1932

Abstract

Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040426
2015-07-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040426.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040426&mimeType=html&fmt=ahah

Literature Cited

  1. Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN. 1.  et al. 2013. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. PNAS 110:E4016–25 [Google Scholar]
  2. Koob GF. 2.  2013. Addiction is a reward deficit and stress surfeit disorder. Front. Psychiatry 4:72 [Google Scholar]
  3. Weinshenker D. 3.  2008. Functional consequences of locus coeruleus degeneration in Alzheimer's disease. Curr. Alzheimer Res. 5:342–45 [Google Scholar]
  4. Jacobsen JP, Medvedev IO, Caron MG. 4.  2012. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos. Trans. R. Soc. B 367:2444–59 [Google Scholar]
  5. Adams RN. 5.  1976. Probing brain chemistry with electroanalytical techniques. Anal. Chem. 48:1126A–38A [Google Scholar]
  6. Kissinger PT, Hart JB, Adams RN. 6.  1973. Voltammetry in brain tissue: a new neurophysiological measurement. Brain Res. 55:209–13 [Google Scholar]
  7. Justice JB. 7.  1987. Voltammetry in the Neurosciences Clifton, NJ: Humana
  8. Kawagoe KT, Garris PA, Wiedemann DJ, Wightman RM. 8.  1992. Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51:55–64 [Google Scholar]
  9. Robinson DL, Hermans A, Seipel AT, Wightman RM. 9.  2008. Monitoring rapid chemical communication in the brain. Chem. Rev. 108:2554–84 [Google Scholar]
  10. Mosharov EV, Sulzer D. 10.  2005. Analysis of exocytotic events recorded by amperometry. Nat. Methods 2:651–58 [Google Scholar]
  11. Mellander LJ, Trouillon R, Svensson MI, Ewing AG. 11.  2012. Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2:907 [Google Scholar]
  12. Petrovic J, Walsh PL, Thornley KT, Miller CE, Wightman RM. 12.  2010. Real-time monitoring of chemical transmission in slices of the murine adrenal gland. Endocrinology 151:1773–83 [Google Scholar]
  13. Westerink RH, Ewing AG. 13.  2008. The PC12 cell as model for neurosecretion. Acta Physiol. 192:273–85 [Google Scholar]
  14. Manning BM, Hebbel RP, Gupta K, Haynes CL. 14.  2012. Carbon-fiber microelectrode amperometry reveals sickle-cell-induced inflammation and chronic morphine effects on single mast cells. ACS Chem. Biol. 7:543–51 [Google Scholar]
  15. Borisovska M, Bensen AL, Chong G, Westbrook GL. 15.  2013. Distinct modes of dopamine and GABA release in a dual transmitter neuron. J. Neurosci. 33:1790–96 [Google Scholar]
  16. Pothos EN. 16.  2002. Regulation of dopamine quantal size in midbrain and hippocampal neurons. Behav. Brain Res. 130:203–7 [Google Scholar]
  17. Park J, Takmakov P, Wightman RM. 17.  2011. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J. Neurochem. 119:932–44 [Google Scholar]
  18. Venton BJ, Michael DJ, Wightman RM. 18.  2003. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate-putamen. J. Neurochem. 84:373–81 [Google Scholar]
  19. Bunin MA, Prioleau C, Mailman RB, Wightman RM. 19.  1998. Release and uptake rates of 5-hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J. Neurochem. 70:1077–87 [Google Scholar]
  20. Wightman RM, Zimmerman JB. 20.  1990. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res. Brain Res. Rev. 15:135–44 [Google Scholar]
  21. Wightman RM, Amatore C, Engstrom RC, Hale PD, Kristensen EW. 21.  et al. 1988. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25:513–23 [Google Scholar]
  22. McElligott ZA, Fox ME, Walsh PL, Urban DJ, Ferrel MS. 22.  et al. 2013. Noradrenergic synaptic function in the bed nucleus of the stria terminalis varies in animal models of anxiety and addiction. Neuropsychopharmacology 38:1665–73 [Google Scholar]
