1932

Abstract

Advanced optical imaging technologies have experienced increased visibility in medical research, as they allow for a label-free and nondestructive investigation of tissue in either an excised state or living organisms. In addition to a multitude of ex vivo studies proving the applicability of these optical imaging approaches, a transfer of various modalities toward in vivo diagnosis is currently in progress as well. Furthermore, combining optical imaging techniques, referred to as multimodal imaging, allows for an improved diagnostic reliability due to the complementary nature of retrieved information. In this review, we provide a summary of ongoing multifold efforts in multimodal tissue imaging and focus in particular on in vivo applications for medical diagnosis. We also discuss the advantages and potential limitations of the imaging methods and outline opportunities for future developments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040352
2015-07-22
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040352.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040352&mimeType=html&fmt=ahah

Literature Cited

  1. Krafft C, Dochow S, Latka I, Dietzek B, Popp J. 1.  2012. Diagnosis and screening of cancer tissue by fiber optic probe Raman spectroscopy. Biomed. Spectrosc. Imaging 1:139–55 [Google Scholar]
  2. Smith AM, Mancini MC, Nie S. 2.  2009. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4:11710–11 [Google Scholar]
  3. Horton NG, Wang K, Kobat D, Clark CG, Wise FW. 3.  et al. 2013. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7:3205–9 [Google Scholar]
  4. Meschieri A, Pupelli G, Pellacani G, Rajadhyaksha M, Longo C. 4.  2013. Reflectance confocal microscopy: A new tool in skin oncology. Photonics Lasers Med. 2:4277–85 [Google Scholar]
  5. Kiesslich R, Goetz M, Vieth M, Galle PR, Neurath MF. 5.  2007. Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer. Nat. Clin. Pract. Oncol. 4:8480–90 [Google Scholar]
  6. Maitland KC, Gillenwater AM, Williams MD, El-Naggar AK, Descour MR, Richards-Kortum RR. 6.  2008. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 44:111059–66 [Google Scholar]
  7. Pawley JB. 7.  2006. Handbook Of Biological Confocal Microscopy Boston: Springer
  8. Wilhelm S, Gröbler B, Gluch M, Heinz H. 8.  2015. Confocal Laser Scanning Microscopy Principles Jena, Ger.: Zeiss http://zeiss-campus.magnet.fsu.edu/referencelibrary/pdfs/ZeissConfocalPrinciples.pdf
  9. Cox G, Sheppard CJR. 9.  2004. Practical limits of resolution in confocal and non-linear microscopy. Microsc. Res. Tech. 63:118–22 [Google Scholar]
  10. Izatt JA, Choma MA. 10.  2008. Theory of optical coherence tomography. Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering W Drexler, JG Fujimoto 47–72 Berlin: Springer [Google Scholar]
  11. Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. 11.  1994. Optical coherence microscopy in scattering media. Opt. Lett. 19:8590–92 [Google Scholar]
  12. Liu B, Brezinski ME. 12.  2007. Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J. Biomed. Opt. 12:4044007 [Google Scholar]
  13. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. 13.  2004. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J. Biomed. Opt. 9:2292–98 [Google Scholar]
  14. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. 14.  2006. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J. Am. Acad. Dermatol. 55:3408–12 [Google Scholar]
  15. Gambichler T, Orlikov A, Vasa R, Moussa G, Hoffmann K. 15.  et al. 2007. In vivo optical coherence tomography of basal cell carcinoma. J. Dermatol. Sci. 45:3167–73 [Google Scholar]
  16. Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. 16.  2007. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol. Surg. 33:4421–25 [Google Scholar]
  17. Jørgensen TM, Tycho A, Mogensen M, Bjerring P, Jemec GBE. 17.  2008. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res. Technol. 14:3364–69 [Google Scholar]
