1932

Abstract

Iontronics is an emerging technology based on sophisticated control of ions as signal carriers that bridges solid-state electronics and biological system. It is found in nature, e.g., information transduction and processing of brain in which neurons are dynamically polarized or depolarized by ion transport across cell membranes. It suggests the operating principle of aqueous circuits made of predesigned structures and functional materials that characteristically interact with ions of various charge, mobility, and affinity. Working in aqueous environments, iontronic devices offer profound implications for biocompatible or biodegradable logic circuits for sensing, ecofriendly monitoring, and brain-machine interfacing. Furthermore, iontronics based on multi-ionic carriers sheds light on futuristic biomimic information processing. In this review, we overview the historical achievements and the current state of iontronics with regard to theory, fabrication, integration, and applications, concluding with comments on where the technology may advance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040202
2015-07-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040202.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040202&mimeType=html&fmt=ahah

Literature Cited

  1. Kou S, Lee HN, van Noort D, Swamy KMK, Kim SH. 1.  et al. 2008. Fluorescent molecular logic gates using microfluidic devices. Angew. Chem. 120:886–90 [Google Scholar]
  2. Kim K, Ha Y, Kaufman L, Churchill DG. 2.  2012. Labile zinc-assisted biological phosphate chemosensing and related molecular logic gating interpretations. Inorg. Chem. 51:928–38 [Google Scholar]
  3. Szacilowski K, Macyk W, Stochel G. 3.  2006. Light-driven OR and XOR programmable chemical logic gates. J. Am. Chem. Soc. 128:4550–51 [Google Scholar]
  4. Zhan W, Crooks RM. 4.  2003. Microelectrochemical logic circuits. J. Am. Chem. Soc. 125:9934–35 [Google Scholar]
  5. Genot AJ, Bath J, Turberfield AJ. 5.  2011. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133:20080–83 [Google Scholar]
  6. Cohen-Cory S. 6.  2002. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–76 [Google Scholar]
  7. Reiss H. 7.  1953. Chemical effects due to the ionization of impurities in semiconductors. J. Chem. Phys. 21:1209–17 [Google Scholar]
  8. Fuller CS. 8.  1956. Some analogies between semiconductors and electrolyte solutions. Rec. Chem. Progr. 17:75–93 [Google Scholar]
  9. Lovreček B, Despic A, Bockris J. 9.  1959. Electrolytic junctions with rectifying properties. J. Phys. Chem. 63:750–51 [Google Scholar]
  10. Vlassiouk I, Smirnov S, Siwy Z. 10.  2008. Ionic selectivity of single nanochannels. Nano Lett. 8:1978–85 [Google Scholar]
  11. Lebedev K, Mafé S, Alcaraz A, Ramírez P. 11.  2000. Effects of water dielectric saturation on the space–charge junction of a fixed-charge bipolar membrane. Chem. Phys. Lett. 326:87–92 [Google Scholar]
  12. Levine S, Marriott JR, Robinson K. 12.  1975. Theory of electrokinetic flow in a narrow parallel-plate channel. J. Chem. Soc. 71:1–11 [Google Scholar]
  13. Chang H-C, Yossifon G, Demekhin EA. 13.  2012. Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech. 44:401–26 [Google Scholar]
  14. Lee JH, Song Y-A, Tannenbaum SR, Han J. 14.  2008. Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal. Chem. 80:3198–204 [Google Scholar]
  15. Pu Q, Yun J, Temkin H, Liu S. 15.  2004. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4:1099–103 [Google Scholar]
  16. Wang Y-C, Stevens AL, Han J. 16.  2005. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77:4293–99 [Google Scholar]
  17. Cheow LF, Han J. 17.  2011. Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration. Anal. Chem. 83:7086–93 [Google Scholar]