  23. Hashemi P, Dankoski EC, Lama R, Wood KM, Takmakov P, Wightman RM. 23.  2012. Brain dopamine and serotonin differ in regulation and its consequences. PNAS 109:11510–15 [Google Scholar]
  24. Calipari ES, Ferris MJ, Jones SR. 24.  2014. Extended access of cocaine self-administration results in tolerance to the dopamine-elevating and locomotor-stimulating effects of cocaine. J. Neurochem. 128:224–32 [Google Scholar]
  25. Bergstrom BP, Sanberg SG, Andersson M, Mithyantha J, Carroll FI, Garris PA. 25.  2011. Functional reorganization of the presynaptic dopaminergic terminal in parkinsonism. Neuroscience 193:310–22 [Google Scholar]
  26. Riday TT, Dankoski EC, Krouse MC, Fish EW, Walsh PL. 26.  et al. 2012. Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. J. Clin. Investig. 122:4544–54 [Google Scholar]
  27. Owesson-White CA, Cheer JF, Beyene M, Carelli RM, Wightman RM. 27.  2008. Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. PNAS 105:11957–62 [Google Scholar]
  28. Carelli RM. 28.  2004. Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats. Neuropharmacology 47:Suppl. 1180–89 [Google Scholar]
  29. Addy NA, Daberkow DP, Ford JN, Garris PA, Wightman RM. 29.  2010. Sensitization of rapid dopamine signaling in the nucleus accumbens core and shell after repeated cocaine in rats. J. Neurophysiol. 104:922–31 [Google Scholar]
  30. Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF. 30.  et al. 2009. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur. J. Neurosci. 30:1117–27 [Google Scholar]
  31. Ehrich JM, Phillips PE, Chavkin C. 31.  2014. Kappa opioid receptor activation potentiates the cocaine-induced increase in evoked dopamine release recorded in vivo in the mouse nucleus accumbens. Neuropsychopharmacology 39:3036–48 [Google Scholar]
  32. Park J, Bucher ES, Fontillas K, Owesson-White C, Ariansen JL. 32.  et al. 2013. Opposing catecholamine changes in the bed nucleus of the stria terminalis during intracranial self-stimulation and its extinction. Biol. Psychiatry 74:69–76 [Google Scholar]
  33. Park J, Kile BM, Wightman RM. 33.  2009. In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur. J. Neurosci. 30:2121–33 [Google Scholar]
  34. Dankoski EC, Agster KL, Fox ME, Moy SS, Wightman RM. 34.  2014. Facilitation of serotonin signaling by SSRIs is attenuated by social isolation. Neuropsychopharmacology 39:2928–37 [Google Scholar]
  35. Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. 35.  2009. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 81:9462–71 [Google Scholar]
  36. Wilson GS, Johnson MA. 36.  2008. In-vivo electrochemistry: What can we learn about living systems?. Chem. Rev. 108:2462–81 [Google Scholar]
  37. Kiyatkin EA, Wakabayashi KT, Lenoir M. 37.  2013. Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments. ACS Chem. Neurosci. 4:652–65 [Google Scholar]
  38. Kiyatkin EA, Lenoir M. 38.  2012. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation. J. Neurophysiol. 108:1669–84 [Google Scholar]
  39. Oldenziel WH, Westerink BH. 39.  2005. Improving glutamate microsensors by optimizing the composition of the redox hydrogel. Anal. Chem. 77:5520–28 [Google Scholar]
  40. Sarter M, Parikh V, Howe WM. 40.  2009. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10:383–90 [Google Scholar]
  41. Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP. 41.  2004. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur. J. Neurosci. 20:1545–54 [Google Scholar]
  42. Schmitt LI, Sims RE, Dale N, Haydon PG. 42.  2012. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J. Neurosci. 32:4417–25 [Google Scholar]
  43. Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ. 43.  et al. 2010. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal. Chem. 82:5205–10 [Google Scholar]