  18. Mogensen M, Joergensen TM, Nürnberg BM, Morsy HA, Thomsen JB. 18.  et al. 2009. Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol. Surg. 35:6965–72 [Google Scholar]
  19. de Giorgi V, Stante M, Massi D, Mavilia L, Cappugi P, Carli P. 19.  2005. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp. Dermatol. 14:156–59 [Google Scholar]
  20. Gambichler T, Regeniter P, Bechara FG, Orlikov A, Vasa R. 20.  et al. 2007. Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J. Am. Acad. Dermatol. 57:4629–37 [Google Scholar]
  21. Wilder-Smith P, Lee K, Guo S, Zhang J, Osann K. 21.  et al. 2009. In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg. Med. 41:5353–57 [Google Scholar]
  22. Prestin S, Rothschild SI, Betz CS, Kraft M. 22.  2012. Measurement of epithelial thickness within the oral cavity using optical coherence tomography. Head Neck 34:121777–81 [Google Scholar]
  23. Wong BJF, Jackson RP, Guo S, Ridgway JM, Mahmood U. 23.  et al. 2005. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients. Laryngoscope 115:111904–11 [Google Scholar]
  24. Pitris C, Jesser C, Boppart SA, Stamper D, Brezinski ME, Fujimoto JG. 24.  2000. Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. J. Gastroenterol. 35:287–92 [Google Scholar]
  25. Çilesiz I, Fockens P, Kerindongo R, Faber D, Tytgat G. 25.  et al. 2002. Comparative optical coherence tomography imaging of human esophagus: how accurate is localization of the muscularis mucosae?. Gastrointest. Endosc. 56:6852–57 [Google Scholar]
  26. Cobb MJ, Hwang JH, Upton MP, Chen Y, Oelschlager BK. 26.  et al. 2010. Imaging of subsquamous Barrett's epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study. Gastrointest. Endosc. 71:2223–30 [Google Scholar]
  27. Suter MJ, Vakoc BJ, Yachimski PS, Shishkov M, Lauwers GY. 27.  et al. 2008. Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68:4745–53 [Google Scholar]
  28. Wessels R, De Bruin DM, Faber DJ, Van Leeuwen TG, Van Beurden M, Ruers TJM. 28.  2014. Optical biopsy of epithelial cancers by optical coherence tomography (OCT). Lasers Med. Sci. 29:31297–305 [Google Scholar]
  29. Tam A. 29.  1986. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58:2381–431 [Google Scholar]
  30. Mallidi S, Luke GP, Emelianov S. 30.  2011. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29:5213–21 [Google Scholar]
  31. Wang LV. 31.  2008. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14:1171–79 [Google Scholar]
  32. Hu S, Maslov K, Wang LV. 32.  2011. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36:71134–36 [Google Scholar]
  33. Wang LV, Hu S. 33.  2012. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:60751458–62 [Google Scholar]
  34. Smith L, Macneil S. 34.  2011. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res. Technol. 17:3257–69 [Google Scholar]
  35. Zhang HF, Maslov K, Stoica G, Wang LV. 35.  2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24:7848–51 [Google Scholar]
  36. Favazza CP, Jassim O, Cornelius LA, Wang LV. 36.  2011. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J. Biomed. Opt. 16:1016015 [Google Scholar]
  37. Zhou Y, Xing W, Maslov KI, Cornelius LA, Wang LV. 37.  2014. Handheld photoacoustic microscopy to detect melanoma depth in vivo. Opt. Lett. 39:164731–34 [Google Scholar]
  38. Grootendorst DJ, Jose J, Wouters MW, van Boven H, Van der Hage J. 38.  et al. 2012. First experiences of photoacoustic imaging for detection of melanoma metastases in resected human lymph nodes. Lasers Surg. Med. 44:7541–49 [Google Scholar]
  39. Zhang HF, Maslov K, Stoica G, Wang LV. 39.  2006. Imaging acute thermal burns by photoacoustic microscopy. J. Biomed. Opt. 11:5054033 [Google Scholar]
  40. Aizawa K, Sato S, Saitoh D, Ashida H, Obara M. 40.  2008. Photoacoustic monitoring of burn healing process in rats. J. Biomed. Opt. 13:6064020 [Google Scholar]
  41. Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R. 41.  et al. 2009. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14:2024007 [Google Scholar]
