1932

Abstract

Nanostructured materials such as mesoporous metal oxides and phase-separated block copolymers form the basis for new monolith, membrane, and thin film technologies having applications in energy storage, chemical catalysis, and separations. Mass transport plays an integral role in governing the application-specific performance characteristics of many such materials. The majority of methods employed in their characterization provide only ensemble data, often masking the nanoscale, molecular-level details of materials morphology and mass transport. Single-molecule fluorescence methods offer direct routes to probing these characteristics on a single-molecule/single-nanostructure basis. This article provides a review of single-molecule studies focused on measurements of anisotropic diffusion, adsorption, partitioning, and confinement in nanostructured materials. Experimental methods covered include confocal and wide-field fluorescence microscopy. The results obtained promise to deepen our understanding of mass transport mechanisms in nanostructures, thus aiding in the realization of advanced materials systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040153
2015-07-22
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040153.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040153&mimeType=html&fmt=ahah

Literature Cited

  1. Deen WH. 1.  1987. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409–25 [Google Scholar]
  2. Martin CR, Nishizawa M, Jirage K, Kang M. 2.  2001. Investigations of the transport properties of gold nanotubule membranes. J. Phys. Chem. B 105:1925–34 [Google Scholar]
  3. Baker LA, Jin P, Martin CR. 3.  2005. Biomaterials and biotechnologies based on nanotube membranes. Crit. Rev. Solid State Mater. Sci. 30:183–205 [Google Scholar]
  4. Corma A. 4.  1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97:2373–419 [Google Scholar]
  5. Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. 5.  2009. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38:1450–59 [Google Scholar]
  6. Nakanishi K, Tanaka N. 6.  2007. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40:863–73 [Google Scholar]
  7. Ito T. 7.  2014. Block copolymer-derived monolithic polymer films and membranes comprising self-organized cylindrical nanopores for chemical sensing and separations. Chem. Asian J. 9:2708–18 [Google Scholar]
  8. Long JW, Dunn B, Rolison DR, White HS. 8.  2004. Three-dimensional battery architectures. Chem. Rev. 104:4463–92 [Google Scholar]
  9. Winter M, Brodd RJ. 9.  2004. What are batteries, fuel cells, and supercapacitors?. Chem. Rev. 104:4245–69 [Google Scholar]
  10. Cussler EL. 10.  2009. Diffusion: Mass Transfer in Fluid Systems New York: Cambridge Univ. Press
  11. Thompson WH. 11.  2011. Solvation dynamics and proton transfer in nanoconfined liquids. Annu. Rev. Phys. Chem. 62:599–619 [Google Scholar]
  12. Takahara S, Kittaka S, Mori T, Kuroda Y, Takamuku T, Yamaguchi T. 12.  2008. Neutron scattering and dielectric studies on dynamics of methanol and ethanol confined in MCM-41. J. Phys. Chem. C 112:14385–93 [Google Scholar]
  13. Cho HJ, Sigmund EE, Song Y. 13.  2012. Magnetic resonance characterization of porous media using diffusion through internal magnetic fields. Materials 5:590–616 [Google Scholar]
  14. Kärger J, Valiullin R. 14.  2013. Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chem. Soc. Rev. 42:4172–97 [Google Scholar]
  15. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. 15.  1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:1055–69 [Google Scholar]
  16. Okamoto K, Shook CJ, Bivona L, Lee SB, English DS. 16.  2004. Direct observation of wetting and diffusion in the hydrophobic interior of silica nanotubes. Nano Lett. 4:233–39 [Google Scholar]