  44. Lugo-Morales LZ, Loziuk PL, Corder AK, Toups JV, Roberts JG. 44.  et al. 2013. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry. Anal. Chem. 85:8780–86 [Google Scholar]
  45. Cunha RA. 45.  2001. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem. Int. 38:107–25 [Google Scholar]
  46. Swamy BE, Venton BJ. 46.  2007. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry. Anal. Chem. 79:744–50 [Google Scholar]
  47. Street SE, Walsh PL, Sowa NA, Taylor-Blake B, Guillot TS. 47.  et al. 2011. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol. Pain 7:80 [Google Scholar]
  48. Street SE, Kramer NJ, Walsh PL, Taylor-Blake B, Yadav MC. 48.  et al. 2013. Tissue-nonspecific alkaline phosphatase acts redundantly with PAP and NT5E to generate adenosine in the dorsal spinal cord. J. Neurosci. 33:11314–22 [Google Scholar]
  49. Pajski ML, Venton BJ. 49.  2013. The mechanism of electrically stimulated adenosine release varies by brain region. Purinergic Signal. 9:167–74 [Google Scholar]
  50. Pajski ML, Venton BJ. 50.  2010. Adenosine release evoked by short electrical stimulations in striatal brain slices is primarily activity dependent. ACS Chem. Neurosci. 1:775–87 [Google Scholar]
  51. Cechova S, Venton BJ. 51.  2008. Transient adenosine efflux in the rat caudate-putamen. J. Neurochem. 105:1253–63 [Google Scholar]
  52. Ross AE, Nguyen MD, Privman E, Venton BJ. 52.  2014. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex. J. Neurochem. 130:50–60 [Google Scholar]
  53. Ross AE, Venton BJ. 53.  2014. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide. Anal. Chem. 86:7486–93 [Google Scholar]
  54. Glanowska KM, Venton BJ, Moenter SM. 54.  2012. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices. J. Neurosci. 32:14664–69 [Google Scholar]
  55. Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. 55.  1978. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202:631–33 [Google Scholar]
  56. Chen P, Moenter SM. 56.  2009. GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons is regulated by GnRH in a concentration-dependent manner engaging multiple signaling pathways. J. Neurosci. 29:9809–18 [Google Scholar]
  57. Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, Sombers LA. 57.  2014. Multiple scan rate voltammetry for selective quantification of real-time enkephalin dynamics. Anal. Chem. 86:7806–12 [Google Scholar]
  58. Bodnar RJ. 58.  2013. Endogenous opiates and behavior: 2012. Peptides 50:55–95 [Google Scholar]
  59. Stamford JA. 59.  1989. In vivo voltammetry: prospects for the next decade. Trends Neurosci. 12:407–12 [Google Scholar]
  60. Ponchon JL, Cespuglio R, Gonon F, Jouvet M, Pujol JF. 60.  1979. Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51:1483–86 [Google Scholar]
  61. Huffman ML, Venton BJ. 61.  2009. Carbon-fiber microelectrodes for in vivo applications. Analyst 134:18–24 [Google Scholar]
  62. Heien ML, Phillips PE, Stuber GD, Seipel AT, Wightman RM. 62.  2003. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413–19 [Google Scholar]
  63. Hermans A, Seipel AT, Miller CE, Wightman RM. 63.  2006. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir 22:1964–69 [Google Scholar]
  64. Putzbach W, Ronkainen NJ. 64.  2013. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:4811–40 [Google Scholar]
  65. Jacobs CB, Peairs MJ, Venton BJ. 65.  2010. Review: carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 662:105–27 [Google Scholar]
  66. Swamy BE, Venton BJ. 66.  2007. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132:876–84 [Google Scholar]
  67. Xiao N, Venton BJ. 67.  2012. Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. Anal. Chem. 84:7816–22 [Google Scholar]
  68. De Volder MF, Tawfick SH, Baughman RH, Hart AJ. 68.  2013. Carbon nanotubes: present and future commercial applications. Science 339:535–39 [Google Scholar]
