1932

Abstract

The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.g., stochastic thermal motion of a single nanoparticle) and unusual electrical responses (e.g., resistive-pulse response sensitive to surface charge), followed by a brief summary of numerical simulations performed in this field. We emphasize the forces within a nanopore governing translocation of low-aspect-ratio, nondeformable particles but conclude by also considering soft materials such as liposomes and microgels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020107
2014-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020107.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020107&mimeType=html&fmt=ahah

Literature Cited

  1. Zabet-Khosousi A, Dhirani AA. 1.  2008. Charge transport in nanoparticle assemblies. Chem. Rev. 108:4072–124 [Google Scholar]
  2. Anderson NA, Lian T. 2.  2005. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56:491–519 [Google Scholar]
  3. Xie J, Liu G, Eden HS, Ai H, Chen X. 3.  2011. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 44:883–92 [Google Scholar]
  4. Beveridge JS, Stephens JR, Williams ME. 4.  2011. The use of magnetic nanoparticles in analytical chemistry. Annu. Rev. Anal. Chem. 4:251–73 [Google Scholar]
  5. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. 5.  2011. Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev. 111:5610–37 [Google Scholar]
  6. Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL. 6.  2012. Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5:181–205 [Google Scholar]
  7. Kim ST, Saha K, Kim C, Rotello VM. 7.  2013. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 46:681–91 [Google Scholar]
  8. Alkilany AM, Lohse SE, Murphy CJ. 8.  2013. The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc. Chem. Res. 46:650–61 [Google Scholar]
  9. Albanese A, Tang PS, Chan WC. 9.  2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14:1–16 [Google Scholar]
  10. Nel A, Xia T, Madler L, Li N. 10.  2006. Toxic potential of materials at the nanolevel. Science 311:622–27 [Google Scholar]
  11. Roldan Cuenya B. 11.  2013. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 46:1682–91 [Google Scholar]
  12. Mallat T, Baiker A. 12.  2012. Potential of gold nanoparticles for oxidation in fine chemical synthesis. Annu. Rev. Chem. Biomol. Eng. 3:11–28 [Google Scholar]
  13. Cui CH, Yu SH. 13.  2013. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc. Chem. Res. 46:1427–37 [Google Scholar]
  14. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y. 14.  2009. Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 60:167–92 [Google Scholar]
  15. Urban C, Schurtenberger P. 15.  1998. Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J. Colloid Interface Sci. 207:150–58 [Google Scholar]
  16. Berne BJ, Pecora R. 16.  2000. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics New York: Dover
  17. Schurr JM, Schmitz KS. 17.  1986. Dynamic light scattering studies of biopolymers: effects of charge, shape, and flexibility. Annu. Rev. Phys. Chem. 37:271–305 [Google Scholar]
  18. Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN. 18.  2011. A high-throughput label-free nanoparticle analyser. Nat. Nanotechnol. 6:308–13 [Google Scholar]
  19. Liu J.19.  2005. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J. Electron Microsc. 54:251–78 [Google Scholar]
  20. Chicea D.20.  2010. Revealing magnetite nanoparticles aggregation dynamics—a SLS and DLS study. Trends in Nanophysics: Theory, Experiment and Technology V Bârsan, A Aldea 331–50 Berlin/Heidelberg: Springer [Google Scholar]
  21. Browning ND, Bonds MA, Campbell GH, Evans JE, LaGrange T. 21.  et al. 2012. Recent developments in dynamic transmission electron microscopy. Curr. Opin. Solid State Mater. Sci. 16:23–30 [Google Scholar]
  22. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N. 22.  et al. 2009. Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43:7277–84 [Google Scholar]
  23. Coulter WH.23.  1953. Means of counting particles suspended in a fluid. US Patent No. 2656508
  24. Berge LI.24.  1990. Dissolution of air bubbles by the resistive pulse and the pressure reversal technique. J. Colloid Interface Sci. 134:548–62 [Google Scholar]