  18. Cheow LF, Ko SH, Kim SJ, Kang KH, Han J. 18.  2010. Increasing the sensitivity of enzyme-linked immunosorbent assay using multiplexed electrokinetic concentrator. Anal. Chem. 82:3383–88 [Google Scholar]
  19. Kim P, Kim SJ, Han J, Suh KY. 19.  2010. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Lett. 10:16–23 [Google Scholar]
  20. Wang Y-C, Han J. 20.  2008. Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8:392–94 [Google Scholar]
  21. Park S, Chung TD, Kim HC. 21.  2009. Ion bridges in microfluidic systems. Microfluid. Nanofluid. 6:315–31 [Google Scholar]
  22. Jiang Y, Wang PC, Locascio LE, Lee CS. 22.  2001. Integrated plastic microftuidic devices with ESI-MS for drug screening and residue analysis. Anal. Chem. 73:2048–53 [Google Scholar]
  23. Liu S, Pu Q, Gao L, Korzeniewski C, Matzke C. 23.  2005. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett. 5:1389–93 [Google Scholar]
  24. Song Y-A, Batista C, Sarpeshkar R, Han J. 24.  2008. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin. J. Power Sour. 183:674–77 [Google Scholar]
  25. Kim SJ, Ko SH, Kang KH, Han J. 25.  2010. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 5:297–301 [Google Scholar]
  26. Xu T. 26.  2005. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 263:1–29 [Google Scholar]
  27. Lovreček B, Kunst B. 27.  1967. Rectifying mechanism of “pressed sandwich” type membrane junctions. Electrochim. Acta 12:687–92 [Google Scholar]
  28. Kunst B, Lovreček B, Hergula O. 28.  1973. Effect of mobile ions on the behaviour of the “pressed sandwich”-type membrane rectifiers. J. Electroanal. Chem. Interfacial Electrochem. 43:287–91 [Google Scholar]
  29. Suendo V, Minagawa M, Tanioka A. 29.  2002. Membrane potential of a bipolar membrane: the effect of concentration perturbation of the intermediate phase around a certain value. J. Electroanal. Chem. 520:29–39 [Google Scholar]
  30. Ramirez P, Rapp H, Reichle S, Strathmann H, Mafe S. 30.  1992. Current-voltage curves of bipolar membranes. J. Appl. Phys. 72:259–64 [Google Scholar]
  31. Hurwitz H, Dibiani R. 31.  2001. Investigation of electrical properties of bipolar membranes at steady state and with transient methods. Electrochim. Acta 47:759–73 [Google Scholar]
  32. Krasemann L, Tieke B. 32.  2000. Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir 16:287–90 [Google Scholar]
  33. Mafé S, Ramirez P. 33.  1997. Electrochemical characterization of polymer ion-exchange bipolar membranes. Acta Polym. 48:234–50 [Google Scholar]
  34. Simons R, Khanarian G. 34.  1978. Water dissociation in bipolar membranes: experiments and theory. J. Membr. Biol. 38:11–30 [Google Scholar]
  35. Ramírez P, Rapp H-J, Mafé S, Bauer B. 35.  1994. Bipolar membranes under forward and reverse bias conditions. Theory versus experiment. J. Electroanal. Chem. 375:101–8 [Google Scholar]
  36. Mafé S, Ramírez P, Alcaraz A. 36.  1998. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane. Chem. Phys. Lett. 294:406–12 [Google Scholar]
  37. Strathmann H, Krol J, Rapp H-J, Eigenberger G. 37.  1997. Limiting current density and water dissociation in bipolar membranes. J. Membr. Sci. 125:123–42 [Google Scholar]
  38. Zabolotskii V, Manzanares J, Mafe S, Nikonenko V, Lebedev K. 38.  2002. Steady-state ion transport through a three-layered membrane system: a mathematical model allowing for violation of the electroneutrality condition. Russ. J. Electrochem. 38:819–27 [Google Scholar]
  39. Zabolotskii V, Lebedev K, Lovtsov E. 39.  2006. Mathematical model for the overlimiting state of an ion-exchange membrane system. Russ. J. Electrochem. 42:836–46 [Google Scholar]
  40. Mafé S, Manzanares J, Ramírez P. 40.  1990. Model for ion transport in bipolar membranes. Phys. Rev. A 42:6245 [Google Scholar]
  41. Manzanares J, Murphy W, Mafe S, Reiss H. 41.  1993. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 97:8524–30 [Google Scholar]