  42. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP. 42.  2010. Photoacoustic angiography of the breast. Med. Phys. 37:116096–100 [Google Scholar]
  43. Kitai T, Torii M, Sugie T, Kanao S, Mikami Y. 43.  et al. 2014. Photoacoustic mammography: initial clinical results. Breast Cancer 21:2146–53 [Google Scholar]
  44. Heijblom M, Piras D, Xia W, van Hespen JCG, Klaase JM. 44.  et al. 2012. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?. Opt. Express 20:1111582–97 [Google Scholar]
  45. Laufer J, Johnson P, Zhang E, Treeby B, Cox B. 45.  et al. 2012. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 17:5056016 [Google Scholar]
  46. Denk W, Strickler JH, Webb WW. 46.  1990. Two-photon laser scanning fluorescence microscopy. Science 248:495173–76 [Google Scholar]
  47. Williams RM, Piston DW, Webb WW. 47.  1994. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8:11804–13 [Google Scholar]
  48. Mertz J. 48.  1998. Molecular photodynamics involved in multi-photon excitation fluorescence microscopy. Eur. Phys. J. D 3:153–66 [Google Scholar]
  49. Hell SW. 49.  2007. Far-field optical nanoscopy. Science 316:58281153–58 [Google Scholar]
  50. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW. 50.  et al. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. PNAS 104:4919494–99 [Google Scholar]
  51. Göbel W, Helmchen F. 51.  2007. In vivo calcium imaging of neural network function. Physiology 22:358–65 [Google Scholar]
  52. Jia H, Rochefort NL, Chen X, Konnerth A. 52.  2011. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc. 6:128–35 [Google Scholar]
  53. Göbel W, Kerr JND, Nimmerjahn A, Helmchen F. 53.  2004. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29:212521–23 [Google Scholar]
  54. Pan F, Gan WB. 54.  2008. Two-photon imaging of dendritic spine development in the mouse cortex. Dev. Neurobiol. 68:6771–78 [Google Scholar]
  55. Masters B, So P. 55.  2001. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo. Opt. Express 8:12–10 [Google Scholar]
  56. Zeng H, MacAulay C, McLean DI, Palcic B. 56.  1995. Spectroscopic and microscopic characteristics of human skin autofluorescence emission. Photochem. Photobiol. 61:6639–45 [Google Scholar]
  57. Cicchi R, Vogler N, Kapsokalyvas D, Dietzek B, Popp J, Pavone FS. 57.  2013. From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. J. Biophotonics 6:2129–42 [Google Scholar]
  58. Pavone FS, Campagnola PJ. 58.  2013. Second Harmonic Generation Imaging Boca Raton, FL: CRC Press
  59. Popp J. 59.  2014. Ex-vivo and In-vivo Optical Molecular Pathology Weinheim: Wiley-VCH Verlag GmbH
  60. Bianchini P, Diaspro A. 60.  2008. Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues. J. Biophotonics 1:6443–50 [Google Scholar]
  61. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. 61.  2012. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:44047–132 [Google Scholar]
  62. Borst JW, Visser AJWG. 62.  2010. Fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 21:10102002 [Google Scholar]
  63. Berezin MY, Achilefu S. 63.  2010. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110:52641–84 [Google Scholar]
  64. Dysli C, Quellec G, Abegg M, Menke MN, Wolf-Schnurrbusch U. 64.  et al. 2014. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects. Invest. Ophthalmol. Vis. Sci. 55:42106–13 [Google Scholar]
  65. Yaseen MA, Sakadžić S, Wu W, Becker W, Kasischke KA, Boas DA. 65.  2013. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed. Opt. Express 4:2307–21 [Google Scholar]
  66. Leppert J, Krajewski J, Kantelhardt SR, Schlaffer S, Petkus N. 66.  et al. 2006. Multiphoton excitation of autofluorescence for microscopy of glioma tissue. Neurosurgery 58:4759–67 [Google Scholar]
  67. Sun Y, Phipps JE, Meier J, Hatami N, Poirier B. 67.  et al. 2013. Endoscopic fluorescence lifetime imaging for in vivo intraoperative diagnosis of oral carcinoma. Microsc. Microanal. 19:4791–98 [Google Scholar]
  68. Raman CV, Krishnan KS. 68.  1928. A new type of secondary radiation. Nature 121:3048501–2 [Google Scholar]