  25. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. 25.  2001. Ion-beam sculpting at nanometre length scales. Nature 412:166–69 [Google Scholar]
  26. Martin CR.26.  1994. Nanomaterials: a membrane-based synthetic approach. Science 266:1961–66 [Google Scholar]
  27. Wei C, Bard AJ, Feldberg SW. 27.  1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:4627–33 [Google Scholar]
  28. Ito T, Sun L, Henriquez RR, Crooks RM. 28.  2004. A carbon nanotube-based Coulter nanoparticle counter. Acc. Chem. Res. 37:937–45 [Google Scholar]
  29. Sun L, Crooks RM. 29.  2000. Single carbon nanotube membranes: a well-defined model for studying mass transport through nanoporous materials. J. Am. Chem. Soc. 122:12340–45 [Google Scholar]
  30. Saleh OA, Sohn LL. 30.  2001. Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev. Sci. Instrum. 72:4449–51 [Google Scholar]
  31. Yu S, Lee SB, Martin CR. 31.  2003. Electrophoretic protein transport in gold nanotube membranes. Anal. Chem. 75:1239–44 [Google Scholar]
  32. Martin CR, Siwy ZS. 32.  2007. Chemistry. Learning nature's way: biosensing with synthetic nanopores. Science 317:331–32 [Google Scholar]
  33. Sexton LT, Horne LP, Martin CR. 33.  2007. Developing synthetic conical nanopores for biosensing applications. Mol. Biosyst. 3:667–85 [Google Scholar]
  34. Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ. 34.  et al. 2007. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 79:4778–87 [Google Scholar]
  35. Willmott GR, Vogel R, Yu SSC, Groenewegen LG, Roberts GS. 35.  et al. 2010. Use of tunable nanopore blockade rates to investigate colloidal dispersions. J. Phys.: Condens. Matter 22:454116 [Google Scholar]
  36. Liu S, Yuzvinsky TD, Schmidt H. 36.  2013. Effect of fabrication-dependent shape and composition of solid-state nanopores on single nanoparticle detection. ACS Nano 7:5621–27 [Google Scholar]
  37. Zhang B, Wood M, Lee H. 37.  2009. A silica nanochannel and its applications in sensing and molecular transport. Anal. Chem. 81:5541–48 [Google Scholar]
  38. Gao C, Ding S, Tan Q, Gu LQ. 38.  2009. Method of creating a nanopore-terminated probe for single-molecule enantiomer discrimination. Anal. Chem. 81:80–86 [Google Scholar]
  39. Bezrukov SM, Vodyanoy I, Parsegian VA. 39.  1994. Counting polymers moving through a single ion channel. Nature 370:279–81 [Google Scholar]
  40. Kasianowicz JJ, Brandin E, Branton D, Deamer DW. 40.  1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93:13770–73 [Google Scholar]
  41. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H. 41.  1999. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–90 [Google Scholar]
  42. Bayley H, Martin CR. 42.  2000. Resistive-pulse sensing—from microbes to molecules. Chem. Rev. 100:2575–94 [Google Scholar]
  43. Bayley H, Cremer PS. 43.  2001. Stochastic sensors inspired by biology. Nature 413:226–30 [Google Scholar]
  44. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA. 44.  et al. 2008. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26:1146–53 [Google Scholar]
  45. Wu HC, Astier Y, Maglia G, Mikhailova E, Bayley H. 45.  2007. Protein nanopores with covalently attached molecular adapters. J. Am. Chem. Soc. 129:16142–48 [Google Scholar]
  46. Howorka S, Siwy Z. 46.  2009. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38:2360–84 [Google Scholar]
  47. Dekker C.47.  2007. Solid-state nanopores. Nat. Nanotechnol. 2:209–15 [Google Scholar]
  48. Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JWF. 48.  2010. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl. Acad. Sci. USA 107:12080–85 [Google Scholar]
  49. Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton JM, Pelta J. 49.  2012. Sensing proteins through nanopores: fundamental to applications. ACS Chem. Biol. 7:1935–49 [Google Scholar]
  50. DeBlois RW, Wesley RKA. 50.  1977. Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J. Virol. 23:227–33 [Google Scholar]
  51. DeBlois RW, Bean CP, Wesley RKA. 51.  1977. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J. Colloid Interface Sci. 61:323–35 [Google Scholar]
  52. DeBlois RW, Bean CP. 52.  1970. Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum. 41:909–16 [Google Scholar]