  17. Moerner WE, Kador L. 17.  1989. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62:2535–38 [Google Scholar]
  18. Orrit M, Bernard J. 18.  1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65:2716–19 [Google Scholar]
  19. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA. 19.  1990. Detection of single fluorescent molecules. Chem. Phys. Lett. 174:553–57 [Google Scholar]
  20. Betzig E, Chichester RJ. 20.  1993. Single molecules observed by near-field scanning optical microscopy. Science 262:1422–25 [Google Scholar]
  21. Nie S, Chiu DT, Zare RN. 21.  1994. Probing individual molecules with confocal fluorescence microscopy. Science 266:1018–21 [Google Scholar]
  22. Eigen M, Rigler R. 22.  1994. Sorting single molecules: applications to diagnostics and evolutionary biotechnology. PNAS 91:5740–47 [Google Scholar]
  23. Higgins DA, Collinson MM. 23.  2005. Gaining insight into the nanoscale properties of sol-gel-derived silicate thin films by single-molecule spectroscopy. Langmuir 21:9023–31 [Google Scholar]
  24. Ye F, Collinson MM, Higgins DA. 24.  2009. What can be learned from single molecule spectroscopy? Applications to sol-gel-derived silica materials. Phys. Chem. Chem. Phys. 11:66–82 [Google Scholar]
  25. Higgins DA, Tran-Ba K-H, Ito T. 25.  2013. Following single molecules to a better understanding of self-assembled one-dimensional nanostructures. J. Phys. Chem. Lett. 4:3095–103 [Google Scholar]
  26. Lebold T, Michaelis J, Bräuchle C. 26.  2011. The complexity of mesoporous silica nanomaterials unravelled by single molecule microscopy. Phys. Chem. Chem. Phys. 13:5017–33 [Google Scholar]
  27. Moerner WE, Fromm DP. 27.  2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74:3597–619 [Google Scholar]
  28. Walter NG, Huang C-Y, Manzo AJ, Sobhy MA. 28.  2008. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods 5:475–89 [Google Scholar]
  29. Wöll D, Braeken E, Deres A, De Schryver FC, Uji-i H, Hofkens J. 29.  2009. Polymers and single molecule fluorescence spectroscopy, what can we learn?. Chem. Soc. Rev. 38:313–28 [Google Scholar]
  30. Kulzer F, Xia T, Orrit M. 30.  2010. Single molecules as optical nanoprobes for soft and complex matter. Angew. Chem. Int. Ed. 49:854–66 [Google Scholar]
  31. Reznik C, Landes CF. 31.  2012. Transport in supported polyelectrolyte brushes. Acc. Chem. Res. 45:1927–35 [Google Scholar]
  32. Kaufman LJ. 32.  2013. Heterogeneity in single-molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 64:177–200 [Google Scholar]
  33. Wirth MJ, Legg MA. 33.  2007. Single-molecule probing of adsorption and diffusion on silica surfaces. Annu. Rev. Phys. Chem. 58:489–510 [Google Scholar]
  34. Shuang B, Chen J, Kisley L, Landes CF. 34.  2013. Troika of single particle tracking programming: SNR enhancement, particle identification, and mapping. Phys. Chem. Chem. Phys. 16:624–34 [Google Scholar]
  35. Thompson RE, Larson DR, Webb WW. 35.  2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83 [Google Scholar]
  36. Schmidt T, Schuetz GJ, Baumgartner W, Gruber HJ, Schindler H. 36.  1996. Imaging of single molecule diffusion. PNAS 93:2926–29 [Google Scholar]
  37. Rust MJ, Bates M, Zhuang X. 37.  2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95 [Google Scholar]
  38. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. 38.  et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  39. Hess ST, Girirajan TPK, Mason MD. 39.  2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72 [Google Scholar]
  40. Soper SA, Shera EB, Martin JC, Jett JH, Hahn JH. 40.  et al. 1991. Single-molecule detection of rhodamine 6G in ethanolic solutions using continuous wave laser excitation. Anal. Chem. 63:432–37 [Google Scholar]
  41. Elson EL, Magde D. 41.  1974. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27 [Google Scholar]
