1932

Abstract

Light-emitting diodes (LEDs) are playing increasingly important roles in analytical chemistry, from the final analysis stage to photoreactors for analyte conversion to actual fabrication of and incorporation in microdevices for analytical use. The extremely fast turn-on/off rates of LEDs have made possible simple approaches to fluorescence lifetime measurement. Although they are increasingly being used as detectors, their wavelength selectivity as detectors has rarely been exploited. From their first proposed use for absorbance measurement in 1970, LEDs have been used in analytical chemistry in too many ways to make a comprehensive review possible. Hence, we critically review here the more recent literature on their use in optical detection and measurement systems. Cloudy as our crystal ball may be, we express our views on the future applications of LEDs in analytical chemistry: The horizon will certainly become wider as LEDs in the deep UV with sufficient intensity become available.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020059
2014-06-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020059.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020059&mimeType=html&fmt=ahah

Literature Cited

  1. Cooke M. 1.  2010. Going deep for UV sterilization LEDs. Semicond. Today 5:382–88 [Google Scholar]
  2. Zukauskas A, Vaicekauskas R, Vitta P. 2.  2012. Optimization of solid-state lamps for photobiologically friendly mesopic lighting. Appl. Opt. 51:8423–32 [Google Scholar]
  3. Piasecki T, Breadmore MC, Macka M. 3.  2010. White LEDs as broad spectrum light sources for spectrophotometry: demonstration in the visible spectrum range in a diode-array spectrophotometric detector. Electrophoresis 31:3737–44 [Google Scholar]
  4. Chang MH, Das D, Varde PV, Pecht M. 4.  2012. Light emitting diodes reliability review. Microelectron. Reliability 52:762–82 [Google Scholar]
  5. Palucka T.5.  2012. 50 years ago: How Holonyak won the race to invent visible LEDs. MRS Bull. 37:963–66 [Google Scholar]
  6. Schubert EF.6.  2006. Light-Emitting Diodes Cambridge, UK: Cambridge Univ. Press431
  7. Krames MR, Shchekin OB, Mueller-Mach R, Mueller GO, Zhou L. 7.  et al. 2007. Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3:160–75 [Google Scholar]
  8. Dasgupta PK, Bellamy HS, Liu H, Lopez JL, Loree EL. 8.  et al. 1993. Light emitting diode based flow-through optical absorption detectors. Talanta 40:53–74 [Google Scholar]
  9. Dasgupta PK, Eom IY, Morris KJ, Li J. 9.  2003. Light emitting diode-based detectors: absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell. Anal. Chim. Acta 500:337–64 [Google Scholar]
  10. Landgraf S.10.  2001. Application of semiconductor light sources for investigations of photochemical reactions. Spectrochim. Acta A 57:2029–48 [Google Scholar]
  11. Landgraf S.11.  2003. Application of laser diodes and ultrabright light emitting diodes for static and time resolved optical methods in physical chemistry. Handbook of Luminescence, Display Materials and Devices, Vol. 3, ed. HS Nalwa, LS Rohwer, pp. 371–98 Stevenson Ranch, CA: Am. Sci. Publ. [Google Scholar]
  12. Landgraf S.12.  2004. Semiconductor lights sources in modulation fluorometry using digital storage oscilloscopes. Reviews in Fluorescence 2004 CD Geddes, JR Lakowicz 341–63 New York: Kluwer Acad./Plenum [Google Scholar]
  13. Götz S, Karst U. 13.  2007. Recent developments in optical detection methods for microchip separations. Anal. Bioanal. Chem. 387:183–92 [Google Scholar]
  14. Xiao D, Yan L, Yuan HY, Zhao SL, Yang XP, Choi MMF. 14.  2009. CE with LED-based detection: an update. Electrophoresis 30:189–202 [Google Scholar]
  15. Xiao D, Zhao SL, Yuan HY, Yang XP. 15.  2007. CE detector based on light-emitting diodes. Electrophoresis 28:233–42 [Google Scholar]
  16. Rodat-Boutonnet A, Naccache P, Morin A, Fabre J, Feurer B, Couderc F. 16.  2012. A comparative study of LED-induced fluorescence and laser-induced fluorescence in SDS-CGE: application to the analysis of antibodies. Electrophoresis 33:1709–14 [Google Scholar]
  17. Ryvolová M, Macka M, Brabazon D, Preisler J. 17.  2010. Portable capillary-based (non-chip) capillary electrophoresis. TrAC Trends Anal. Chem. 29:339–53 [Google Scholar]
  18. Kogelnik H, Li T. 18.  1966. Laser beams and resonators. Appl. Opt. 5:1550–67 [Google Scholar]