  69. Zhao J, Zhang X, Di J, Xu G, Yang X. 69.  et al. 2010. Double-peak mechanical properties of carbon-nanotube fibers. Small 6:2612–17 [Google Scholar]
  70. Jacobs CB, Ivanov IN, Nguyen MD, Zestos AG, Venton BJ. 70.  2014. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes. Anal. Chem. 86:5721–27 [Google Scholar]
  71. Schmidt AC, Wang X, Zhu Y, Sombers LA. 71.  2013. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. ACS Nano 7:7864–73 [Google Scholar]
  72. Zestos AG, Jacobs CB, Trikantzopoulos E, Ross AE, Venton BJ. 72.  2014. Polyethyleneimine carbon nano-tube fiber electrodes for enhanced detection of neurotransmitters. Anal. Chem. 86:8568–75 [Google Scholar]
  73. Swiergiel AH, Palamarchouk VS, Dunn AJ. 73.  1997. A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica. J. Neurosci. Methods 73:29–33 [Google Scholar]
  74. Gerhardt GA, Ksir C, Pivik C, Dickinson SD, Sabeti J, Zahniser NR. 74.  1999. Methodology for coupling local application of dopamine and other chemicals with rapid in vivo electrochemical recordings in freely-moving rats. J. Neurosci. Methods 87:67–76 [Google Scholar]
  75. Plotsky P. 75.  1987. Probing pathways of neuroendocrine regulation with voltammetric microelectrodes. See Ref. 7 273–309
  76. Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA. 76.  et al. 2010. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7:126–29 [Google Scholar]
  77. Duff A, O'Neill RD. 77.  1994. Effect of probe size on the concentration of brain extracellular uric acid monitored with carbon paste electrodes. J. Neurochem. 62:1496–502 [Google Scholar]
  78. Kruk ZL, Cheeta S, Milla J, Muscat R, Williams JE, Willner P. 78.  1998. Real time measurement of stimulated dopamine release in the conscious rat using fast cyclic voltammetry: Dopamine release is not observed during intracranial self stimulation. J. Neurosci. Methods 79:9–19 [Google Scholar]
  79. Wightman RM, Heien ML, Wassum KM, Sombers LA, Aragona BJ. 79.  et al. 2007. Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur. J. Neurosci. 26:2046–54 [Google Scholar]
  80. Schroeder TJ, Jankowski JA, Senyshyn J, Holz RW, Wightman RM. 80.  1994. Zones of exocytotic release on bovine adrenal medullary cells in culture. J. Biol. Chem. 269:17215–20 [Google Scholar]
  81. Zhang B, Heien ML, Santillo MF, Mellander L, Ewing AG. 81.  2011. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal. Chem. 83:571–77 [Google Scholar]
  82. Lin Y, Trouillon R, Svensson MI, Keighron JD, Cans AS, Ewing AG. 82.  2012. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. Anal. Chem. 84:2949–54 [Google Scholar]
  83. Cui HF, Ye JS, Chen Y, Chong SC, Sheu FS. 83.  2006. Microelectrode array biochip: tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. Anal. Chem. 78:6347–55 [Google Scholar]
  84. Berberian K, Kisler K, Fang Q, Lindau M. 84.  2009. Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Anal. Chem. 81:8734–40 [Google Scholar]
  85. Carabelli V, Gosso S, Marcantoni A, Xu Y, Colombo E. 85.  et al. 2010. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26:92–98 [Google Scholar]
  86. Wang J, Trouillon R, Dunevall J, Ewing AG. 86.  2014. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays. Anal. Chem. 86:4515–20 [Google Scholar]
  87. Wang J, Trouillon R, Lin Y, Svensson MI, Ewing AG. 87.  2013. Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. Anal. Chem. 85:5600–8 [Google Scholar]
  88. Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS. 88.  2010. Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens. Bioelectron. 25:1179–85 [Google Scholar]
  89. Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS. 89.  2010. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:1556–63 [Google Scholar]
