang C, Stech J, Peeters B, Quéré P. 114.  et al. 2014. Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLOS ONE 9:2e89529 [Google Scholar]
  115. Zaraket H, Baranovich T, Kaplan BS, Carter R, Song M. 115.  et al. 2015. Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nat. Commun. 6:6553 [Google Scholar]
  116. Zhang H, de Vries RP, Tzarum N, Zhu X, Yu W. 116.  et al. 2015. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Cell Host Microbe 17:3377–84 [Google Scholar]
  117. Walther T, Karamanska R, Chan RWY, Chan MCW, Jia N. 117.  et al. 2013. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLOS Pathog. 9:3e1003223 [Google Scholar]
  118. Alymova IV, Portner A, Mishin VP, McCullers JA, Freiden P, Taylor GL. 118.  2012. Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin–neuraminidase glycoprotein. Glycobiology 22:2174–80 [Google Scholar]
  119. Amonsen M, Smith DF, Cummings RD, Air GM. 119.  2007. Human parainfluenza viruses hPIV1 and hPIV3 bind oligosaccharides with α2-3-linked sialic acids that are distinct from those bound by H5 avian influenza virus hemagglutinin. J. Virol. 81:158341–45 [Google Scholar]
  120. Mietzsch M, Broecker F, Reinhardt A, Seeberger PH, Heilbronn R. 120.  2014. Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J. Virol. 88:52991–3003 [Google Scholar]
  121. Diderrich R, Kock M, Maestre-Reyna M, Keller P, Steuber H. 121.  et al. 2015. Structural hot spots determine functional diversity of the Candida glabrata epithelial adhesin family. J. Biol. Chem. 290:3219597–613 [Google Scholar]
  122. Muthana SM, Gildersleeve JC. 122.  2014. Glycan microarrays: powerful tools for biomarker discovery. Cancer Biomark. 14:129–41 [Google Scholar]
  123. Kearney JF, Patel P, Stefanov EK, King RG. 123.  2015. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu. Rev. Immunol. 33:1475–504 [Google Scholar]
  124. Huflejt ME, Vuskovic M, Vasiliu D, Xu H, Obukhova P. 124.  et al. 2009. Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol. Immunol. 46:153037–49 [Google Scholar]
  125. Anish C, Schumann B, Pereira CL, Seeberger PH. 125.  2014. Chemical biology approaches to designing defined carbohydrate vaccines. Chem. Biol. 21:138–50 [Google Scholar]
  126. Berti F, Adamo R. 126.  2013. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem. Biol. 8:81653–63 [Google Scholar]
  127. Geissner A, Pereira CL, Leddermann M, Anish C, Seeberger PH. 127.  2016. Deciphering antigenic determinants of Streptococcus pneumoniae serotype 4 capsular polysaccharide using synthetic oligosaccharides. ACS Chem. Biol. 11:2335–44 [Google Scholar]
  128. Broecker F, Hanske J, Martin CE, Baek JY, Wahlbrink A. 128.  et al. 2016. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat. Commun. 7:11224 [Google Scholar]
  129. Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. 129.  2010. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res. 12:3204 [Google Scholar]
  130. Danishefsky SJ, Shue Y, Chang MN, Wong C. 130.  2015. Development of Globo-H cancer vaccine. Acc. Chem. Res. 48:3643–52 [Google Scholar]
  131. Huang YL, Hung JT, Cheung SK, Lee HY, Chu KC. 131.  et al. 2013. Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. PNAS 110:72517–22 [Google Scholar]
  132. Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP. 132.  et al. 2010. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 70:41306–13 [Google Scholar]
  133. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I. 133.  et al. 2011. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128:81860–71 [Google Scholar]
  134. Pedersen JW, Gentry-Maharaj A, Nøstdal A, Fourkala E, Dawnay A. 134.  et al. 2014. Cancer-associated autoantibodies to MUC1 and MUC4—a blinded case–control study of colorectal cancer in UK collaborative trial of ovarian cancer screening. Int. J. Cancer 134:92180–88 [Google Scholar]
  135. Wang D, Bhat R, Sobel RA, Huang W, Wang L. 135.  et al. 2014. Uncovering cryptic glycan markers in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Drug Dev. Res. 75:3172–88 [Google Scholar]