  69. Delhaye M, Migeon M. 69.  1966. Intérét de la concentration d'un faisceau laser pour l'excitation de l'effet Raman. C. R. Acad. Sci. Paris 262:1513–16 [Google Scholar]
  70. Opilik L, Schmid T, Zenobi R. 70.  2013. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu. Rev. Anal. Chem. 6:379–98 [Google Scholar]
  71. Matousek P, Stone N. 71.  2013. Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J. Biophotonics 6:17–19 [Google Scholar]
  72. Rassat SD, Davis EJ. 72.  1994. Temperature measurement of single levitated microparticles using Stokes/anti-Stokes Raman intensity ratios. Appl. Spectrosc. 48:121498–505 [Google Scholar]
  73. Nijssen A, Bakker Schut TC, Heule F, Caspers PJ, Hayes DP. 73.  et al. 2002. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J. Invest. Dermatol. 119:164–69 [Google Scholar]
  74. Molckovsky A, Song LMWK, Shim MG, Marcon NE, Wilson BC. 74.  2003. Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps. Gastrointest. Endosc. 57:3396–402 [Google Scholar]
  75. Krafft C, Sobottka SB, Schackert G, Salzer R. 75.  2005. Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:71070–77 [Google Scholar]
  76. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. 76.  2005. Diagnosing breast cancer by using Raman spectroscopy. PNAS 102:3512371–76 [Google Scholar]
  77. Shetty G, Kendall C, Shepherd N, Stone N, Barr H. 77.  2006. Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. Br. J. Cancer 94:101460–64 [Google Scholar]
  78. Teh SK, Zheng W, Ho KY, Teh M, Yeoh KG, Huang Z. 78.  2008. Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue. Br. J. Cancer 98:2457–65 [Google Scholar]
  79. Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA. 79.  et al. 2003. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:102768–73 [Google Scholar]
  80. Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Kramer JR. 80.  et al. 2001. Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ. Cardiovasc. Pathol. 10:269–82 [Google Scholar]
  81. Kochan K, Marzec KM, Chruszcz-Lipska K, Jasztal A, Maslak E. 81.  et al. 2013. Pathological changes in the biochemical profile of the liver in atherosclerosis and diabetes assessed by Raman spectroscopy. Analyst 138:143885–90 [Google Scholar]
  82. Woodbury EJ, Ng WK. 82.  1962. Ruby laser operation in the near IR. Proc. IRE 50:112367 [Google Scholar]
  83. Maker PD, Terhune RW. 83.  1965. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137:3AA80118 [Google Scholar]
  84. Zumbusch A, Holtom GR, Xie XS. 84.  1999. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82:204142–45 [Google Scholar]
  85. Cheng J-X, Volkmer A, Book LD, Xie XS. 85.  2001. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B 105:71277–80 [Google Scholar]
  86. El-Diasty F. 86.  2011. Coherent anti-Stokes Raman scattering: spectroscopy and microscopy. Vib. Spectrosc. 55:11–37 [Google Scholar]
  87. Patel II, Steuwe C, Reichelt S, Mahajan S. 87.  2013. Coherent anti-Stokes Raman scattering for label-free biomedical imaging. J. Opt. 15:9094006 [Google Scholar]
  88. Tu H, Boppart SA. 88.  2014. Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J. Biophotonics 7:1–29–22 [Google Scholar]
  89. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R. 89.  2011. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7:3137–45 [Google Scholar]
  90. Huff TB, Cheng JX. 90.  2007. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J. Microsc. 225:Pt. 2175–82 [Google Scholar]
  91. Henry FP, Côté D, Randolph MA, Rust EAZ, Redmond RW. 91.  et al. 2009. Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy. Plast. Reconstr. Surg. 123:2 Suppl.123S–30 [Google Scholar]
  92. Bélanger E, Henry FP, Vallée R, Randolph MA, Kochevar IE. 92.  et al. 2011. In vivo evaluation of demyelination and remyelination in a nerve crush injury model. Biomed. Opt. Express 2:92698–708 [Google Scholar]
  93. Evans CL, Potma EO, Puoris'haag M, Côté D, Lin CP, Xie XS. 93.  2005. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. PNAS 102:4616807–12 [Google Scholar]