  19. Rumyantsev SL, Shur MS, Bilenko Y, Kosterin PV, Salzberg BM. 19.  2004. Low frequency noise and long-term stability of noncoherent light sources. J. Appl. Phys. 96:966–69 [Google Scholar]
  20. Lange V, Tüfekcidere H, Kühlke D. 20.  2007. LED temperature sensor. Technisches Mess. 74:408–12 [Google Scholar]
  21. Ribeiro RM, Martins L, Werneck MM. 21.  2005. Wavelength demodulation of ultrabright green light-emitting diodes for electrical current sensing. IEEE 5:38–47 [Google Scholar]
  22. Jambunathan S, Dasgupta PK, Wolcott DK, Marshall GD, Olson DC. 22.  1999. Optical fiber coupled light emitting diode based absorbance detector with a reflective flow cell. Talanta 50:481–90 [Google Scholar]
  23. Alexander TA, Gao G-H, Tran CD. 23.  1997. Development of a novel fluorimeter based on superluminescent light-emitting diodes and acousto-optic tunable filter and its application in the determination of chlorophylls a and b. Appl. Spectrosc. 51:1603–6 [Google Scholar]
  24. Johns C, Macka M, Haddad PR. 24.  2003. Enhancement of detection sensitivity for indirect photometric detection of anions and cations in capillary electrophoresis. Electrophoresis 24:2150–67 [Google Scholar]
  25. Johns C, Macka M, Haddad PR. 25.  2004. Design and performance of a light-emitting diode detector compatible with a commercial capillary electrophoresis instrument. Electrophoresis 25:3145–52 [Google Scholar]
  26. Macka M, Paull B, Andersson P, Haddad PR. 26.  1997. Determination of barium and strontium by capillary zone electrophoresis using an electrolyte containing Sulfonazo III. J. Chromatogr. A 767:303–10 [Google Scholar]
  27. Xue Y, Yeung ES. 27.  1993. Double-beam laser indirect absorption detection in capillary electrophoresis. Anal. Chem. 65:2923–27 [Google Scholar]
  28. Ryer A. 28.  2000. Light Measurement Handbook Newburyport, MA: Int. Light. http://www.dfisica.ubi.pt/∼hgil/Fotometria/HandBook/ch07.html
  29. Labsphere The Radiometry of Light Emitting Diodes North Sutton, NH: Labsphere http://www.labsphere.com/uploads/technical-guides/The%20Radiometry%20of%20Light%20Emitting%20Diodes%20-%20LEDs.pdf
  30. Dupuis RD, Krames MR. 30.  2008. History, development, and applications of high-brightness visible light-emitting diodes. J. Lightwave Technol. 26:1154–71 [Google Scholar]
  31. Wessels JT, Pliquett U, Wouters FS. 31.  2012. Light-emitting diodes in modern microscopy-from David to Goliath?. Cytometry A 81A:188–97 [Google Scholar]
  32. Seidman DS, Moise J, Ergaz Z, Laor A, Vreman HJ. 32.  et al. 2000. A new blue light-emitting phototherapy device: a prospective randomized controlled study. J. Pediatr. 136:771–74 [Google Scholar]
  33. Erdle BJ, Brouxhon S, Kaplan M, VanBuskirk J, Pentland AP. 33.  2008. Effects of continuous-wave (670-nm) red light on wound healing. Dermatol. Surg. 34:320–25 [Google Scholar]
  34. Zhang Y, Sato M, Tanno N. 34.  2001. Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes. Opt. Lett. 26:205–7 [Google Scholar]
  35. Sinex JE.35.  1999. Pulse oximetry: principles and limitations. Am. J. Emerg. Med. 17:59–66 [Google Scholar]
  36. Turel M, Čajlaković M, Austin E, Dakin JP, Uray G, Lobnik A. 36.  2008. Direct UV-LED lifetime pH sensor based on a semi-permeable sol-gel membrane immobilized luminescent Eu3+ chelate complex. Sens. Actuators B 131:247–53 [Google Scholar]
  37. Lau KT, Shepherd R, Diamond D. 37.  2006. Solid state pH sensor based on light emitting diodes (LED) as detector platform. Sensors 6:848–59 [Google Scholar]
  38. de Vargas-Sansalvador IMP, Fay C, Fernandez-Ramos MD, Diamond D, Benito-Lopez F, Capitan-Vallvey LF. 38.  2012. LED-LED portable oxygen gas sensor. Anal. Bioanal. Chem. 404:2851–58 [Google Scholar]
  39. Han C-H, Hong D-W, Han S-D, Gwak J, Singh KC. 39.  2007. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators B 125:224–28 [Google Scholar]
  40. Shepherd RL, Yerazunis WS, Lau KT, Diamond D. 40.  2004. Novel surface mount LED ammonia sensors. Proc. IEEE Sensors 2:951–54 [Google Scholar]
  41. Chang Q, Murtaza Z, Lakowicz JR, Rao G. 41.  1997. A fluorescence lifetime-based solid sensor for water. Anal. Chim. Acta 350:97–104 [Google Scholar]
  42. Yokota M, Okada T, Yamaguchi I. 42.  2007. An optical sensor for analysis of soil nutrients by using LED light sources. Meas. Sci. Technol. 18:2197–201 [Google Scholar]
  43. Aspey RA, Brazier KJ, Spencer JW. 43.  2005. Multiwavelength sensing of smoke using a polychromatic LED: Mie extinction characterization using HLS analysis. IEEE 5:1050–56 [Google Scholar]