  42. Aragon SR, Pecora R. 42.  1976. Fluorescence correlation spectroscopy as a probe of molecular dynamics. J. Chem. Phys. 64:1791–803 [Google Scholar]
  43. Ye F, Higgins DA, Collinson MM. 43.  2007. Probing chemical interactions at the single-molecule level in mesoporous silica thin films. J. Phys. Chem. C 111:6772–80 [Google Scholar]
  44. Wirth MJ, Swinton DJ. 44.  1998. Single-molecule probing of mixed-mode adsorption at a chromatographic interface. Anal. Chem. 70:5264–71 [Google Scholar]
  45. Pramanik R, Ito T, Higgins DA. 45.  2013. Single molecule wobbling in cylindrical mesopores. J. Phys. Chem. C 117:3668–73 [Google Scholar]
  46. Giri D, Hanks CN, Collinson MM, Higgins DA. 46.  2014. Single-molecule spectroscopic imaging studies of polarity gradients prepared by infusion-withdrawal dip-coating. J. Phys. Chem. C 118:6423–32 [Google Scholar]
  47. Sepiol J, Jasny J, Keller J, Wild UP. 47.  1997. Single molecules observed by immersion mirror objective. The orientation of terrylene molecules via the direction of its transition dipole-moment. Chem. Phys. Lett. 273:444–48 [Google Scholar]
  48. Dickson RM, Norris DJ, Moerner WE. 48.  1998. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81:5322–25 [Google Scholar]
  49. Yildiz A, Selvin PR. 49.  2005. Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38:574–82 [Google Scholar]
  50. Enderlein J, Toprak E, Selvin PR. 50.  2006. Polarization effect on position accuracy of fluorophore localization. Opt. Express 14:8111–20 [Google Scholar]
  51. Robben KC, Tran-Ba K-H, Ito T, Higgins DA. 51.  2014. Trajectory-profile-guided single molecule tracking for assessment of one-dimensional diffusion trajectories. Anal. Chem. 86:10820–27 [Google Scholar]
  52. Kastantin M, Walder R, Schwartz DK. 52.  2012. Identifying mechanisms of interfacial dynamics using single-molecule tracking. Langmuir 28:12443–56 [Google Scholar]
  53. Peterson EM, Harris JM. 53.  2010. Quantitative detection of single molecules in fluorescence microscopy images. Anal. Chem. 82:189–96 [Google Scholar]
  54. Soper SA, Legendre BL, Huang JP. 54.  1995. Evaluation of thermodynamic and photophysical properties of tricarbocynaine near-IR dyes in organized media using single-molecule monitoring. Chem. Phys. Lett. 237:339–45 [Google Scholar]
  55. Cooper JT, Peterson EM, Harris JM. 55.  2013. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles. Anal. Chem. 85:9363–70 [Google Scholar]
  56. Koynov K, Butt H-J. 56.  2012. Fluorescence correlation spectroscopy in colloid and interface science. Curr. Opin. Colloid Interf. Sci. 17:377–87 [Google Scholar]
  57. Koppel DE. 57.  1974. Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10:1938–45 [Google Scholar]
  58. Ye F, Collinson MM, Higgins DA. 58.  2007. Molecular orientation and its influence on autocorrelation amplitudes in single-molecule imaging experiments. Anal. Chem. 79:6465–72 [Google Scholar]
  59. Sanguigno L, De Santo I, Causa F, Netti P. 59.  2010. A closed form for fluorescence correlation spectroscopy experiments in submicrometer structures. Anal. Chem. 82:9663–70 [Google Scholar]
  60. Sanguigno L, De Santo I, Causa F, Netti P. 60.  2011. Fluorescence correlation spectroscopy in semiadhesive wall proximity. Anal. Chem. 83:8101–7 [Google Scholar]
  61. Wirth MJ, Ludes MD, Swinton DJ. 61.  2001. Analytic solution to the autocorrelation function for lateral diffusion and rare strong adsorption. Appl. Spectrosc. 55:663–69 [Google Scholar]
  62. Wirth MJ, Swinton DJ, Ludes MD. 62.  2003. Adsorption and diffusion of single molecules at chromatographic interfaces. J. Phys. Chem. B 107:6258–68 [Google Scholar]
  63. Ha T, Enderle T, Chemla DS, Selvin PR, Weiss S. 63.  1997. Quantum jumps of single molecules at room temperature. Chem. Phys. Lett. 271:1–5 [Google Scholar]
  64. Hohlbein J, Steinhart M, Schiene-Fischer C, Benda A, Hof M, Hübner CG. 64.  2007. Confined diffusion in ordered nanoporous alumina membranes. Small 3:380–85 [Google Scholar]