  94. Evans CL, Xie XS. 94.  2008. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1:1883–909 [Google Scholar]
  95. Min W, Freudiger CW, Lu S, Xie XS. 95.  2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30 [Google Scholar]
  96. Zhang D, Wang P, Slipchenko MN, Cheng JX. 96.  2014. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Acc. Chem. Res. 47:2282–90 [Google Scholar]
  97. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR. 97.  et al. 2008. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:59091857–61 [Google Scholar]
  98. Alfonso-García A, Mittal R, Lee ES, Potma EO. 98.  2014. Biological imaging with coherent Raman scattering microscopy: a tutorial. J. Biomed. Opt. 19:7) 71407 [Google Scholar]
  99. Freudiger CW, Pfannl R, Orringer DA, Saar BG, Ji M. 99.  et al. 2012. Multicolored stain-free histopathology with coherent Raman imaging. Lab. Investig. 92:101492–502 [Google Scholar]
  100. Ozeki Y, Umemura W, Otsuka Y, Satoh S, Hashimoto H. 100.  et al. 2012. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 6:12845–51 [Google Scholar]
  101. Mittal R, Balu M, Krasieva T, Potma EO, Elkeeb L. 101.  et al. 2013. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Lasers Surg. Med. 45:8496–502 [Google Scholar]
  102. Bentley JN, Ji M, Xie XS, Orringer DA. 102.  2014. Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy. Expert Rev. Anticancer Ther. 14:4359–61 [Google Scholar]
  103. Fu D, Yu Y, Folick A, Currie E, Farese RV. 103.  et al. 2014. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136:248820–28 [Google Scholar]
  104. Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS. 104.  2010. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330:60091368–70 [Google Scholar]
  105. Saar BG, Contreras-Rojas LR, Xie XS, Guy RH. 105.  2011. Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8:3969–75 [Google Scholar]
  106. Hu CR, Zhang D, Slipchenko MN, Cheng JX, Hu B. 106.  2014. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J. Biomed. Opt. 19:886005 [Google Scholar]
  107. Wang P, Li J, Wang P, Hu CR, Zhang D. 107.  et al. 2013. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. Engl. 52:4913042–46 [Google Scholar]
  108. Fenn MB, Xanthopoulos P, Pyrgiotakis G, Grobmyer SR, Pardalos PM, Hench LL. 108.  2011. Raman spectroscopy for clinical oncology. Adv. Opt. Technol. 2011:213783 [Google Scholar]
  109. Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A. 109.  2008. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt. Lett. 33:101135–37 [Google Scholar]
  110. Patil CA, Kalkman J, Faber DJ, Nyman JS, van Leeuwen TG, Mahadevan-Jansen A. 110.  2011. Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography. J. Biomed. Opt. 16:1011007 [Google Scholar]
  111. Patil CA, Kirshnamoorthi H, Ellis DL, van Leeuwen TG, Mahadevan-Jansen A. 111.  2011. A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers. Lasers Surg. Med. 43:2143–51 [Google Scholar]
  112. Ashok PC, Praveen BB, Bellini N, Riches A, Dholakia K, Herrington CS. 112.  2013. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon. Biomed. Opt. Express 4:102179–86 [Google Scholar]
  113. Khan KM, Krishna H, Majumder SK, Rao KD, Gupta PK. 113.  2014. Depth-sensitive Raman spectroscopy combined with optical coherence tomography for layered tissue analysis. J. Biophotonics 7:1–277–85 [Google Scholar]
  114. Zakharov VP, Bratchenko IA, Kozlov SV, Moryatov AA, Kornilin DV. 114.  et al. 2014. Advances in tumor diagnosis using OCT and Raman spectroscopy. Biophotonics: Photonic Solutions for Better Health Care IV J Popp, VV Tuchin, DL Matthews, FS Pavone Proc. SPIE91290L–17
  115. Liu C-H, Qi J, Lu J, Wang S, Wu C. 115.  et al. 2014. Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy. Dynamics and Fluctuations in Biomedical Photonics XI VV Tuchin, KV Larin, MJ Leahy, RK Wang Proc. SPIE894208–1–9
  116. Yeh AT, Kao B, Jung WG, Chen Z, Nelson JS, Tromberg BJ. 116.  2004. Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J. Biomed. Opt. 9:2248–53 [Google Scholar]
