1932

Abstract

DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020051
2015-07-22
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071213-020051.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020051&mimeType=html&fmt=ahah

Literature Cited

  1. Russell WMS, Burch RL. 1.  1959. The Principles of Humane Experimental Technique London: Methuen
  2. Bradlaw JA. 2.  1986. Evaluation of drug and chemical toxicity with cell culture systems. Fundam. Appl. Toxicol. 6:598–606 [Google Scholar]
  3. Scherer WF, Syverton JT, Gey GO. 3.  1953. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 97:695–710 [Google Scholar]
  4. Zucco F, De Angelis I, Testai E, Stammati A. 4.  2004. Toxicology investigations with cell culture systems: 20 years after. Toxicol. Vitro 18:153–63 [Google Scholar]
  5. Hartung T, Rovida C. 5.  2009. Chemical regulators have overreached. Nature 460:1080–81 [Google Scholar]
  6. Freshney IR. 6.  2010. The Culture of Animal Cells: A Manual of Basic Technique Hoboken, NJ: Wiley
  7. Hofmann U, Michaelis S, Winckler T, Wegener J, Feller KH. 7.  2013. A whole-cell biosensor as in vitro alternative to skin irritation tests. Biosens. Bioelectron. 39:156–62 [Google Scholar]
  8. Wada K, Taniguchi A, Kobayashi J, Yamato M, Okano T. 8.  2008. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system. Biotechnol. Bioeng. 99:1513–17 [Google Scholar]
  9. Fendyur A, Varma S, Lo CT, Voldman J. 9.  2014. Cell-based biosensor to report DNA damage in micro- and nanosystems. Anal. Chem. 86:7598–605 [Google Scholar]
  10. Emter R, Ellis G, Natsch A. 10.  2010. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol. Appl. Pharmacol. 245:281–90 [Google Scholar]
  11. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J. 11.  2004. Use and application of stem cells in toxicology. Toxicol. Sci. 79:214–23 [Google Scholar]
  12. Sumantran VN. 12.  2011. Cellular chemosensitivity assays: an overview. Methods Mol. Biol. 731:219–36 [Google Scholar]
  13. Bratosin D, Mitrofan L, Palii C, Estaquier J, Montreuil J. 13.  2005. Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A 66:78–84 [Google Scholar]
  14. Marquis BJ, Love SA, Braun KL, Haynes CL. 14.  2009. Analytical methods to assess nanoparticle toxicity. Analyst 134:425–39 [Google Scholar]
  15. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. 15.  2008. Molecular mechanisms and pathophysiology of necrotic cell death. Curr. Mol. Med. 8:207–20 [Google Scholar]
  16. Cairrao F, Domingos P. 16.  2010. Apoptosis: molecular mechanisms. Encyclopedia of Life Sciences Chichester, UK: Wiley doi: 10.1002/9780470015902.a0001150.pub2 [Google Scholar]
  17. Robertson JD, Orrenius S. 17.  2000. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit. Rev. Toxicol. 30:609–27 [Google Scholar]
  18. Tsujimoto Y. 18.  2012. Multiple ways to die: non-apoptotic forms of cell death. Acta Oncol. 51:3293–300 [Google Scholar]
  19. Gobe G, Harmon B. 19.  2008. Apoptosis: morphological criteria and other assays. Encyclopedia of Life Sciences Chichester, UK: Wiley doi: 10.1002/9780470015902.a0002569.pub3 [Google Scholar]
  20. McConkey DJ. 20.  1998. Biochemical determinants of apoptosis and necrosis. Toxicol. Lett. 99:157–68 [Google Scholar]
  21. Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV. 21.  et al. 2013. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61:117–29 [Google Scholar]
  22. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. 22.  1998. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9 [Google Scholar]
  23. Negoescu A, Lorimier P, Labat-Moleur F, Drouet C, Robert C. 23.  et al. 1996. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J. Histochem. Cytochem. 44:959–68 [Google Scholar]
  24. Weiss DG. 24.  1987. Videomicroscopic measurements in living cells: dynamic determination of multiple end points for in vitro toxicology. Mol. Toxicol. 1:465–88 [Google Scholar]
  25. Rettig JR, Folch A. 25.  2005. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 77:5628–34 [Google Scholar]
  26. Conrad C, Erfle H, Warnat P, Daigle N, Lorch T. 26.  et al. 2004. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14:1130–36 [Google Scholar]
  27. Bayyoud T, Hofmann J, Spitzer M, Bartz-Schmidt KU, Yoeruek E. 27.  2014. Cytotoxic properties of sunitinib and sorafenib on human corneal epithelial cells. Curr. Eye Res. 39:149–54 [Google Scholar]
  28. Falck Miniotis M, Mukwaya A, Gjorloff Wingren A. 28.  2014. Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells. PLoS ONE 9:e106546 [Google Scholar]
  29. Rappaz B, Breton B, Shaffer E, Turcatti G. 29.  2014. Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening. Comb. Chem. High Throughput Screen. 17:80–88 [Google Scholar]
  30. Bettenworth D, Lenz P, Krausewitz P, Bruckner M, Ketelhut S. 30.  et al. 2014. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy. PLoS ONE 9:e107317 [Google Scholar]