  44. Mitsushio M, Higo M. 44.  2012. Metal-deposited optical fiber sensors based on surface plasmon resonance. Bunseki Kagaku 61:999–1011 [Google Scholar]
  45. Anfält T, Granéli A, Strandberg M. 45.  1976. Probe photometer based on optoelectronic components for the determination of total alkalinity in seawater. Anal. Chem. 48:357–60 [Google Scholar]
  46. Mims FM III. 46.  1990. How to monitor ultraviolet radiation from the sun. Sci. Am. 263:106–9 [Google Scholar]
  47. Dietz P, Yerazunis W, Leigh D. 47.  2003. Very low-cost sensing and communication using bidirectional LEDs. UbiComp 2003: Ubiquitous Computing AK Dey, A Schmidt, JF McCarthy 175–91 Berlin/Heidelberg: Springer [Google Scholar]
  48. O'Toole M, Barron L, Shepherd R, Paull B, Nesterenko P, Diamond D. 48.  2009. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction. Analyst 134:124–30 [Google Scholar]
  49. Lau KT, Baldwin S, Shepherd RL, Dietz PH, Yerzunis WS, Diamond D. 49.  2004. Novel fused-LEDs devices as optical sensors for colorimetric analysis. Talanta 63:167–73 [Google Scholar]
  50. O'Toole M, Lau KT, Shepherd R, Slater C, Diamond D. 50.  2007. Determination of phosphate using a highly sensitive paired emitter-detector diode photometric flow detector. Anal. Chim. Acta 597:290–94 [Google Scholar]
  51. Lau KT, Yerazunis WS, Shepherd RL, Diamond D. 51.  2006. Quantitative colorimetric analysis of dye mixtures using an optical photometer based on LED array. Sens. Actuators B 114:819–25 [Google Scholar]
  52. O'Toole M, Lau KT, Shazmann B, Shepherd R, Nesterenko PN. 52.  et al. 2006. Novel integrated paired emitter-detector diode (PEDD) as a miniaturized photometric detector in HPLC. Analyst 131:938–43 [Google Scholar]
  53. Tymecki Ł, Pokrzywnicka M, Koncki R. 53.  2008. Paired emitter detector diode (PEDD)-based photometry—an alternative approach. Analyst 133:1501–4 [Google Scholar]
  54. Tymecki Ł, Koncki R. 54.  2009. Simplified paired-emitter-detector-diodes-based photometry with improved sensitivity. Anal. Chim. Acta 639:73–77 [Google Scholar]
  55. Pokrzywnicka M, Koncki R, Tymecki L. 55.  2009. A very simple photometer based on paired-emitter-detector diodes. Chem. Anal. 54:427–35 [Google Scholar]
  56. Tymecki L, Brodacka L, Rozum B, Koncki R. 56.  2009. UV-PEDD photometry dedicated for bioanalytical uses. Analyst 134:1333–37 [Google Scholar]
  57. Tymecki Ł, Strzelak K, Koncki R. 57.  2009. A single standard calibration module for flow analysis systems based on solenoid microdevices. Talanta 79:205–10 [Google Scholar]
  58. Rozum B, Gajownik K, Tymecki Ł, Koncki R. 58.  2010. Poly(vinyl chloride) tubing with covalently bound alkaline phosphatase and alternative approach for investigations of open-tubular bioreactors. Anal. Biochem. 400:151–53 [Google Scholar]
  59. Mieczkowska E, Koncki R, Tymecki L. 59.  2011. Hemoglobin determination with paired emitter detector diode. Anal. Bioanal. Chem. 399:3293–97 [Google Scholar]
  60. Pokrzywnicka M, Cocovi-Solberg DJ, Miró M, Cerdà V, Koncki R, Tymecki Ł. 60.  2011. Miniaturized optical chemosensor for flow-based assays. Anal. Bioanal. Chem. 399:1381–87 [Google Scholar]
  61. Strzelak K, Koncki R, Tymecki Ł. 61.  2012. Serum alkaline phosphatase assay with paired emitter detector diode. Talanta 96:127–31 [Google Scholar]
  62. Pokrzywnicka M, Tymecki L, Koncki R. 62.  2012. Low-cost optical detectors and flow systems for protein determination. Talanta 96:121–26 [Google Scholar]
  63. Cocovi-Solberg DJ, Miro M, Cerda V, Pokrzywnicka M, Tymecki L, Koncki R. 63.  2012. Towards the development of a miniaturized fiberless optofluidic biosensor for glucose. Talanta 96:113–20 [Google Scholar]
  64. Tymecki Ł, Korszun J, Strzelak K, Koncki R. 64.  2013. Multicommutated flow analysis system for determination of creatinine in physiological fluids by Jaffe method. Anal. Chim. Acta 787:118–25 [Google Scholar]
  65. Tymecki L, Strzelak K, Koncki R. 65.  2013. Biparametric multicommutated flow analysis system for determination of human serum phosphoesterase activity. Anal. Chim. Acta 797:57–63 [Google Scholar]
  66. Koronkiewicz S, Kalinowski S. 66.  2011. A novel direct-injection photometric detector integrated with solenoid pulse-pump flow system. Talanta 86:436–41 [Google Scholar]
  67. Koronkiewicz S, Kalinowski S. 67.  2012. Application of direct-injection detector integrated with the multi-pumping flow system to photometric stop-flow determination of total iron. Talanta 96:68–74 [Google Scholar]