  117. Iftimia N, Ferguson RD, Mujat M, Patel AH, Zhang EZ. 117.  et al. 2013. Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment. Biomed. Opt. Express 4:5680–95 [Google Scholar]
  118. Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH. 118.  et al. 2013. Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy. PNAS 110:3815189–94 [Google Scholar]
  119. Jiao S, Xie Z, Zhang HF, Puliafito CA. 119.  2009. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt. Lett. 34:192961–63 [Google Scholar]
  120. Liu T, Wei Q, Wang J, Jiao S, Zhang HF. 120.  2011. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen. Biomed. Opt. Express 2:51359–65 [Google Scholar]
  121. Song W, Wei Q, Liu T, Kuai D, Burke JM. 121.  et al. 2012. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 17:6061206 [Google Scholar]
  122. Sun Y, Chaudhari AJ, Lam M, Xie H, Yankelevich DR. 122.  et al. 2011. Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques. Biomed. Opt. Express 2:82288–98 [Google Scholar]
  123. Yang H, Xi L, Samuelson S, Xie H, Yang L, Jiang H. 123.  2013. Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror. Biomed. Opt. Express 4:3427–32 [Google Scholar]
  124. Rao B, Soto F, Kerschensteiner D, Wang LV. 124.  2014. Integrated photoacoustic, confocal, and two-photon microscope. J. Biomed. Opt. 19:336002 [Google Scholar]
  125. Meyer T, Schmitt M, Dietzek B, Popp J. 125.  2013. Accumulating advantages, reducing limitations: multimodal nonlinear imaging in biomedical sciences - the synergy of multiple contrast mechanisms. J. Biophotonics 6:11–12887–904 [Google Scholar]
  126. Kapsokalyvas D, Cicchi R, Bruscino N, Alfieri D, Prignano F. 126.  et al. 2014. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy. Biomed. Opt. Express 5:72405–19 [Google Scholar]
  127. Balu M, Kelly KM, Zachary CB, Harris RM, Krasieva TB. 127.  et al. 2014. Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res. 74:102688–97 [Google Scholar]
  128. Wang H, Lee AMD, Lui H, McLean DI, Zeng H. 128.  2013. A method for accurate in vivo micro-Raman spectroscopic measurements under guidance of advanced microscopy imaging. Sci. Rep. 3:1890 [Google Scholar]
  129. Dancik Y, Favre A, Loy CJ, Zvyagin AV, Roberts MS. 129.  2013. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo. J. Biomed. Opt. 18:226022 [Google Scholar]
  130. Meyer T, Baumgartl M, Gottschall T, Pascher T, Wuttig A. 130.  et al. 2013. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst 138:144048–57 [Google Scholar]
  131. Cicchi R, Matthäus C, Meyer T, Lattermann A, Dietzek B. 131.  et al. 2014. Characterization of collagen and cholesterol deposition in atherosclerotic arterial tissue using non-linear microscopy. J. Biophotonics 7:1–2135–43 [Google Scholar]
  132. Weinigel M, Breunig HG, Kellner-Höfer M, Bückle R, Darvin ME. 132.  et al. 2014. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography. Laser Phys. Lett. 11:5055601 [Google Scholar]
  133. Fu D, Lu FK, Zhang X, Freudiger C, Pernik DR. 133.  et al. 2012. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134:83623–26 [Google Scholar]
  134. Meng Z, Petrov GI, Yakovlev VV. 134.  2013. Microscopic coherent Raman imaging using low-cost continuous wave lasers. Laser Phys. Lett. 10:6065701 [Google Scholar]
  135. Latka I, Dochow S, Krafft C, Dietzek B, Popp J. 135.  2013. Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photonics Rev. 7:5698–731 [Google Scholar]
  136. Fu X, Wang Z, Wang H, Wang YT, Jenkins MW, Rollins AM. 136.  2014. Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring. Opt. Lett. 39:175066–69 [Google Scholar]
  137. Wang Z, Lee HC, Ahsen OO, Lee B, Choi W. 137.  et al. 2014. Depth-encoded all-fiber swept source polarization sensitive OCT. Biomed. Opt. Express 5:92931–49 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040352
Loading
/content/journals/10.1146/annurev-anchem-071114-040352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error