  42. Sokirko A, Ramirez P, Manzanares JA, Mafé S. 42.  1993. Modeling of forward and reverse bias conditions in bipolar membranes. Ber. Bunsenges. Phys. Chem. 97:1040–48 [Google Scholar]
  43. Volgin V, Davydov A. 43.  2005. Ionic transport through ion-exchange and bipolar membranes. J. Membr. Sci. 259:110–21 [Google Scholar]
  44. Cayre OJ, Chang ST, Velev OD. 44.  2007. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129:10801–6 [Google Scholar]
  45. Han JH, Kim KB, Bae JH, Kim BJ, Kang CM. 45.  et al. 2011. Ion flow crossing over a polyelectrolyte diode on a microfluidic chip. Small 7:2629–39 [Google Scholar]
  46. Conroy D, Craster R, Matar O, Cheng L-J, Chang H-C. 46.  2012. Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane. Phys. Rev. E 86:056104 [Google Scholar]
  47. Branco T, Clark BA, Häusser M. 47.  2010. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–75 [Google Scholar]
  48. Koo H-J, Velev OD. 48.  2013. Ionic current devices: recent progress in the merging of electronic, microfluidic, and biomimetic structures. Biomicrofluidics 7:031501 [Google Scholar]
  49. Koo H-J, Chang ST, Velev OD. 49.  2010. Ion-current diode with aqueous gel/SiO2 nanofilm interfaces. Small 6:1393–97 [Google Scholar]
  50. So J-H, Koo H-J, Dickey MD, Velev OD. 50.  2012. Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 22:625–31 [Google Scholar]
  51. Jung J-Y, Joshi P, Petrossian L, Thornton TJ, Posner JD. 51.  2009. Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization. Anal. Chem. 81:3128–33 [Google Scholar]
  52. Yan Y, Wang L, Xue J, Chang H-C. 52.  2013. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry. J. Chem. Phys. 138:044706 [Google Scholar]
  53. Wei C, Bard AJ, Feldberg SW. 53.  1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:4627–33 [Google Scholar]
  54. Umehara S, Pourmand N, Webb CD, Davis RW, Yasuda K, Karhanek M. 54.  2006. Current rectification with poly-l-lysine-coated quartz nanopipettes. Nano Lett. 6:2486–92 [Google Scholar]
  55. Vlassiouk I, Siwy ZS. 55.  2007. Nanofluidic diode. Nano Lett. 7:552–56 [Google Scholar]
  56. Harrell CC, Kohli P, Siwy Z, Martin CR. 56.  2004. DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 126:15646–47 [Google Scholar]
  57. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O. 57.  2009. Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J. Am. Chem. Soc. 131:2070–71 [Google Scholar]
  58. Ali M, Ramirez P, Mafé S, Neumann R, Ensinger W. 58.  2009. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3:603–8 [Google Scholar]
  59. Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A. 59.  2007. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7:547–51 [Google Scholar]
  60. Yan R, Liang W, Fan R, Yang P. 60.  2009. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 9:3820–25 [Google Scholar]
  61. Kalman EB, Vlassiouk I, Siwy ZS. 61.  2008. Nanofluidic bipolar transistors. Adv. Mater. 20:293–97 [Google Scholar]
  62. Gracheva ME, Vidal J, Leburton J-P. 62.  2007. p-n semiconductor membrane for electrically tunable ion current rectification and filtering. Nano Lett. 7:1717–22 [Google Scholar]
  63. Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM. 63.  2009. Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9:2044–48 [Google Scholar]
  64. Schasfoort RB, Schlautmann S, Hendrikse J, van den Berg A. 64.  1999. Field-effect flow control for microfabricated fluidic networks. Science 286:942–45 [Google Scholar]
  65. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A. 65.  2005. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5:943–48 [Google Scholar]
  66. Daiguji H, Oka Y, Shirono K. 66.  2005. Nanofluidic diode and bipolar transistor. Nano Lett. 5:2274–80 [Google Scholar]
  67. Daiguji H. 67.  2010. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39:901–11 [Google Scholar]
