1932

Abstract

We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040247
2015-07-22
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040247.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040247&mimeType=html&fmt=ahah

Literature Cited

  1. Turner AP. 1.  2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:3184–96 [Google Scholar]
  2. Shamah SM, Cunningham BT. 2.  2011. Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136:1090–102 [Google Scholar]
  3. Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W. 3.  2015. Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. In press. doi: 10.3109/07388551.2014.991270
  4. Long F, Zhu A, Shi H. 4.  2013. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 13:13928–48 [Google Scholar]
  5. Reparaz JS, Peica N, Kirste R, Goñi AR, Wagner MR. 5.  et al. 2013. Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering. Nanotechnology 24:185704 [Google Scholar]
  6. Ahmed A, Rushworth JV, Hirst NA, Millner PA. 6.  2014. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 27:631–46 [Google Scholar]
  7. Murugaiyan SB, Ramasamy R, Gopal N, Kuzhandaivelu V. 7.  2014. Biosensors in clinical chemistry: an overview. Adv. Biomed. Res. 3:67 [Google Scholar]
  8. Aroonyadet N, Wang X, Song Y, Chen H, Cote RJ. 8.  et al. 2015. Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay. Nano Lett. 15:1943–51 [Google Scholar]
  9. Zhu AY, Yi F, Reed JC, Zhu H, Cubukcu E. 9.  2014. Optoelectromechanical multimodal biosensor with graphene active region. Nano Lett. 14:5641–49 [Google Scholar]
  10. Pud S, Li J, Sibiliev V, Petrychuk M, Kovalenko V. 10.  et al. 2014. Liquid and back gate coupling effect: toward biosensing with lowest detection limit. Nano Lett. 14:578–84 [Google Scholar]
  11. Makowski MS, Ivanisevic A. 11.  2011. Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small 7:1863–75 [Google Scholar]
  12. Yakimova R, Steinhoff G, Petoral RM Jr, Vahlberg C, Khranovskyy V. 12.  et al. 2007. Novel material concepts of transducers for chemical and biosensors. Biosens. Bioelectron. 22:2780–85 [Google Scholar]
  13. Kang BS, Wang HT, Ren F, Pearton SJ. 13.  2008. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. J. Appl. Phys. 104:031101 [Google Scholar]
  14. Wang YL, Chu BH, Chen KH, Chang CY, Lele TP. 14.  et al. 2009. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 94:243901 [Google Scholar]
  15. Steinhoff G, Baur B, Wrobel G, Ingebrandt S, Offenhausser A. 15.  et al. 2005. Recording of cell action potentials with AlGaN/GaN field-effect transistors. Appl. Phys. Lett. 86:033901 [Google Scholar]
  16. Makowski MS, Zemlyanov DY, Lindsey JA, Bernhard JC, Hagen EM. 16.  et al. 2011. Covalent attachment of a peptide to the surface of gallium nitride. Surf. Sci. 605:1466–75 [Google Scholar]
  17. Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A. 17.  2012. Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomaterialia 8:728–33 [Google Scholar]
  18. Wilkins SJ, Greenough M, Arellano C, Paskova T, Ivanisevic A. 18.  2014. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching. Langmuir 30:2038–46 [Google Scholar]
  19. Foster CM, Collazo R, Sitar Z, Ivanisevic A. 19.  2013. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization. Langmuir 29:8377–84 [Google Scholar]
  20. Liu L, Lo CF, Xi Y, Ren F, Pearton SJ. 20.  et al. 2013. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability. J. Vac. Sci. Technol. B 31:011805–6 [Google Scholar]
  21. Christen J, Gil B. 21.  2014. Group III Nitrides. Phys. Status Solidi C 11:238 [Google Scholar]
  22. Foster CM, Collazo R, Sitar Z, Ivanisevic A. 22.  2012. Aqueous Stability of Ga- and N-Polar Gallium Nitride. Langmuir 29:216–20 [Google Scholar]