  136. Borchers AT, Keen CL, Huntley AC, Gershwin ME. 136.  2015. Lyme disease: a rigorous review of diagnostic criteria and treatment. J. Autoimmun. 57:82–115 [Google Scholar]
  137. van Diepen A, van der Plas AJ, Kozak RP, Royle L, Dunne DW, Hokke CH. 137.  2015. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs. Int. J. Parasitol. 45:7465–75 [Google Scholar]
  138. Schofield L, Hewitt MC, Evans K, Siomos M, Seeberger PH. 138.  2002. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418:6899785–89 [Google Scholar]
  139. Kamena F, Tamborrini M, Liu X, Kwon Y, Thompson F. 139.  et al. 2008. Synthetic GPI array to study antitoxic malaria response. Nat. Chem. Biol. 4:4238–40 [Google Scholar]
  140. Wang C, Li S, Lin T, Cheng Y, Sun T. 140.  et al. 2013. Synthesis of Neisseria meningitidis serogroup W135 capsular oligosaccharides for immunogenicity comparison and vaccine development. Angew. Chem. Int. Ed. 52:359157–61 [Google Scholar]
  141. Oberli MA, Hecht M, Bindschädler P, Adibekian A, Adam T, Seeberger PH. 141.  2011. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem. Biol. 18:5580–88 [Google Scholar]
  142. Martin CE, Broecker F, Oberli MA, Komor J, Mattner J. 142.  et al. 2013. Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J. Am. Chem. Soc. 135:269713–22 [Google Scholar]
  143. Gorry PR, Francella N, Lewin SR, Collman RG. 143.  2014. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J. Leukoc. Biol. 95:171–81 [Google Scholar]
  144. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R. 144.  et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:7365466–70 [Google Scholar]
  145. Mouquet H, Scharf L, Euler Z, Liu Y, Eden C. 145.  et al. 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. PNAS 109:47E3268 [Google Scholar]
  146. Julien J, Sok D, Khayat R, Lee JH, Doores KJ. 146.  et al. 2013. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLOS Pathog. 9:5e1003342 [Google Scholar]
  147. Moore JP, Fangel JU, Willats WGT, Vivier MA. 147.  2014. Pectic-β(1,4)-galactan, extensin and arabinogalactan-protein epitopes differentiate ripening stages in wine and table grape cell walls. Ann. Bot. 114:61279–94 [Google Scholar]
  148. Zietsman AJJ, Moore JP, Fangel JU, Willats WGT, Trygg J, Vivier MA. 148.  2015. Following the compositional changes of fresh grape skin cell walls during the fermentation process in the presence and absence of maceration enzymes. J. Agric. Food Chem. 63:102798–810 [Google Scholar]
  149. Runavot J, Guo X, Willats WGT, Knox JP, Goubet F, Meulewaeter F. 149.  2014. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing. PLOS ONE 9:12e115150 [Google Scholar]
  150. Schmidt D, Schuhmacher F, Geissner A, Seeberger PH, Pfrengle F. 150.  2015. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans. Chem. Eur. J. 21:155709–13 [Google Scholar]
  151. Wang D, Carroll GT, Turro NJ, Koberstein JT, Kováč P. 151.  et al. 2007. Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 7:2180–84 [Google Scholar]
  152. Tateno H, Ohnishi K, Yabe R, Hayatsu N, Sato T. 152.  et al. 2010. Dual specificity of langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem. 285:96390–400 [Google Scholar]
  153. Tateno H, Yabe R, Sato T, Shibazaki A, Shikanai T. 153.  et al. 2012. Human ZG16p recognizes pathogenic fungi through non-self polyvalent mannose in the digestive system. Glycobiology 22:2210–20 [Google Scholar]
  154. Otto DM, Campanero-Rhodes MA, Karamanska R, Powell AK, Bovin N. 154.  et al. 2011. An expression system for screening of proteins for glycan and protein interactions. Anal. Biochem. 411:2261–70 [Google Scholar]
  155. Campbell CT, Gulley JL, Oyelaran O, Hodge JW, Schlom J, Gildersleeve JC. 155.  2014. Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. PNAS 111:17E1749–58 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071015-041641
Loading
/content/journals/10.1146/annurev-anchem-071015-041641
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error