  68. Zhang Y, Gamble TC, Neumann A, Lopez GP, Brueck SRJ, Petsev DN. 68.  2008. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels. Lab Chip 8:1671–75 [Google Scholar]
  69. Fan R, Huh S, Yan R, Arnold J, Yang P. 69.  2008. Gated proton transport in aligned mesoporous silica films. Nat. Mater. 7:303–7 [Google Scholar]
  70. Zheng Z, Hansford DJ, Conlisk AT. 70.  2003. Effect of multivalent ions on electroosmotic flow in micro- and nanochannels. Electrophoresis 24:3006–17 [Google Scholar]
  71. Chun H, Chung TD, Kim HC. 71.  2005. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Anal. Chem. 77:2490–95 [Google Scholar]
  72. Kim KB, Chun H, Kim HC, Chung TD. 72.  2009. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Electrophoresis 30:1464–69 [Google Scholar]
  73. Joo S, Kim KH, Kim HC, Chung TD. 73.  2010. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence. Biosens. Bioelectron. 25:1509–15 [Google Scholar]
  74. Choi H, Kim KB, Jeon CS, Hwang I, Lee S. 74.  et al. 2013. A label-free DC impedance-based microcytometer for circulating rare cancer cell counting. Lab Chip 13:970–77 [Google Scholar]
  75. Kim SK, Kim JH, Kim KP, Chung TD. 75.  2007. Continuous low-voltage DC electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal. Chem. 79:7761–66 [Google Scholar]
  76. Chun H, Kim HC, Chung TD. 76.  2008. Ultrafast active mixer using polyelectrolytic ion extractor. Lab Chip 8:764–71 [Google Scholar]
  77. Chun H, Dennis PJ, Ferguson ER, Alarie JP, Jorgenson JW, Ramsey JM. 77.  2008. Development and analysis of a microfluidic photothermal absorbance detector using polyelectrolytic gel electrodes Presented at Int. Conf. Miniat. Syst. Chem. Life Sci., 12th, San Diego
  78. Chun H, Chung TD, Ramsey JM. 78.  2010. High yield sample preconcentration using a highly ion-conductive charge-selective polymer. Anal. Chem. 82:6287–92 [Google Scholar]
  79. Han D, Kim KB, Kim Y-R, Kim S, Kim HC. 79.  et al. 2013. Electrokinetic concentration on a microfluidic chip using polyelectrolytic gel plugs for small molecule immunoassay. Electrochim. Acta 110:164–71 [Google Scholar]
  80. Kim H, Kim J, Kim EG, Heinz AJ, Kwon S, Chun H. 80.  2010. Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration. Biomicrofluidics 4:43014 [Google Scholar]
  81. Han JH, Kim KB, Kim HC, Chung TD. 81.  2009. Ionic circuits based on polyelectrolyte diodes on a microchip. Angew. Chem. 121:3888–91 [Google Scholar]
  82. Kim KB, Han J-H, Kim HC, Chung TD. 82.  2010. Polyelectrolyte junction field effect transistor based on microfluidic chip. Appl. Phys. Lett. 96:143506 [Google Scholar]
  83. Slouka Z, Přibyl M, Šnita D, Postler T. 83.  2007. Transient behavior of an electrolytic diode. Phys. Chem. Chem. Phys. 9:5374–81 [Google Scholar]
  84. Lindner J, Šnita D, Marek M. 84.  2002. Modelling of ionic systems with a narrow acid–base boundary. Phys. Chem. Chem. Phys. 4:1348–54 [Google Scholar]
  85. Šnita D, Pačes M, Lindner J, Kosek J, Marek M. 85.  2002. Nonlinear behaviour of simple ionic systems in hydrogel in an electric field. Faraday Discuss. 120:53–66 [Google Scholar]
  86. Hegedüs L, Wittmann M, Kirschner N, Noszticzius Z. 86.  1996. Reaction, diffusion, electric conduction and determination of fixed ions in a hydrogel. Progr. Colloid Polym. Sci. 102:101–9 [Google Scholar]
  87. Roszol L, Varnai A, Lorantfy B, Noszticzius Z, Wittmann M. 87.  2010. Negative salt effect in an acid-base diode: simulations and experiments. J. Chem. Phys. 132:064902 [Google Scholar]
  88. Hegedüs L, Kirschner N, Wittmann M, Noszticzius Z. 88.  1998. Electrolyte transistors: ionic reaction-diffusion systems with amplifying properties. J. Phys. Chem. A 102:6491–97 [Google Scholar]
  89. Hegedüs L, Kirschner N, Wittmann M, Simon P, Noszticzius Z. 89.  et al. 1999. Nonlinear effects of electrolyte diodes and transistors in a polymer gel medium. Chaos 9:283–97 [Google Scholar]