  65. Zhong Z, Lowry M, Wang G, Geng L. 65.  2005. Probing strong adsorption of solute onto C18-silica gel by fluorescence correlation imaging and single-molecule spectroscopy under RPLC conditions. Anal. Chem. 77:2303–10 [Google Scholar]
  66. Cohen B, Sanchez F, Douhal A. 66.  2010. Mapping the distribution of an individual chromophore interacting with silica-based nanomaterials. J. Am. Chem. Soc. 132:5507–14 [Google Scholar]
  67. Seebacher C, Hellriegel C, Deeg F-W, Bräuchle C, Altmaier S. 67.  et al. 2002. Observation of translational diffusion of single terrylenediimide molecules in a mesostructured molecular sieve. J. Phys. Chem. B 106:5591–95 [Google Scholar]
  68. Mahurin SM, Dai S, Barnes MD. 68.  2003. Probing the diffusion of a dilute dye solution in mesoporous glass with fluorescence correlation spectroscopy. J. Phys. Chem. B 107:13336–40 [Google Scholar]
  69. McCain KS, Hanley DC, Harris JM. 69.  2003. Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol-gel films. Anal. Chem. 75:4351–59 [Google Scholar]
  70. Fu Y, Ye F, Sanders WG, Collinson MM, Higgins DA. 70.  2006. Single molecule spectroscopy studies of diffusion in mesoporous silica thin films. J. Phys. Chem. B 110:9164–70 [Google Scholar]
  71. Ito S, Fukuya S, Kusumi T, Ishibashi Y, Miyasaka H. 71.  et al. 2009. Microscopic structure and mobility of guest molecules in mesoporous hybrid organosilica: evaluation with single-molecule tracking. J. Phys. Chem. C 113:11884–91 [Google Scholar]
  72. Viteri CR, Gilliland JW, Yip WT. 72.  2003. Probing the dynamic guest-host interactions in sol-gel films using single molecule spectroscopy. J. Am. Chem. Soc. 125:1980–87 [Google Scholar]
  73. Zhou Y, Yip WT. 73.  2009. Balance between coulombic interactions and physical confinement in silica hydrogel encapsulation. J. Phys. Chem. B 113:5720–27 [Google Scholar]
  74. Kawai T, Yoshihara S, Iwata Y, Fukaminato T, Irie M. 74.  2004. Anisotropic translational diffusion of single fluorescent perylene molecules in a nematic liquid crystal. Chem. Phys. Chem. 5:1606–9 [Google Scholar]
  75. Kawai T, Kubota A, Kawamura K, Tsumatori H, Nakashima T. 75.  2008. Single molecule fluorescence autocorrelation measurement on anisotropic molecular diffusion in nematic liquid crystal. Thin Solid Films 516:2666–69 [Google Scholar]
  76. Lammi RK, Fritz KP, Scholes GD, Barbara PF. 76.  2004. Ordering of single conjugated polymers in a nematic liquid crystal host. J. Phys. Chem. B 108:4593–96 [Google Scholar]
  77. Link S, Hu D, Chang W-S, Scholes GD, Barbara PF. 77.  2005. Nematic solvation of segmented polymer chains. Nano Lett. 5:1757–60 [Google Scholar]
  78. Chang W-S, Link S, Yethiraj A, Barbara PF. 78.  2008. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal. J. Phys. Chem. B 112:448–53 [Google Scholar]
  79. Schulz B, Täuber D, Friedriszik F, Graaf H, Schuster J, von Borczykowski C. 79.  2010. Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films. Phys. Chem. Chem. Phys. 12:11555–64 [Google Scholar]
  80. Schulz B, Täuber D, Schuster J, Baumgärtel T, von Borczykowski C. 80.  2011. Influence of mesoscopic structures on single molecule dynamics in thin smectic liquid crystal films. Soft Matter 7:7431–40 [Google Scholar]
  81. Ghosh S, Mandal U, Adhikari A, Bhattacharyya K. 81.  2009. Study of diffusion of organic dyes in a triblock copolymer micelle and gel by fluorescence correlation spectroscopy. Chem. Asian J. 4:948–54 [Google Scholar]
  82. Kirkeminde AW, Torres T, Ito T, Higgins DA. 82.  2011. Multiple diffusion pathways in Pluronic F127 mesophases revealed by single molecule tracking and fluorescence correlation spectroscopy. J. Phys. Chem. B 115:12736–43 [Google Scholar]