  90. Zhang DA, Rand E, Marsh M, Andrews RJ, Lee KH. 90.  et al. 2013. Carbon nanofiber electrode for neurochemical monitoring. Mol. Neurobiol. 48:380–85 [Google Scholar]
  91. Owesson-White CA, Roitman MF, Sombers LA, Belle AM, Keithley RB. 91.  et al. 2012. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 121:252–62 [Google Scholar]
  92. Kulagina NV, Zigmond MJ, Michael AC. 92.  2001. Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neuroscience 102:121–28 [Google Scholar]
  93. Borland LM, Michael AC. 93.  2004. Voltammetric study of the control of striatal dopamine release by glutamate. J. Neurochem. 91:220–29 [Google Scholar]
  94. Chen KC, Budygin EA. 94.  2007. Extracting the basal extracellular dopamine concentrations from the evoked responses: re-analysis of the dopamine kinetics. J. Neurosci. Methods 164:27–42 [Google Scholar]
  95. Bath BD, Michael DJ, Trafton BJ, Joseph JD, Runnels PL, Wightman RM. 95.  2000. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal. Chem. 72:5994–6002 [Google Scholar]
  96. Dengler AK, McCarty GS. 96.  2013. Microfabricated microelectrode sensor for measuring background and slowly changing dopamine concentrations. J. Electroanal. Chem. 693:28–33 [Google Scholar]
  97. Atcherley CW, Laude ND, Parent KL, Heien ML. 97.  2013. Fast-scan controlled-adsorption voltammetry for the quantification of absolute concentrations and adsorption dynamics. Langmuir 29:14885–92 [Google Scholar]
  98. Atcherley CW, Wood KM, Parent KL, Hashemi P, Heien ML. 98.  2015. The coaction of tonic and phasic dopamine dynamics. Chem. Commun 51:2235–38 [Google Scholar]
  99. Lada MW, Vickroy TW, Kennedy RT. 99.  1997. High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 69:4560–65 [Google Scholar]
  100. Hogan BL, Lunte SM, Stobaugh JF, Lunte CE. 100.  1994. On-line coupling of in vivo microdialysis sampling with capillary electrophoresis. Anal. Chem. 66:596–602 [Google Scholar]
  101. Thompson JE, Vickroy TW, Kennedy RT. 101.  1999. Rapid determination of aspartate enantiomers in tissue samples by microdialysis coupled on-line with capillary electrophoresis. Anal. Chem. 71:2379–84 [Google Scholar]
  102. Wang M, Roman GT, Schultz K, Jennings C, Kennedy RT. 102.  2008. Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal. Chem. 80:5607–15 [Google Scholar]
  103. Wang M, Slaney T, Mabrouk O, Kennedy RT. 103.  2010. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution. J. Neurosci. Methods 190:39–48 [Google Scholar]
  104. Slaney TR, Nie J, Hershey ND, Thwar PK, Linderman J. 104.  et al. 2011. Push-pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring. Anal. Chem. 83:5207–13 [Google Scholar]
  105. Armstrong-James M, Fox K, Kruk ZL, Millar J. 105.  1981. Quantitative ionophoresis of catecholamines using multibarrel carbon fibre microelectrodes. J. Neurosci. Methods 4:385–406 [Google Scholar]
  106. Millar J, Barnett TG. 106.  1988. Basic instrumentation for fast cyclic voltammetry. J. Neurosci. Methods 25:91–95 [Google Scholar]
  107. Stamford JA, Palij P, Davidson C, Jorm CM, Millar J. 107.  1993. Simultaneous “real-time” electrochemical and electrophysiological recording in brain slices with a single carbon-fibre microelectrode. J. Neurosci. Methods 50:279–90 [Google Scholar]
  108. Belle AM, Owesson-White C, Herr NR, Carelli RM, Wightman RM. 108.  2013. Controlled iontophoresis coupled with fast-scan cyclic voltammetry/electrophysiology in awake, freely moving animals. ACS Chem. Neurosci. 4:761–71 [Google Scholar]
  109. Herr NR, Wightman RM. 109.  2013. Improved techniques for examining rapid dopamine signaling with iontophoresis. Front. Biosci. 5:249–57 [Google Scholar]
  110. Herr NR, Kile BM, Carelli RM, Wightman RM. 110.  2008. Electroosmotic flow and its contribution to iontophoretic delivery. Anal. Chem. 80:8635–41 [Google Scholar]