  68. Saetear P, Khamtau K, Ratanawimarnwong N, Sereenonchai K, Nacapricha D. 68.  2013. Sequential injection system for simultaneous determination of sucrose and phosphate in cola drinks using paired emitter-detector diode sensor. Talanta 115:361–66 [Google Scholar]
  69. Bui DA, Hauser PC. 69.  2013. Absorbance measurements with light-emitting diodes as sources: silicon photodiodes or light-emitting diodes as detectors?. Talanta 116:1073–78 [Google Scholar]
  70. Cohen A, Wadsworth N. 70.  1972. A light emitting diode skin reflectance oximeter. Med. Biol. Eng. 10:385–91 [Google Scholar]
  71. Flaschka H, McKeithan C, Barnes RM. 71.  1973. Light emitting diodes and phototransistors in photometric modules. Anal. Lett. 6:585–94 [Google Scholar]
  72. Dallas T, Dasgupta PK. 72.  2004. Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. TrAC Trends Anal. Chem. 23:385–92 [Google Scholar]
  73. Tanaka H, Dasgupta PK, Huang J. 73.  2000. Continuous on-line true titrations by feedback-based flow ratiometry. The principle of compensating errors. Anal. Chem. 72:4713–20 [Google Scholar]
  74. Hamilton JR, White JS, Nakhleh MB. 74.  1996. Development of a low-cost four-color LED photometer. J. Chem. Educ. 73:1052–54 [Google Scholar]
  75. Fonseca A, Raimundo IMJ. 75.  2004. A multichannel photometer based on an array of light-emitting diodes for use in multivariate calibration. Anal. Chim. Acta 522:223–29 [Google Scholar]
  76. Pan JZ, Yao B, Fang Q. 76.  2010. Hand-held photometer based on liquid-core waveguide absorption detection for nanoliter-scale samples. Anal. Chem. 82:3394–98 [Google Scholar]
  77. Gros N.77.  2007. A novel type of tri-colour light-emitting-diode-based spectrometric detector for low-budget flow-injection analysis. Sensors 7:166–84 [Google Scholar]
  78. Shimazaki Y, Watanabe S, Takahashi M, Iwatsuki M. 78.  2000. A portable spectrophotometer using a white-colour light-emitting diode and a charge-coupled device and its application to on-site determination of iron. Anal. Sci. 16:1091–93 [Google Scholar]
  79. Li Q, Morris KJ, Dasgupta PK, Raimundo IM Jr, Temkin H. 79.  2003. Portable flow-injection analyzer with liquid-core waveguide based fluorescence, luminescence, and long path length absorbance detector. Anal. Chim. Acta 479:151–65 [Google Scholar]
  80. Ohira SI, Kirk AB, Dasgupta PK. 80.  2009. Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry. Anal. Biochem. 384:238–44 [Google Scholar]
  81. Pillai AB, Varghese B, Madhusoodanan KN. 81.  2012. Design and development of novel sensors for the determination of fluoride in water. Environ. Sci. Technol. 46:404–9 [Google Scholar]
  82. Supharoek S-A, Youngvises N, Jakmunee J. 82.  2012. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione. Anal. Sci. 28:651–56 [Google Scholar]
  83. Yao YQ, Lu DF, Qi ZM, Xia SH. 83.  2012. Miniaturized optical system for detection of ammonia nitrogen in water based on gas-phase colorimetry. Anal. Lett. 45:2176–84 [Google Scholar]
  84. Choengchan N, Mantim T, Wilairat P, Dasgupta PK, Motomizu S, Nacapricha D. 84.  2006. A membraneless gas diffusion unit: design and its application to determination of ethanol in liquors by spectrophotometric flow injection. Anal. Chim. Acta 579:33–37 [Google Scholar]
  85. Mornane P, van den Haak J, Cardwell TJ, Cattrall RW, Dasgupta PK, Kolev SD. 85.  2007. Thin layer distillation for matrix isolation in flow analysis. Talanta 72:741–46 [Google Scholar]
  86. Tian K, Dasgupta PK. 86.  1999. Automated measurement of lipid hydroperoxides in oil and fat samples by flow injection photometry. Anal. Chem. 71:2053–58 [Google Scholar]
  87. Barreto IS, Lima MB, Andrade SIE, Araujo MCU, Almeida LF. 87.  2013. Using a flow-batch analyzer for photometric determination of Fe(III) in edible and lubricating oils without external pretreatment. Anal. Methods 5:1040–45 [Google Scholar]
  88. Cheng X, Zhang Z, Tian S. 88.  2007. A novel long path length absorbance spectroscopy for the determination of ultra trace organophosphorus pesticides in vegetables and fruits. Spectrochim. Acta A 67:1270–75 [Google Scholar]
  89. Teshima N, Li J, Toda K, Dasgupta PK. 89.  2005. Determination of acetone in breath. Anal. Chim. Acta 535:189–99 [Google Scholar]
  90. Li J, Dasgupta PK. 90.  2003. Selective measurement of gaseous hydrogen peroxide with light emitting diode-based liquid-core waveguide absorbance detector. Anal. Sci. 19:517–23 [Google Scholar]