  83. Guo L, Chowdhury P, Fang J, Gai F. 83.  2007. Heterogeneous and anomalous diffusion inside lipid tubules. J. Phys. Chem. B 111:14244–49 [Google Scholar]
  84. Qian H, Sheetz MP, Elson EL. 84.  1991. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60:910–21 [Google Scholar]
  85. Saxton MJ. 85.  1997. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72:1744–53 [Google Scholar]
  86. Saxton MJ. 86.  1993. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 64:1766–80 [Google Scholar]
  87. Jung C, Kirstein J, Platschek B, Bein T, Budde M. 87.  et al. 2008. Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels. J. Am. Chem. Soc. 130:1638–48 [Google Scholar]
  88. Liao Y, Yang SK, Koh K, Matzger AJ, Biteen JS. 88.  2012. Heterogeneous single-molecule diffusion in one-, two-, and three-dimensional microporous coordination polymers: directional, trapped and immobile guests. Nano Lett. 12:3080–85 [Google Scholar]
  89. Yorulmaz M, Kiraz A, Demirel AL. 89.  2009. Motion of single terrylene molecules in confined channels of poly(butadiene)-poly(ethylene oxide) diblock copolymer. J. Phys. Chem. B 113:9640–43 [Google Scholar]
  90. Tran-Ba K-H, Finley JJ, Higgins DA, Ito T. 90.  2012. Single-molecule tracking studies of millimeter-scale cylindrical domain alignment in polystyrene-poly(ethylene oxide) diblock copolymer films induced by solvent vapor penetration. J. Phys. Chem. Lett. 3:1968–73 [Google Scholar]
  91. Zürner A, Kirstein J, Döblinger M, Bräuchle C, Bein T. 91.  2007. Visualizing single-molecule diffusion in mesoporous materials. Nature 450:705–8 [Google Scholar]
  92. Kirstein J, Platschek B, Jung C, Brown R, Bein T, Bräuchle C. 92.  2007. Exploration of nanostructured channel systems with single-molecule probes. Nat. Mater 6:303–10 [Google Scholar]
  93. Tran Ba KH, Everett TA, Ito T, Higgins DA. 93.  2011. Trajectory angle determination in one dimensional single molecule tracking data by orthogonal regression analysis. Phys. Chem. Chem. Phys. 13:1827–35 [Google Scholar]
  94. Feil F, Cauda V, Bein T, Bräuchle C. 94.  2012. Direct visualization of dye and oligonucleotide diffusion in silica filaments with collinear mesopores. Nano Lett. 12:1354–61 [Google Scholar]
  95. Park SC, Ito T, Higgins DA. 95.  2013. Single molecule tracking studies of flow-aligned mesoporous silica monoliths: aging-time dependence of pore order. J. Phys. Chem. B 117:4222–30 [Google Scholar]
  96. Ma C, Yeung ES. 96.  2010. Entrapment of individual DNA molecules and nanoparticles in porous alumina membranes. Anal. Chem. 82:654–57 [Google Scholar]
  97. Ma C, Yeung ES. 97.  2010. Single molecule imaging of protein molecules in nanopores. Anal. Chem. 82:478–82 [Google Scholar]
  98. Ma C, Han R, Qi S, Yeung ES. 98.  2012. Selective transport of single protein molecules inside gold nanotubes. J. Chromatog. A 1238:11–14 [Google Scholar]
  99. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT. 99.  et al. 1992. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114:10834–43 [Google Scholar]
  100. Tolbert SH, Firouzi A, Stucky GD, Chmelka BF. 100.  1997. Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278:264–68 [Google Scholar]
  101. Etchegoin P. 101.  1999. Fluorescence photobleaching recovery spectroscopy in a dye doped nematic liquid crystal. Phys. Rev. E 59:1860–67 [Google Scholar]
  102. Tran-Ba K-H, Higgins DA, Ito T. 102.  2014. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films. J. Phys. Chem. B 118:11406–15 [Google Scholar]
  103. Elliott LCC, Barhoum M, Harris JM, Bohn PW. 103.  2011. Trajectory analysis of single molecules exhibiting non-Brownian motion. Phys. Chem. Chem. Phys. 13:4326–34 [Google Scholar]
  104. Ying W, Huerta G, Steinberg S, Zuniga M. 104.  2009. Time series analysis of particle tracking data for molecular motion on the cell membrane. Bull. Math. Biol. 71:1967–2024 [Google Scholar]