  111. Takmakov P, McKinney CJ, Carelli RM, Wightman RM. 111.  2011. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals. Rev. Sci. Instrum. 82:074302 [Google Scholar]
  112. Bucher ES, Brooks K, Verber MD, Keithley RB, Owesson-White C. 112.  et al. 2013. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis. Anal. Chem. 85:10344–53 [Google Scholar]
  113. Murray B, Shizgal P. 113.  1994. Evidence implicating both slow- and fast-conducting fibers in the rewarding effect of medial forebrain bundle stimulation. Behav. Brain Res. 63:47–60 [Google Scholar]
  114. Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J. 114.  et al. 2006. Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences. Behav. Neurosci. 120:888–904 [Google Scholar]
  115. Wise RA. 115.  1996. Addictive drugs and brain stimulation reward. Annu. Rev. Neurosci. 19:319–40 [Google Scholar]
  116. Sunsay C, Rebec GV. 116.  2014. Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning. Behav. Neurosci. 128:579–87 [Google Scholar]
  117. Cheer JF, Aragona BJ, Heien ML, Seipel AT, Carelli RM, Wightman RM. 117.  2007. Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 54:237–44 [Google Scholar]
  118. Cheer JF, Heien ML, Garris PA, Carelli RM, Wightman RM. 118.  2005. Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: implications for intracranial self-stimulation. PNAS 102:19150–55 [Google Scholar]
  119. Kirkpatrick DC, Edwards MA, Flowers PA, Wightman RM. 119.  2014. Characterization of solute distribution following iontophoresis from a micropipet. Anal. Chem. 86:9909–16 [Google Scholar]
  120. Sang JH. 120.  2001. Drosophila melanogaster: the fruit fly. Encyclopedia of Genetics ECR Reeve 157–62 London: Fitzroy Dearborn [Google Scholar]
  121. Ito M, Masuda N, Shinomiya K, Endo K, Ito K. 121.  2013. Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr. Biol. 23:644–55 [Google Scholar]
  122. Sokolowski MB. 122.  2001. Drosophila: Genetics meets behaviour. Nat. Rev. Genet. 2:879–90 [Google Scholar]
  123. Monastirioti M. 123.  1999. Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc. Res. Tech. 45:106–21 [Google Scholar]
  124. Berglund EC, Makos MA, Keighron JD, Phan N, Heien ML, Ewing AG. 124.  2013. Oral administration of methylphenidate blocks the effect of cocaine on uptake at the Drosophila dopamine transporter. ACS Chem. Neurosci. 4:566–74 [Google Scholar]
  125. Makos MA, Han KA, Heien ML, Ewing AG. 125.  2010. Using in vivo electrochemistry to study the physiological effects of cocaine and other stimulants on the Drosophila melanogaster dopamine transporter. ACS Chem. Neurosci. 1:74–83 [Google Scholar]
  126. Makos MA, Kim YC, Han KA, Heien ML, Ewing AG. 126.  2009. In vivo electrochemical measurements of exogenously applied dopamine in Drosophila melanogaster. Anal. Chem. 81:1848–54 [Google Scholar]
  127. Xiao N, Privman E, Venton BJ. 127.  2014. Optogenetic control of serotonin and dopamine release in Drosophila larvae. ACS Chem. Neurosci. 5:666–73 [Google Scholar]
  128. Vickrey TL, Condron B, Venton BJ. 128.  2009. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal. Chem. 81:9306–13 [Google Scholar]
  129. Borue X, Cooper S, Hirsh J, Condron B, Venton BJ. 129.  2009. Quantitative evaluation of serotonin release and clearance in Drosophila. J. Neurosci. Methods 179:300–8 [Google Scholar]
  130. Vickrey TL, Venton BJ. 130.  2011. Drosophila dopamine2-like receptors function as autoreceptors. ACS Chem. Neurosci. 2:723–29 [Google Scholar]
  131. Johannessen JN, Chiueh CC, Burns RS, Markey SP. 131.  1985. Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects. Life Sci. 36:219–24 [Google Scholar]
  132. Schober A. 132.  2004. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res. 318:215–24 [Google Scholar]