  23. Kirste R, Hoffmann MP, Sachet E, Bobea M, Bryan Z. 23.  et al. 2013. Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl. Phys. Lett. 103:242107 [Google Scholar]
  24. Kirste R, Hoffmann MP, Tweedie J, Bryan Z, Callsen G. 24.  et al. 2013. Compensation effects in GaN:Mg probed by Raman spectroscopy and photoluminescence measurements. J. Appl. Phys. 113:103504–5 [Google Scholar]
  25. Yan Q, Kioupakis E, Jena D, Van de Walle CG. 25.  2014. First-principles study of high-field-related electronic behavior of group-III nitrides. Phys. Rev. B 90:121201(R) [Google Scholar]
  26. Kirste R, Mita S, Hussey L, Hoffmann MP, Guo W. 26.  et al. 2013. Polarity control and growth of lateral polarity structures in AlN. Appl. Phys. Lett. 102:181913–14 [Google Scholar]
  27. Scholz F. 27.  2012. Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27:024002 [Google Scholar]
  28. Keller S, Li H, Laurent M, Hu Y, Pfaff N. 28.  et al. 2014. Recent progress in metal-organic chemical vapor deposition of (0001) N-polar group-III nitrides. Semicond. Sci. Technol. 29:113001 [Google Scholar]
  29. Bryan I, Rice A, Hussey L, Bryan Z, Bobea M. 29.  et al. 2013. Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition. Appl. Phys. Lett. 102:061602 [Google Scholar]
  30. Dalmau R, Moody B, Schlesser R, Mita S, Xie J. 30.  et al. 2011. Growth and characterization of AlN and AlGaN epitaxial films on AlN single crystal substrates. J. Electrochem. Soc. 158:H530–35 [Google Scholar]
  31. Corrion AL, Wu F, Speck JS. 31.  2012. Growth regimes during homoepitaxial growth of GaN by ammonia molecular beam epitaxy. J. Appl. Phys. 112:054903 [Google Scholar]
  32. Kirste R, Collazo R, Callsen G, Wagner MR, Kure T. 32.  et al. 2011. Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN. J. Appl. Phys. 110:093503–9 [Google Scholar]
  33. Naresh-Kumar G, Hourahine B, Vilalta-Clemente A, Ruterana P, Gamarra P. 33.  et al. 2012. Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscope. Phys. Status Solidi a 209:424–26 [Google Scholar]
  34. Bakeroot B, You S, Wu T-L, Hu J, Hove MV. 34.  et al. 2014. On the origin of the two-dimensional electron gas at AlGaN/GaN heterojunctions and its influence on recessed-gate metal-insulator-semiconductor high electron mobility transistors. J. Appl. Phys. 116:134506 [Google Scholar]
  35. Podolska A, Kocan M, Cabezas AMG, Wilson TD, Umana-Membreno GA. 35.  et al. 2010. Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Appl. Phys. Lett. 97:012108 [Google Scholar]
  36. Ambacher O, Smart J, Shealy JR, Weimann NG, Chu K. 36.  et al. 1999. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85:3222 [Google Scholar]
  37. Lo C-F, Xi Y, Liu L, Pearton SJ, Doré S. 37.  et al. 2013. Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors. Sens. Actuators B 176:708–12 [Google Scholar]
  38. Steinhoff G, Purrucker O, Tanaka M, Stutzmann M, Eickhoff M. 38.  2003. AlxGa1−xN—new material system for biosensors. Adv. Funct. Mater. 13:841–46 [Google Scholar]
  39. Nakamura S, Krames MR. 39.  2013. History of gallium–nitride-based light-emitting diodes for illumination. Proc. IEEE 101:2211–20 [Google Scholar]
  40. Huh C, Kim S-W, Kim H-S, Lee I-H, Park S-J. 40.  2000. Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution. J. Appl. Phys. 87:4591–93 [Google Scholar]
  41. Martinez GL, Curiel MR, Skromme BJ, Molnar RJ. 41.  2000. Surface recombination and sulfide passivation of GaN. J. Elec Materi 29:325–31 [Google Scholar]
  42. King SW, Barnak JP, Bremser MD, Tracy KM, Ronning C. 42.  et al. 1998. Cleaning of AlN and GaN surfaces. J. Appl. Phys. 84:5248–60 [Google Scholar]
  43. Lee KN, Donovan SM, Gila B, Overberg M, Mackenzie JD. 43.  et al. 2000. Surface chemical treatment for the cleaning of AlN and GaN surfaces. J. Electrochem. Soc. 147:3087–90 [Google Scholar]