  105. Pumpa M, Cichos F. 105.  2012. Slow single-molecule diffusion in liquid crystals. J. Phys. Chem. B 116:14487–93 [Google Scholar]
  106. Hellriegel C, Kirstein J, Bräuchle C. 106.  2005. Tracking of single molecules as a powerful method to characterize diffusivity of organic species in mesoporous materials. New J. Phys. 7:1–14 [Google Scholar]
  107. Kirstein JU. 107.  2007. Diffusion of single molecules in nanoporous mesostructured materials PhD Thesis. Ludwig Maximilian Univ., Munich
  108. Anovitz LM, Mamontov E, ben Ishai P, Kolesnikov AI. 108.  2013. Anisotropic dynamics of water ultraconfined in macroscopically oriented channels of single-crystal beryl: a multifrequency analysis. Phys. Rev. E 88:052306 [Google Scholar]
  109. Pramanik R, Ito T, Higgins DA. 109.  2013. Molecular length dependence of single molecule wobbling within surfactant- and solvent-filled silica mesopores. J. Phys. Chem. C 117:15438–46 [Google Scholar]
  110. Böhmer M, Enderlein J. 110.  2003. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B 20:554–59 [Google Scholar]
  111. Jasny J, Sepiol J. 111.  1997. Single molecules observed by immersion mirror-objective: a novel method of finding the orientation of a radiating dipole. Chem. Phys. Lett. 273:439–43 [Google Scholar]
  112. Bartko AP, Dickson RM. 112.  1999. Three-dimensional orientations of polymer-bound single molecules. J. Phys. Chem. B 103:3053–56 [Google Scholar]
  113. Ha T, Laurence TA, Chemla DS, Weiss S. 113.  1999. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B 103:6839–50 [Google Scholar]
  114. Fourkas JT. 114.  2001. Rapid determination of the three-dimensional orientation of single molecules. Opt. Lett. 26:211–13 [Google Scholar]
  115. Rosenberg SA, Quinlan ME, Forkey JN, Goldman YE. 115.  2005. Rotational motions of macromolecules by single-molecule fluorescence microscopy. Acc. Chem. Res. 38:583–93 [Google Scholar]
  116. Reznik C, Berg R, Foster E, Advincula R, Landes CF. 116.  2011. Transient three-dimensional orientation of molecular ions in an ordered polyelectrolyte membrane. J. Phys. Chem. Lett. 2:592–98 [Google Scholar]
  117. Sick B, Hecht B, Novotny L. 117.  2000. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett. 85:4482–85 [Google Scholar]
  118. Axelrod D. 118.  1979. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26:557–73 [Google Scholar]
  119. Jung C, Hellriegel C, Michaelis J, Bräuchle C. 119.  2007. Single-molecule traffic in mesoporous materials: translational, orientational, and spectral dynamics. Adv. Mater. 19:956–60 [Google Scholar]
  120. Pecher J, Mecking S. 120.  2010. Nanoparticles of conjugated polymers. Chem. Rev. 110:6260–79 [Google Scholar]
  121. Wu C, Chiu DT. 121.  2013. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52:3086–109 [Google Scholar]
  122. Wei Q-H, Bechinger C, Leiderer P. 122.  2000. Single-file diffusion of colloids in one-dimensional channels. Science 287:625–27 [Google Scholar]
  123. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N. 123.  et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995–99 [Google Scholar]
  124. Ram S, Kim D, Ober RJ, Ward ES. 124.  2012. 3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers. Biophys. J. 103:1594–603 [Google Scholar]
  125. Sun W, Marchuk K, Wang G, Fang N. 125.  2010. Autocalibrated scanning-angle prism-type total internal reflection fluorescence microscopy for nanometer-precision axial position determination. Anal. Chem. 82:2441–47 [Google Scholar]
  126. Katayama Y, Burkacky O, Meyer M, Bräuchle C, Gratton E, Lamb DC. 126.  2009. Real-time nanomicroscopy via three-dimensional single-particle tracking. Chem. Phys. Chem. 10:2458–64 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040153
Loading
/content/journals/10.1146/annurev-anchem-071114-040153
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error