  91. Toda K, Ohba T, Takaki M, Karthikeyan S, Hirata S, Dasgupta PK. 91.  2005. Speciation-capable field instrument for the measurement of arsenite and arsenate in water. Anal. Chem. 77:4765–73 [Google Scholar]
  92. Amornthammarong N, Zhang JZ. 92.  2009. Liquid-waveguide spectrophotometric measurement of low silicate in natural waters. Talanta 79:621–26 [Google Scholar]
  93. Ma J, Dasgupta PK, Blackledge W, Boss GR. 93.  2010. Cobinamide-based cyanide analysis by multiwavelength spectrometry in a liquid core waveguide. Anal. Chem. 82:6244–50 [Google Scholar]
  94. Ma J, Dasgupta PK, Zelder FH, Boss GR. 94.  2012. Cobinamide chemistries for photometric cyanide determination. A merging zone liquid core waveguide cyanide analyzer using cyanoaquacobinamide. Anal. Chim. Acta 736:78–84 [Google Scholar]
  95. Ma J, Ohira SI, Mishra SK, Puanngam M, Dasgupta PK. 95.  et al. 2011. Rapid point of care analyzer for the measurement of cyanide in blood. Anal. Chem. 83:4319–24 [Google Scholar]
  96. Tian Y, Dasgupta PK, Mahon SB, Ma J, Brenner M. 96.  et al. 2013. A disposable blood cyanide sensor. Anal. Chim. Acta 768:129–35 [Google Scholar]
  97. Seetohul LN, Ali Z, Islam M. 97.  2009. Broadband cavity enhanced absorption spectroscopy as a detector for HPLC. Anal. Chem. 81:4106–12 [Google Scholar]
  98. Zhao WX, Dong ML, Chen WD, Gu XJ, Hu CJ. 98.  et al. 2013. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445–480 nm. Anal. Chem. 85:2260–68 [Google Scholar]
  99. Gomes de Lima KM. 99.  2012. A portable photometer based on LED for the determination of aromatic hydrocarbons in water. Microchem. J. 103:62–67 [Google Scholar]
  100. Fu QB, Wang JM, Lin GN, Suo H, Zhao C. 100.  2012. Short-wave near-infrared spectrometer for alcohol determination and temperature correction. J. Anal. Methods Chem. 2012:728128 [Google Scholar]
  101. Ellis PS, Lyddy-Meaney AJ, Worsfold PJ, McKelvie ID. 101.  2003. Multi-reflection photometric flow cell for use in flow injection analysis of estuarine waters. Anal. Chim. Acta 499:81–89 [Google Scholar]
  102. Mesquita RBR, Santos IC, Bordalo AA, Rangel AOSS. 102.  2012. Sequential injection system exploring the standard addition method for phosphate determination in high salinity samples: interstitial, transitional and coastal waters. Anal. Methods 4:1452–57 [Google Scholar]
  103. Mishra SK, Dasgupta PK. 103.  2007. Capillary scale light emitting diode based multi-reflection absorbance detector. Anal. Chim. Acta 605:166–74 [Google Scholar]
  104. Eom IY, Dasgupta PK. 104.  2006. Frequency-selective absorbance detection: refractive index and turbidity compensation with dual-wavelength measurement. Talanta 69:906–13 [Google Scholar]
  105. Boring CB, Dasgupta PK. 105.  1997. An affordable high-performance optical absorbance detector for capillary systems. Anal. Chim. Acta 342:123–32 [Google Scholar]
  106. Fakhari AR, Breadmore MC, Macka M, Haddad PR. 106.  2006. Non-aqueous capillary electrophoresis with red light emitting diode absorbance detection for the analysis of basic dyes. Anal. Chim. Acta 580:188–93 [Google Scholar]
  107. Vachirapatama N, Macka M, Haddad PR. 107.  2002. Separation and determination of vanadium in fertilizer by capillary electrophoresis with a light-emitting diode detector. Anal. Bioanal. Chem. 374:1082–85 [Google Scholar]
  108. Vachirapatama N, Doble P, Yu Z, Macka M, Haddad PR. 108.  2001. Separation of niobium(V) and tantalum(V) as ternary complexes with citrate and metallochromic ligands by capillary electrophoresis. Anal. Chim. Acta 434:301–7 [Google Scholar]
  109. Johns C, Macka M, Haddad PR. 109.  2000. Indirect photomeric detection of anions in capillary electrophoresis using dyes as probes and electrolytes buffered with an isoelectric ampholyte. Electrophoresis 21:1312–19 [Google Scholar]
  110. Macka M, Andersson P, Haddad PR. 110.  1996. Linearity evaluation in absorbance detection: the use of light-emitting diodes for on-capillary detection in capillary electrophoresis. Electrophoresis 17:1898–905 [Google Scholar]
  111. Johns C, Macka M, Haddad PR, King M, Paull B. 111.  2001. Practical method for evaluation of linearity and effective pathlength of on-capillary photometric detectors in capillary electrophoresis. J. Chromatogr. A 927:237–41 [Google Scholar]