  44. Podolska A, Tham S, Hart RD, Seeber RM, Kocan M. 44.  et al. 2012. Biocompatibility of semiconducting AlGaN/GaN material with living cells. Sens. Actuators B 169:401–6 [Google Scholar]
  45. Wang HT, Kang BS, Ren F, Pearton SJ, Johnson JW. 45.  et al. 2007. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 91:222101 [Google Scholar]
  46. Gebinoga M, Cimalla I, Silveira L, Klett M, Lebedev V. 46.  et al. 2009. Response of nerve cell to inhibitor recorded by aluminum-gallium-nitride FET. Sensors for Environment, Health and Security: Advanced Materials and Technologies MI Baraton 311–18 New York: Springer [Google Scholar]
  47. Podolska A, Hool LC, Pfleger KDG, Mishra UK, Parish G, Nener BD. 47.  2013. AlGaN/GaN-based biosensor for label-free detection of biological activity. Sens. Actuators B 177:577–82 [Google Scholar]
  48. Cimalla I, Will F, Tonisch K, Niebelschutz M, Cimalla V. 48.  et al. 2007. AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility. Sens. Actuator B 123:740–48 [Google Scholar]
  49. Bain LE, Ivanisevic A. 49.  2015. Engineering the cell-semiconductor interface: a materials modification approach. Small 11:768–80 [Google Scholar]
  50. Bain LE, Collazo R, Hsu S-h, Latham NP, Manfra MJ, Ivanisevic A. 50.  2014. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomater. 10:2455–62 [Google Scholar]
  51. Bain LE, Hoffmann MP, Bryan I, Collazo R, Ivanisevic A. 51.  2015. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride. Nanoscale 7:2360–65 [Google Scholar]
  52. Pearton SJ, Ren F, Wang Y-L, Chu BH, Chen KH. 52.  et al. 2010. Recent advances in wide bandgap semiconductor biological and gas sensors. Prog. Mater. Sci. 55:1–59 [Google Scholar]
  53. Espinosa N, Schwarz SU, Cimalla V, Ambacher O. 53.  2015. Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors. Sens. Actuators B 210:633–39 [Google Scholar]
  54. Li J-D, Cheng J-J, Miao B, Wei X-W, Xie J. 54.  et al. 2014. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors. J. Micromech. Microeng. 24:075023 [Google Scholar]
  55. Makowski MS, Kim S, Gaillard M, Janes D, Manfra MJ. 55.  et al. 2013. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications. Appl. Phys. Lett. 102:074102 [Google Scholar]
  56. Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW. 56.  et al. 2006. Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 89:122102 [Google Scholar]
  57. Thapa R, Alur S, Kim K, Tong F, Sharma Y. 57.  et al. 2012. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl. Phys. Lett. 100:232109 [Google Scholar]
  58. Wen XJ, Gupta S, Wang YJ, Nicholson TR, Lee SC, Lu W. 58.  2011. High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode. Appl. Phys. Lett. 99:043701 [Google Scholar]
  59. Makowski MS, Bryan I, Sitar Z, Arellano C, Xie JQ. 59.  et al. 2013. Kinase detection with gallium nitride based high electron mobility transistors. Appl. Phys. Lett. 103:13701 [Google Scholar]
  60. Baur B, Howgate J, von Ribbeck HG, Gawlina Y, Bandalo V. 60.  et al. 2006. Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl. Phys. Lett. 89:183901 [Google Scholar]
  61. Casal P, Wen XJ, Gupta S, Nicholson T, Wang YJ. 61.  et al. 2012. ImmunoFET feasibility in physiological salt environments. Philos. Trans. R. Soc. A 370:2474–88 [Google Scholar]
  62. Chen KH, Kang BS, Wang HT, Lele TP, Ren F. 62.  et al. 2008. c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection. Appl. Phys. Lett. 92:192103 [Google Scholar]
  63. Kang BS, Wang HT, Lele TP, Tseng Y, Ren F. 63.  et al. 2007. Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 91:112106 [Google Scholar]