  133. Cragg SJ, Hille CJ, Greenfield SA. 133.  2000. Dopamine release and uptake dynamics within nonhuman primate striatum in vitro. J. Neurosci. 20:8209–17 [Google Scholar]
  134. Cragg SJ, Hille CJ, Greenfield SA. 134.  2002. Functional domains in dorsal striatum of the nonhuman primate are defined by the dynamic behavior of dopamine. J. Neurosci. 22:5705–12 [Google Scholar]
  135. Cragg SJ. 135.  2003. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J. Neurosci. 23:4378–85 [Google Scholar]
  136. Lindsay WS, Herndon JG Jr, Blakely RD, Justice JB Jr, Neill DB. 136.  1981. Voltammetric recording from neostriatum of behaving rhesus monkey. Brain Res. 220:391–96 [Google Scholar]
  137. Gerhardt GA, Cass WA, Hudson J, Henson M, Zhang Z. 137.  et al. 1996. In vivo electrochemical studies of dopamine overflow and clearance in the striatum of normal and MPTP-treated rhesus monkeys. J. Neurochem. 66:579–88 [Google Scholar]
  138. Yoshimi K, Naya Y, Mitani N, Kato T, Inoue M. 138.  et al. 2011. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci. Res. 71:49–62 [Google Scholar]
  139. Earl CD, Sautter J, Xie J, Kruk ZL, Kupsch A, Oertel WH. 139.  1998. Pharmacological characterisation of dopamine overflow in the striatum of the normal and MPTP-treated common marmoset, studied in vivo using fast cyclic voltammetry, nomifensine and sulpiride. J. Neurosci. Methods 85:201–9 [Google Scholar]
  140. Hearn J. 140.  1983. The common marmoset (Callithrix jacchus). Reproduction in New World Primates J Hearn 181–215 Netherlands: Springer [Google Scholar]
  141. Grand TI. 141.  1977. Body weight: its relation to tissue composition, segment distribution, and motor function II. Development of Macaca mulatta. Am. J. Phys. Anthropol. 47:241–48 [Google Scholar]
  142. Ariansen JL, Heien ML, Hermans A, Phillips PE, Hernadi I. 142.  et al. 2012. Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates. Front. Behav. Neurosci. 6:36 [Google Scholar]
  143. Heales DS. 143.  1999. pH and brain function. Brain 122:1794–96 [Google Scholar]
  144. Schluter EW, Mitz AR, Cheer JF, Averbeck BB. 144.  2014. Real-time dopamine measurement in awake monkeys. PLOS ONE 9:e98692 [Google Scholar]
  145. Stefurak T, Mikulis D, Mayberg H, Lang AE, Hevenor S. 145.  et al. 2003. Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: a functional MRI case study. Mov. Disord. 18:1508–16 [Google Scholar]
  146. Sachdev PS, Mohan A, Cannon E, Crawford JD, Silberstein P. 146.  et al. 2014. Deep brain stimulation of the antero-medial globus pallidus interna for Tourette syndrome. PLOS ONE 9:e104926 [Google Scholar]
  147. Laxpati NG, Kasoff WS, Gross RE. 147.  2014. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11:508–26 [Google Scholar]
  148. Figee M, de Koning P, Klaassen S, Vulink N, Mantione M. 148.  et al. 2014. Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol. Psychiatry 75:647–52 [Google Scholar]
  149. van Dijk A, Klompmakers AA, Feenstra MG, Denys D. 149.  2012. Deep brain stimulation of the accumbens increases dopamine, serotonin, and noradrenaline in the prefrontal cortex. J. Neurochem. 123:897–903 [Google Scholar]
  150. Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Saez I. 150.  et al. 2011. Sub-second dopamine detection in human striatum. PLOS ONE 6:e23291 [Google Scholar]
  151. Kasasbeh A, Lee K, Bieber A, Bennet K, Chang SY. 151.  2013. Wireless neurochemical monitoring in humans. Stereotact. Funct. Neurosurg. 91:141–47 [Google Scholar]
  152. Chang SY, Kim I, Marsh MP, Jang DP, Hwang SC. 152.  et al. 2012. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin. Proc. 87:760–65 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040426
Loading
/content/journals/10.1146/annurev-anchem-071114-040426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error