  112. Krčmová L, Stjernlof A, Mehlen S, Hauser PC, Abele S. 112.  et al. 2009. Deep-UV-LEDs in photometric detection: a 255 nm LED on-capillary detector in capillary electrophoresis. Analyst 134:2394–96 [Google Scholar]
  113. Ryvolová M, Preisler J, Foret F, Hauser PC, Krásenský P. 113.  et al. 2010. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods. Anal. Chem. 82:129–35 [Google Scholar]
  114. Hagsäter SM, Westergaard CH, Bruus H, Kutter JP. 114.  2008. Investigations on LED illumination for micro-PIV including a novel front-lit configuration. Exp. Fluids 44:211–19 [Google Scholar]
  115. Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D. 115.  et al. 2006. Lab-on-a-chip with integrated optical transducers. Lab Chip 6:213–17 [Google Scholar]
  116. Mogensen KB, Klank H, Kutter JP. 116.  2004. Recent developments in detection for microfluidic systems. Electrophoresis 25:3498–512 [Google Scholar]
  117. Landers JP. 117.  2008. Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques Boca Raton, FL: CRC1567
  118. Kuswandi B, Nuriman, Huskens J, Verboom W. 118.  2007. Optical sensing systems for microfluidic devices: a review. Anal. Chim. Acta 601:141–55 [Google Scholar]
  119. Tanriseven S, Maaskant P, Corbett B. 119.  2008. Broadband quantum dot micro-light-emitting diodes with parabolic sidewalls. Appl. Phys. Lett. 92:123501 [Google Scholar]
  120. Lakowicz JR, Masters BR. 120.  2008. Principles of Fluorescence Spectroscopy New York: Springer9,901
  121. Szmacinski H, Chang Q. 121.  2000. Micro- and sub-nanosecond lifetime measurements using a UV light-emitting diode. Appl. Spectrosc. 54:106–9 [Google Scholar]
  122. Herman P, Maliwal BP, Lin HJ, Lakowicz JR. 122.  2001. Frequency-domain fluorescence microscopy with the LED as a light source. J. Microsc. 203:176–81 [Google Scholar]
  123. Herman P, Vecer J. 123.  2008. Frequency domain fluorometry with pulsed light-emitting diodes. Ann. NY Acad. Sci.113056–61
  124. Taniyasu Y, Kasu M, Makimoto T. 124.  2006. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441:325–28 [Google Scholar]
  125. Jin D, Connally R, Piper J. 125.  2006. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications. J. Phys. D 39:461–65 [Google Scholar]
  126. de Jong EP, Lucy CA. 126.  2006. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence. Analyst 131:664–69 [Google Scholar]
  127. de Jong EP, Lucy CA. 127.  2005. Spectral filtering of light-emitting diodes for fluorescence detection. Anal. Chim. Acta 546:37–45 [Google Scholar]
  128. Dang F, Zhang L, Hagiwara H, Mishina Y, Baba Y. 128.  2003. Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection. Electrophoresis 24:714–21 [Google Scholar]
  129. Dang F, Kakehi K, Nakajima K, Shinohara Y, Ishikawa M. 129.  et al. 2006. Rapid analysis of oligosaccharides derived from glycoproteins by microchip electrophoresis. J. Chromatogr. A 1109:138–43 [Google Scholar]
  130. Dang F, Zhang L, Jabasini M, Kaji N, Baba Y. 130.  2003. Characterization of electrophoretic behavior of sugar isomers by microchip electrophoresis coupled with videomicroscopy. Anal. Chem. 75:2433–39 [Google Scholar]
  131. Novak L, Neuzil P, Pipper J, Zhang Y, Lee S. 131.  2007. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7:27–29 [Google Scholar]
  132. Dasgupta PK, Li Q, Temkin H, Crawford MH, Fischer AJ. 132.  et al. 2004. Applications of deep UV LEDs to chemical and biological sensing. Proc. SPIE 5530:25–32 [Google Scholar]
  133. Li Q, Dasgupta PK, Temkin H, Crawford MH, Fischer AJ. 133.  et al. 2004. Mid-ultraviolet light-emitting diode detects dipicolinic acid. Appl. Spectrosc. 58:1360–63 [Google Scholar]
  134. Tedetti M, Joffre P, Goutx M. 134.  2013. Development of a field-portable fluorometer based on deep ultraviolet LEDs for the detection of phenanthrene- and tryptophan-like compounds in natural waters. Sens. Actuators B 182:416–23 [Google Scholar]
  135. Toda K, Dasgupta PK, Li J, Tarver GA, Zarus GM. 135.  2001. Fluorometric field instrument for continuous measurement of atmospheric hydrogen sulfide. Anal. Chem. 73:5716–24 [Google Scholar]
  136. Toda K, Dasgupta PK, Li JZ, Tarver GA, Zarus GM, Ohira S-I. 136.  2001. Measurement of atmospheric hydrogen sulfide by continuous flow fluorometry. Anal. Sci. 17:i407–10 [Google Scholar]
  137. Li J, Dasgupta PK, Luke W. 137.  2005. Measurement of gaseous and aqueous trace formaldehyde: revisiting the pentanedione reaction and field applications. Anal. Chim. Acta 531:51–68 [Google Scholar]