  64. Hofstetter M, Howgate J, Schmid M, Schoell S, Sachsenhauser M. 64.  et al. 2012. In vitro bio-functionality of gallium nitride sensors for radiation biophysics. Biochem. Biophys. Res. Commun. 424:348–53 [Google Scholar]
  65. Yu J, Jha SK, Xiao L, Liu Q, Wang P. 65.  et al. 2007. AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements. Biosens. Bioelectron. 23:513–19 [Google Scholar]
  66. Gebinoga M, Mai P, Donahue M, Kittler M, Cimalla I. 66.  et al. 2012. Nerve cell response to inhibitors recorded with an aluminum-galliumnitride/galliumnitride field-effect transistor. J. Neurosci. Methods 206:195–99 [Google Scholar]
  67. Gebinoga M, Silveira L, Cimalla I, Dumitrescu A, Kittler M. 67.  et al. 2010. Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells. Mater. Sci. Eng. B 169:182–85 [Google Scholar]
  68. Sahoo P, Suresh S, Dhara S, Saini G, Rangarajan S, Tyagi AK. 68.  2013. Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens. Bioelectron. 44:164–70 [Google Scholar]
  69. Huang C-C, Lee G-Y, Chyi J-I, Cheng H-T, Hsu C-P. 69.  et al. 2013. AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens. Bioelectron. 41:717–22 [Google Scholar]
  70. Chu BH, Chang CY, Kroll K, Denslow N, Wang Y-L. 70.  et al. 2010. Detection of an endocrine disrupter biomarker, vitellogenin, in largemouth bass serum using AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 96:013701 [Google Scholar]
  71. Kang Y-W, Lee G-Y, Chyi J-I, Hsu C-P, Hsu Y-R. 71.  et al. 2013. Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors and binding-site models. Appl. Phys. Lett. 102:173704 [Google Scholar]
  72. Müntze GM, Baur B, Schäfer W, Sasse A, Howgate J. 72.  et al. 2015. Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors. Biosens. Bioelectron. 64:605–10 [Google Scholar]
  73. Witte H, Lippelt T, Warnke C, Dadgar A, Hauser MJB, Krost A. 73.  2014. High-frequency detection of cell activity of Physarum polycephalum by a planar open gate AlGaN/GaN HEMT. J. Phys. D: Appl. Phys. 47:425401 [Google Scholar]
  74. Hofstetter M, Howgate J, Sharp ID, Funk M, Stutzmann M. 74.  et al. 2010. Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices. Appl. Phys. Lett. 96:092110 [Google Scholar]
  75. Bain LE, Jewett SA, Mukund AH, Bedair SM, Paskova TM, Ivanisevic A. 75.  2013. Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1−xN surfaces. ACS Appl. Mater. Inter. 5:7236–43 [Google Scholar]
  76. Rohrbaugh N, Bryan I, Bryan Z, Arellano C, Collazo R, Ivanisevic A. 76.  2014. AlGaN/GaN Field effect transistors functionalized with recognition peptides. Appl. Phys. Lett. 105:134103 [Google Scholar]
  77. Wilkins SJ, Paskova T, Ivanisevic A. 77.  2015. Modified surface chemistry, potential, and optical properties of polar gallium nitride via long chained phosphonic acids. Appl. Surf. Sci. 327:498–503 [Google Scholar]
  78. Berg NG, Nolan M, Paskova T, Ivanisevic A. 78.  2014. Characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation. Langmuir 30:15477–85 [Google Scholar]
  79. Khir FLM, Myers M, Podolska A, Sanders TM, Baker MV. 79.  et al. 2014. Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour. Appl. Surf. Sci. 314:850–57 [Google Scholar]
  80. Zhou W, Dai X, Fu T-M, Xie C, Liu J, Lieber CM. 80.  2014. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 14:1614–19 [Google Scholar]
  81. Cheng J, Li J, Miao B, Wang J, Wu Z. 81.  et al. 2014. Ultrasensitive detection of Hg2+ using oligonucleotide-functionalized AlGaN/GaN high electron mobility transistor. Appl. Phys. Lett. 105:083121 [Google Scholar]
  82. Aragay G, Pons J, Merkoçi A. 82.  2011. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 111:3433–58 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040247
Loading
/content/journals/10.1146/annurev-anchem-071114-040247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error