  90. Iván K, Wittmann M, Simon PL, Noszticzius Z, Vollmer J. 90.  2004. Electrolyte diodes and hydrogels: determination of concentration and pK value of fixed acidic groups in a weakly charged hydrogel. Phys. Rev. E 70:061402 [Google Scholar]
  91. Iván K, Simon PL, Wittmann M, Noszticzius Z. 91.  2005. Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution. J. Chem. Phys. 123:164509 [Google Scholar]
  92. Svoboda M, Slouka Z, Lindner J, Šnita D. 92.  2008. Direct evidence of concentration and potential profiles in the electrolyte diode. Chem. Eng. J. 135:S203–9 [Google Scholar]
  93. Shashoua VE. 93.  1967. Electrically active polyelectrolyte membranes. Nature 215:846–47 [Google Scholar]
  94. Tybrandt K, Larsson KC, Richter-Dahlfors A, Berggren M. 94.  2010. Ion bipolar junction transistors. Proc. Natl. Acad. Sci. USA 107:9929–32 [Google Scholar]
  95. Tybrandt K, Gabrielsson EO, Berggren M. 95.  2011. Toward complementary ionic circuits: the npn ion bipolar junction transistor. J. Am. Chem. Soc. 133:10141–45 [Google Scholar]
  96. Chung AJ, Kim D, Erickson D. 96.  2008. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab Chip 8:330–38 [Google Scholar]
  97. Simon DT, Kurup S, Larsson KC, Hori R, Tybrandt K. 97.  et al. 2009. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 8:742–46 [Google Scholar]
  98. Tybrandt K, Larsson KC, Kurup S, Simon DT, Kjäll P. 98.  et al. 2009. Translating electronic currents to precise acetylcholine-induced neuronal signaling using an organic electrophoretic delivery device. Adv. Mater. 21:4442–46 [Google Scholar]
  99. Volkov AV, Tybrandt K, Berggren M, Zozoulenko IV. 99.  2014. Modeling of charge transport in ion bipolar junction transistors. Langmuir 30:6999–7005 [Google Scholar]
  100. Song Y-A, Melik R, Rabie AN, Ibrahim AM, Moses D. 100.  et al. 2011. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes. Nat. Mater. 10:980–86 [Google Scholar]
  101. Karnik R, Castelino K, Majumdar A. 101.  2006. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88:123114 [Google Scholar]
  102. Polonsky S, Rossnagel S, Stolovitzky G. 102.  2007. Nanopore in metal-dielectric sandwich for DNA position control. Appl. Phys. Lett. 91:153103 [Google Scholar]
  103. He YH, Tsutsui M, Fan C, Taniguchi M, Kawai T. 103.  2011. Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5:5509–18 [Google Scholar]
  104. Park JM, Pak YE, Chun H, Lee JH. 104.  2012. 3-D simulation of nanopore structure for DNA sequencing. J. Nanosci. Nanotechnol. 12:5160–63 [Google Scholar]
  105. Koo H-J, Chang ST, Slocik JM, Naik RR, Velev OD. 105.  2011. Aqueous soft matter based photovoltaic devices. J. Mater. Chem. 21:72–79 [Google Scholar]
  106. Koo HJ, So JH, Dickey MD, Velev OD. 106.  2011. Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23:3559–64 [Google Scholar]
  107. Cheng LJ, Chang HC. 107.  2011. Microscale pH regulation by splitting water. Biomicrofluidics 5:046542 [Google Scholar]
  108. Ham M-H, Choi JH, Boghossian AA, Jeng ES, Graff RA. 108.  et al. 2010. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem. 2:929–36 [Google Scholar]
  109. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR. 109.  2004. Conical-nanotube ion-current rectifiers: the role of surface charge. J. Am. Chem. Soc. 126:10850–51 [Google Scholar]
  110. Siwy ZS. 110.  2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:735–46 [Google Scholar]
  111. Cheng L-J, Guo LJ. 111.  2009. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 3:575–84 [Google Scholar]
  112. Isaksson J, Kjäll P, Nilsson D, Robinson N, Berggren M, Richter-Dahlfors A. 112.  2007. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6:673–79 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040202
Loading
/content/journals/10.1146/annurev-anchem-071114-040202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error