  138. Eom IY, Li Q, Li J, Dasgupta PK. 138.  2008. Robust hybrid flow analyzer for formaldehyde. Environ. Sci. Technol. 42:1221–26 [Google Scholar]
  139. Amornthammarong N, Jakmunee J, Li J, Dasgupta PK. 139.  2006. Hybrid fluorometric flow analyzer for ammonia. Anal. Chem. 78:1890–96 [Google Scholar]
  140. Toda K, Koga T, Kosuge J, Kashiwagi M, Oguchi H, Arimoto T. 140.  2009. Micro gas analyzer measurement of nitric oxide in breath by direct wet scrubbing and fluorescence detection. Anal. Chem. 81:7031–37 [Google Scholar]
  141. Amornthammarong N, Zhang JZ. 141.  2008. Shipboard fluorometric flow analyzer for high-resolution underway measurement of ammonium in seawater. Anal. Chem. 80:1019–26 [Google Scholar]
  142. Amornthammarong N, Zhang JZ, Ortner PB, Stamates J, Shoemaker M, Kindel MW. 142.  2013. A portable analyser for the measurement of ammonium in marine waters. Environ. Sci. Processes Impacts 15:579–84 [Google Scholar]
  143. Amornthammarong N, Zhang JZ, Ortner PB. 143.  2011. An autonomous batch analyzer for the determination of trace ammonium in natural waters using fluorometric detection. Anal. Methods 3:1501–6 [Google Scholar]
  144. Teerasong S, Amornthammarong N, Grudpan K, Teshima N, Sakai T. 144.  et al. 2010. A multiple processing hybrid flow system for analysis of formaldehyde contamination in food. Anal. Sci. 26:629–33 [Google Scholar]
  145. Pokrzywnicka M, Fiedoruk M, Koncki R. 145.  2012. Compact optoelectronic flow-through device for fluorometric determination of calcium ions. Talanta 93:106–10 [Google Scholar]
  146. Lacki P, Nowakowski A, Dress P, Franke H. 146.  1999. Fluorescence measurements with liquid core wave-guide. Proc. SPIE 3730:112–17 [Google Scholar]
  147. Dasgupta PK, Genfa Z, Li J, Boring CB, Jambunathan S, Al-Horr R. 147.  1999. Luminescence detection with a liquid core waveguide. Anal. Chem. 71:1400–7 [Google Scholar]
  148. Strzelak K, Koncki R. 148.  2013. Nephelometry and turbidimetry with paired emitter detector diodes and their application for determination of total urinary protein. Anal. Chim. Acta 788:68–73 [Google Scholar]
  149. Ye TX, He CY, Qu YQ, Deng Z, Jiang YQ. 149.  et al. 2012. A simple colorimetric device for rapid detection of Hg2+ in water. Analyst 137:4131–34 [Google Scholar]
  150. Xu SX, Zhang XF, Liu WW, Sun YH, Zhang HL. 150.  2013. Reusable light-emitting-diode induced chemiluminescence aptasensor for highly sensitive and selective detection of riboflavin. Biosens. Bioelectron. 43:160–64 [Google Scholar]
  151. Li J, Dasgupta PK, Tarver GA. 151.  2003. Pulsed excitation source multiplexed fluorometry for the simultaneous measurement of multiple analytes. Continuous measurement of atmospheric hydrogen peroxide and methyl hydroperoxide. Anal. Chem. 75:1203–10 [Google Scholar]
  152. Wang SL, Huang XJ, Fang ZL, Dasgupta PK. 152.  2001. A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal. Chem. 73:4545–49 [Google Scholar]
  153. Wang SL, Fang ZL. 153.  2005. Integrating functional components into capillary electrophoresis systems using liquid-core waveguides. Anal. Bioanal. Chem. 382:1747–50 [Google Scholar]
  154. Song G, Villanueva-Fierro I, Ohira SI, Mishra S, Bailiff H. 154.  et al. 2008. Capillary scale liquid core waveguide based fluorescence detectors for liquid chromatography and flow analysis. Talanta 77:901–8 [Google Scholar]
  155. Bi WW, Lei SR, Yang XP, Xu ZM, Yuan HY. 155.  et al. 2009. Separation of tyrosine enantiomer derivatives by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Talanta 78:1167–72 [Google Scholar]
  156. Zhang XF, Zhang JY, Wu X, Lv Y, Hou XD. 156.  2009. Light-emitting-diode-induced chemiluminescence detection for capillary electrophoresis. Electrophoresis 30:1937–42 [Google Scholar]
  157. Yang FB, Pan JZ, Zhang T, Fang Q. 157.  2009. A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78:1155–58 [Google Scholar]
  158. Huo F, Yuan HY, Breadmore MC, Xiao D. 158.  2010. Multi-wavelength light emitting diode array as an excitation source for light emitting diode-induced fluorescence detection in capillary electrophoresis. Electrophoresis 31:2589–95 [Google Scholar]
  159. Kao YY, Liu KT, Huang MF, Chiu TC, Chang HT. 159.  2010. Analysis of amino acids and biogenic amines in breast cancer cells by capillary electrophoresis using polymer solutions containing sodium dodecyl sulfate. J. Chromatogr. A 1217:582–87 [Google Scholar]