  53. Ito T, Sun L, Bevan MA, Crooks RM. 53.  2004. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based Coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–45 [Google Scholar]
  54. Henriquez RR, Ito T, Sun L, Crooks RM. 54.  2004. The resurgence of Coulter counting for analyzing nanoscale objects. Analyst 129:478–82 [Google Scholar]
  55. Ito T, Sun L, Crooks RM. 55.  2003. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter. Anal. Chem. 75:2399–406 [Google Scholar]
  56. Zhang B, Zhang Y, White HS. 56.  2004. The nanopore electrode. Anal. Chem. 76:6229–38 [Google Scholar]
  57. Willmott GR, Parry BET. 57.  2011. Resistive pulse asymmetry for nanospheres passing through tunable submicron pores. J. Appl. Phys. 109:094307–13 [Google Scholar]
  58. Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M. 58.  2012. Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6:6990–97 [Google Scholar]
  59. Lan W-J, Holden DA, Zhang B, White HS. 59.  2011. Nanoparticle transport in conical-shaped nanopores. Anal. Chem. 83:3840–47 [Google Scholar]
  60. Davenport M, Healy K, Pevarnik M, Teslich N, Cabrini S. 60.  et al. 2012. The role of pore geometry in single nanoparticle detection. ACS Nano 6:8366–80 [Google Scholar]
  61. Schoch RB, Han J, Renaud P. 61.  2008. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80:839–83 [Google Scholar]
  62. Lan W-J, Holden DA, Liu J, White HS. 62.  2011. Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore. J. Phys. Chem. C 115:18445–52 [Google Scholar]
  63. Roberts GS, Yu S, Zeng Q, Chan LC, Anderson W. 63.  et al. 2012. Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens. Bioelectron. 31:17–25 [Google Scholar]
  64. Li YQ, Zheng YB, Zare RN. 64.  2012. Electrical, optical, and docking properties of conical nanopores. ACS Nano 6:993–97 [Google Scholar]
  65. Tsutsui M, Hongo S, He Y, Taniguchi M, Gemma N, Kawai T. 65.  2012. Single-nanoparticle detection using a low-aspect-ratio pore. ACS Nano 6:3499–505 [Google Scholar]
  66. Tsutsui M, Maeda Y, He Y, Hongo S, Ryuzaki S. 66.  et al. 2013. Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore. Appl. Phys. Lett. 103:013108–5 [Google Scholar]
  67. Xu D, Kang Y, Sridhar M, Hmelo AB, Feldman LC. 67.  et al. 2007. Wide-spectrum, ultrasensitive fluidic sensors with amplification from both fluidic circuits and metal oxide semiconductor field effect transistors. Appl. Phys. Lett. 91:013901–3 [Google Scholar]
  68. Sridhar M, Xu D, Kang Y, Hmelo AB, Feldman LC. 68.  et al. 2008. Experimental characterization of a metal-oxide-semiconductor field-effect transistor-based Coulter counter. J. Appl. Phys. 103:104701 [Google Scholar]
  69. Wu X, Kang Y, Wang YN, Xu D, Li D, Li D. 69.  2008. Microfluidic differential resistive pulse sensors. Electrophoresis 29:2754–9 [Google Scholar]
  70. Petrossian L, Wilk SJ, Joshi P, Goodnick SM, Thornton TJ. 70.  2008. Demonstration of Coulter counting through a cylindrical solid state nanopore. J. Phys.: Conf. Ser. 109:012028 [Google Scholar]
  71. Platt M, Willmott GR, Lee GU. 71.  2012. Resistive pulse sensing of analyte-induced multicomponent rod aggregation using tunable pores. Small 8:2436–44 [Google Scholar]
  72. Kozak D, Anderson W, Vogel R, Trau M. 72.  2011. Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection. Nano Today 6:531–45 [Google Scholar]
  73. Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M. 73.  2010. Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–58 [Google Scholar]
  74. Vogel R, Willmott G, Kozak D, Roberts GS, Anderson W. 74.  et al. 2011. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal. Chem. 83:3499–506 [Google Scholar]
  75. Vogel R, Anderson W, Eldridge J, Glossop B, Willmott G. 75.  2012. A variable pressure method for characterizing nanoparticle surface charge using pore sensors. Anal. Chem. 84:3125–31 [Google Scholar]
  76. Willmott G, Young R. 76.  2009. Analysis and finite element modelling of resizable nanopores. AIP Conf. Proc. 1151:153–56 [Google Scholar]
  77. Kozak D, Anderson W, Grevett M, Trau M. 77.  2012. Modeling elastic pore sensors for quantitative single particle sizing. J. Phys. Chem. C 116:8554–61 [Google Scholar]
  78. Sowerby SJ, Broom MF, Petersen GB. 78.  2007. Dynamically resizable nanometre-scale apertures for molecular sensing. Sens. Actuators B 123:325–30 [Google Scholar]