  31. Mir TA, Shinohara H. 31.  2012. Label-free observation of three-dimensional morphology change of a single PC12 cell by digital holographic microscopy. Anal. Biochem. 429:53–57 [Google Scholar]
  32. Shinohara H, Sakai Y, Mir TA. 32.  2013. Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal. Biochem. 441:185–9 [Google Scholar]
  33. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T. 33.  et al. 2014. Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14:4948–59 [Google Scholar]
  34. Horii M, Shinohara H, Iribe Y, Suzuki M. 34.  2011. Living cell-based allergen sensing using a high resolution two-dimensional surface plasmon resonance imager. Analyst 136:2706–11 [Google Scholar]
  35. Robelek R. 35.  2009. Surface plasmon resonance sensors in cell biology: basics and application. Bioanal. Rev. 1:57–72 [Google Scholar]
  36. Peterson AW, Halter M, Tona A, Bhadriraju K, Plant AL. 36.  2010. Using surface plasmon resonance imaging to probe dynamic interactions between cells and extracellular matrix. Cytometry A 77A:895–903 [Google Scholar]
  37. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J. 37.  2006. Resonant waveguide grating biosensor for living cell sensing. Biophys. J. 91:1925–40 [Google Scholar]
  38. Fang Y. 38.  2010. Live cell optical sensing for high throughput applications. Adv. Biochem. Eng. Biotechnol. 118:153–63 [Google Scholar]
  39. Deng H, Wang C, Su M, Fang Y. 39.  2012. Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole cell assays. Anal. Chem. 84:8232–39 [Google Scholar]
  40. Giaever I, Keese CR. 40.  1984. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. USA 81:3761–64 [Google Scholar]
  41. Wegener J, Seebach J. 41.  2014. Experimental tools to monitor the dynamics of endothelial barrier function: a survey of in vitro approaches. Cell Tissue Res. 355:485–514 [Google Scholar]
  42. Wegener J, Keese CR, Giaever I. 42.  2000. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259:158–66 [Google Scholar]
  43. Keese CR, Wegener J, Walker SR, Giaever I. 43.  2004. Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. USA 101:1554–59 [Google Scholar]
  44. Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM. 44.  2009. Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24:2625–29 [Google Scholar]
  45. Tran TB, Nguyen PD, Um SH, Son SJ, Min J. 45.  2013. Real-time monitoring in vitro cellular cytotoxicity of silica nanotubes using electric cell-substrate impedance sensing (ECIS). J. Biomed. Nanotechnol. 9:286–90 [Google Scholar]
  46. Curtis TM, Widder MW, Brennan LM, Schwager SJ, van der Schalie WH. 46.  et al. 2009. A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9:2176–83 [Google Scholar]
  47. Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J. 47.  2004. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 19:583–94 [Google Scholar]
  48. Angres B. 48.  2005. Cell microarrays. Expert Rev. Mol. Diagn 5:769–79 [Google Scholar]
  49. Gidrol X, Fouque B, Ghenim L, Haguet V, Picollet-D'hahan N, Schaack B. 49.  2009. 2D and 3D cell microarrays in pharmacology. Curr. Opin. Pharmacol. 9:664–68 [Google Scholar]
  50. Melamed S, Elad T, Belkin S. 50.  2012. Microbial sensor cell arrays. Curr. Opin. Biotechnol. 23:2–8 [Google Scholar]
  51. Elad T, Lee JH, Belkin S, Gu MB. 51.  2008. Microbial whole-cell arrays. Microb. Biotechnol. 1:137–48 [Google Scholar]
  52. Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP. 52.  et al. 2004. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327:200–8 [Google Scholar]
  53. Beske O, Bassoni D, Goldbard S. 53.  2007. Use of the CellCard System for analyzing multiple cell types in parallel. Methods Mol. Biol. 356:129–38 [Google Scholar]
  54. Beske O, Goldbard S, Turpin P. 54.  2005. The CellCard System: a novel approach to assessing compound selectivity for lead prioritization of G protein-coupled receptors. Comb. Chem. High Throughput Screen. 8:293–99 [Google Scholar]
  55. Chen T, Hansen G, Beske O, Yates K, Zhu Y. 55.  et al. 2005. Analysis of cellular events using CellCard System in cell-based high-content multiplexed assays. Expert Rev. Mol. Diagn. 5:817–29 [Google Scholar]
  56. Nam SH, Lee HJ, Son KJ, Koh WG. 56.  2011. Non-positional cell microarray prepared by shape-coded polymeric microboards: a new microarray format for multiplex and high throughput cell-based assays. Biomicrofluidics 5:32001–110 [Google Scholar]
  57. Chen DS, Davis MM. 57.  2006. Molecular and functional analysis using live cell microarrays. Curr. Opin. Chem. Biol. 10:28–34 [Google Scholar]
  58. Belov L, de la Vega O, dos Remedios CG, Mulligan SP, Christopherson RI. 58.  2001. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. 61:4483–89 [Google Scholar]
  59. Nimrichter L, Gargir A, Gortler M, Altstock RT, Shtevi A. 59.  et al. 2004. Intact cell adhesion to glycan microarrays. Glycobiology 14:197–203 [Google Scholar]
  60. Zheng T, Peelen D, Smith LM. 60.  2005. Lectin arrays for profiling cell surface carbohydrate expression. J. Am. Chem. Soc. 127:9982–83 [Google Scholar]