  160. Gan J, Zhang D, Luo YP, Hu J, Huang DQ. 160.  2010. Determination of IgG by capillary electrophoresis with optical fiber light-emitting diode induced fluorescence detection. Fenxi Ceshi Xuebao 29:257–61 [Google Scholar]
  161. Gan J, Zhao SL, Wang SC, Wan XZ, Hu J. 161.  2010. Determination of epinephrine and dopamine by capillary electrophoresis with optical fiber light-emitting diode induced fluorescence detection. Fenxi Shiyanshi 29:93–97 [Google Scholar]
  162. Diao PY, Yuan HY, Huo F, Chen LF, Xiao D. 162.  et al. 2011. A simple and sensitive CE method for the simultaneous determination of catecholamines in urine with in-column optical fiber light-emitting diode-induced fluorescence detection. Talanta 85:1279–84 [Google Scholar]
  163. Huo F, Guijt R, Xiao D, Breadmore MC. 163.  2011. Dual wavelength excitation fluorescence detector for capillary electrophoresis using a pulsed bi-colour light emitting diode. Analyst 136:2234–41 [Google Scholar]
  164. Xu J, Li J, Hu Q, Chen R, Li Y, Cao JJ. 164.  2012. Determination of ephedrine and pseudoephedrine in Ephedra herb by capillary electrophoresis/LED induced fluorescence detector. Fenxi Ceshi Xuebao 31:977–81 [Google Scholar]
  165. Yang TH, Chang PL. 165.  2012. Determination of RNA degradation by capillary electrophoresis with cyan light-emitted diode-induced fluorescence. J. Chromatogr. A 1239:78–84 [Google Scholar]
  166. Geng XH, Wu DP, Guan YF. 166.  2012. A compact and highly sensitive light-emitting diode-induced fluorescence detector for capillary flow systems. Talanta 88:463–67 [Google Scholar]
  167. Kerekgyarto M, Nemeth N, Kerekes T, Ronai Z, Guttman A. 167.  2013. Ultrafast haplotyping of putative microRNA-binding sites in the WFS1 gene by multiplex polymerase chain reaction and capillary gel electrophoresis. J. Chromatogr. A 1286:229–34 [Google Scholar]
  168. Yang F, Li XC, Zhang W, Pan JB, Chen ZG. 168.  2011. A facile light-emitting-diode induced fluorescence detector coupled to an integrated microfluidic device for microchip electrophoresis. Talanta 84:1099–106 [Google Scholar]
  169. Wang SP, Li XC, Yang JP, Yang XJ, Hou FH, Chen Z. 169.  2012. Rapid determination of creatinine in human urine by microchip electrophoresis with LED induced fluorescence detection. Chromatographia 75:1287–93 [Google Scholar]
  170. Zhang BB, Chen ZG, Yu YY, Yang JP, Pan JB. 170.  2013. Determination of sulfonamides in pharmaceuticals and rabbit plasma by microchip electrophoresis with LED-IF detection. Chromatographia 76:821–29 [Google Scholar]
  171. Smejkal P, Szekrényes Á, Ryvolová M, Foret F, Guttman A. 171.  et al. 2010. Chip-based CE for rapid separation of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) derivatized glycans. Electrophoresis 31:3783–86 [Google Scholar]
  172. Nuchtavorn N, Smejkal P, Breadmore MC, Guijt RM, Doble P. 172.  et al. 2013. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis. J. Chromatogr. A 1286:216–21 [Google Scholar]
  173. Smejkal P, Breadmore MC, Guijt RM, Grym J, Foret F. 173.  et al. 2012. Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips. Anal. Chim. Acta 755:115–20 [Google Scholar]
  174. Smejkal P, Breadmore MC, Guijt RM, Foret F, Bek F, Macka M. 174.  2012. Isotachophoresis on a chip with indirect fluorescence detection as a field deployable system for analysis of carboxylic acids. Electrophoresis 33:3166–72 [Google Scholar]
  175. Smejkal P, Breadmore MC, Guijt RM, Foret F, Bek F, Macka M. 175.  2013. Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. Anal. Chim. Acta 803:135–42 [Google Scholar]
  176. Morioka K, Nakajima H, Hemmi A, Zeng HL, Uchiyama K. 176.  2013. Development of an LED-induced fluorescence analysis system using a compact disk-type microfluidic device and its application to enzyme-linked immunosorbent assay. Bunseki Kagaku 62:65–71 [Google Scholar]
  177. Shur M, Shatalov M, Dobrinsky A, Gaska R. 177.  2012. Deep ultraviolet light-emitting diodes. Advances in GaN and ZnO-Based Materials and Devices S Pearton 83–120 Heidelberg: Springer [Google Scholar]
  178. Kerekgyarto M, Kerekes T, Tsai E, Amirkhanian VD, Guttman A. 178.  2012. Light-emitting diode induced fluorescence (LED-IF) detection design for a pen-shaped cartridge based single capillary electrophoresis system. Electrophoresis 33:2752–58 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020059
Loading
/content/journals/10.1146/annurev-anchem-071213-020059
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error