  61. Soen Y, Chen DS, Kraft DL, Davis MM, Brown PO. 61.  2003. Detection and characterization of cellular immune responses using peptide-MHC microarrays. PLoS Biol. 1:E65 [Google Scholar]
  62. Papp K, Szittner Z, Prechl J. 62.  2012. Life on a microarray: assessing live cell functions in a microarray format. Cell Mol. Life Sci. 69:2717–25 [Google Scholar]
  63. Kato K, Umezawa K, Miyake M, Miyake J, Nagamune T. 63.  2004. Transfection microarray of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified glass slide. Biotechniques 37:444–48, 50, 52 [Google Scholar]
  64. Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R. 64.  2005. Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials 26:4892–97 [Google Scholar]
  65. Bailey SN, Sabatini DM, Stockwell BR. 65.  2004. Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc. Natl. Acad. Sci. USA 101:16144–49 [Google Scholar]
  66. Gopalakrishnan SM, Moreland RB, Kofron JL, Helfrich RJ, Gubbins E. 66.  et al. 2003. A cell-based microarrayed compound screening format for identifying agonists of G-protein-coupled receptors. Anal. Biochem. 321:192–201 [Google Scholar]
  67. Wilson WC Jr, Boland T. 67.  2003. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 272:491–96 [Google Scholar]
  68. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. 68.  2005. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99 [Google Scholar]
  69. Gray DS, Tan JL, Voldman J, Chen CS. 69.  2004. Dielectrophoretic registration of living cells to a microelectrode array. Biosens. Bioelectron. 19:1765–74 [Google Scholar]
  70. Albrecht DR, Tsang VL, Sah RL, Bhatia SN. 70.  2005. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5:111–18 [Google Scholar]
  71. Shafiee H, Caldwell JL, Sano MB, Davalos RV. 71.  2009. Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdevices 11:997–1006 [Google Scholar]
  72. Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV. 72.  2010. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–45 [Google Scholar]
  73. Hardelauf H, Frimat JP, Stewart JD, Schormann W, Chiang YY. 73.  et al. 2011. Microarrays for the scalable production of metabolically relevant tumor spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11:419–28 [Google Scholar]
  74. Karp JM, Yeh J, Eng G, Fukuda J, Blumling J. 74.  et al. 2007. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7:786–94 [Google Scholar]
  75. Fukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J. 75.  et al. 2006. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27:5259–67 [Google Scholar]
  76. Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J 3rd. 76.  et al. 2006. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J. Biomed. Mater. Res. A 79:522–32 [Google Scholar]
  77. Wu J, Wheeldon I, Guo Y, Lu T, Du Y. 77.  et al. 2011. A sandwiched microarray platform for benchtop cell-based high throughput screening. Biomaterials 32:841–48 [Google Scholar]
  78. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JM. 78.  2009. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 27:342–49 [Google Scholar]
  79. Fernandes TG, Kwon SJ, Bale SS, Lee MY, Diogo MM. 79.  et al. 2010. Three-dimensional cell culture microarray for high-throughput studies of stem cell fate. Biotechnol. Bioeng. 106:106–18 [Google Scholar]
  80. Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. 80.  2008. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105:59–63 [Google Scholar]
  81. Lee MY, Park CB, Dordick JS, Clark DS. 81.  2005. Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc. Natl. Acad. Sci. USA 102:983–87 [Google Scholar]
  82. Lee MY, Dordick JS, Clark DS. 82.  2010. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening. Methods Mol. Biol. 632:221–37 [Google Scholar]
  83. Kwon CH, Wheeldon I, Kachouie NN, Lee SH, Bae H. 83.  et al. 2011. Drug-eluting microarrays for cell-based screening of chemical-induced apoptosis. Anal. Chem. 83:4118–25 [Google Scholar]
  84. Ziauddin J, Sabatini DM. 84.  2001. Microarrays of cells expressing defined cDNAs. Nature 411:107–10 [Google Scholar]
  85. Yarmush ML, King KR. 85.  2009. Living-cell microarrays. Annu. Rev. Biomed. Eng. 11:235–57 [Google Scholar]
  86. Vanhecke D, Janitz M. 86.  2004. High-throughput gene silencing using cell arrays. Oncogene 23:8353–58 [Google Scholar]
  87. Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S. 87.  et al. 2004. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther. 3:1365–74 [Google Scholar]
  88. Mueller H, Kassack MU, Wiese M. 88.  2004. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen. 9:506–15 [Google Scholar]
  89. Dunn DA, Feygin I. 89.  2000. Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Discov. Today 5:84–91 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020051
Loading
/content/journals/10.1146/annurev-anchem-071213-020051
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error