  79. Pevarnik M, Healy K, Toimil-Molares ME, Morrison A, Letant SE, Siwy ZS. 79.  2012. Polystyrene particles reveal pore substructure as they translocate. ACS Nano 6:7295–302 [Google Scholar]
  80. Zhou K, Li L, Tan Z, Zlotnick A, Jacobson SC. 80.  2011. Characterization of hepatitis B virus capsids by resistive-pulse sensing. J. Am. Chem. Soc. 133:1618–21 [Google Scholar]
  81. Soni GV, Dekker C. 81.  2012. Detection of nucleosomal substructures using solid-state nanopores. Nano Lett. 12:3180–86 [Google Scholar]
  82. Plesa C, Kowalczyk SW, Zinsmeester R, Grosberg AY, Rabin Y, Dekker C. 82.  2013. Fast translocation of proteins through solid state nanopores. Nano Lett. 13:658–63 [Google Scholar]
  83. Hall AR, Keegstra JM, Duch MC, Hersam MC, Dekker C. 83.  2011. Translocation of single-wall carbon nanotubes through solid-state nanopores. Nano Lett. 11:2446–50 [Google Scholar]
  84. Kowalczyk SW, Dekker C. 84.  2012. Measurement of the docking time of a DNA molecule onto a solid-state nanopore. Nano Lett. 12:4159–63 [Google Scholar]
  85. Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C. 85.  2012. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12:1038–44 [Google Scholar]
  86. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N. 86.  et al. 2010. DNA translocation through graphene nanopores. Nano Lett. 10:2915–21 [Google Scholar]
  87. Kowalczyk SW, Hall AR, Dekker C. 87.  2010. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 10:324–28 [Google Scholar]
  88. Ang YS, Yung L-YL. 88.  2012. Rapid and label-free single-nucleotide discrimination via an integrative nanoparticle–nanopore approach. ACS Nano 6:8815–23 [Google Scholar]
  89. Carbonaro A, Sohn LL. 89.  2005. A resistive-pulse sensor chip for multianalyte immunoassays. Lab Chip 5:1155–60 [Google Scholar]
  90. Saleh OA, Sohn LL. 90.  2003. Direct detection of antibody–antigen binding using an on-chip artificial pore. Proc. Natl. Acad. Sci. USA 100:820–24 [Google Scholar]
  91. Han A, Schurmann G, Mondin G, Bitterli RA, Hegelbach NG. 91.  et al. 2006. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88:093901–3 [Google Scholar]
  92. Han A, Creus M, Schurmann G, Linder V, Ward TR. 92.  et al. 2008. Label-free detection of single protein molecules and protein–protein interactions using synthetic nanopores. Anal. Chem. 80:4651–58 [Google Scholar]
  93. Uram JD, Ke K, Hunt AJ, Mayer M. 93.  2006. Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small 2:967–72 [Google Scholar]
  94. Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF. 94.  2013. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem. Sci. 4:655–63 [Google Scholar]
  95. Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR. 95.  2007. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129:13144–52 [Google Scholar]
  96. Talaga DS, Li J. 96.  2009. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131:9287–97 [Google Scholar]
  97. Arjmandi N, Van Roy W, Lagae L, Borghs G. 97.  2012. Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores. Anal. Chem. 84:8490–96 [Google Scholar]
  98. Firnkes M, Pedone D, Knezevic J, Döblinger M, Rant U. 98.  2010. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 10:2162–67 [Google Scholar]
  99. Kirby BJ, Hasselbrink EF Jr. 99.  2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202 [Google Scholar]
  100. Niedzwiecki DJ, Grazul J, Movileanu L. 100.  2010. Single-molecule observation of protein adsorption onto an inorganic surface. J. Am. Chem. Soc. 132:10816–22 [Google Scholar]
  101. Ding S, Gao C, Gu LQ. 101.  2009. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem. 81:6649–55 [Google Scholar]
  102. Richards AL, Dickey MD, Kennedy AS, Buckner GD. 102.  2012. Design and demonstration of a novel micro-Coulter counter utilizing liquid metal electrodes. J. Micromech. Microeng. 22:115012 [Google Scholar]
  103. Nadtochiy A, Melnikov D, Gracheva M. 103.  2013. Filtering of nanoparticles with tunable semiconductor membranes. ACS Nano 7:7053–61 [Google Scholar]
  104. Wu Y, Benson JD, Critser JK, Almasri M. 104.  2010. MEMS-based Coulter counter for cell counting and sizing using multiple electrodes. J. Micromech. Microeng. 20:085035 [Google Scholar]
  105. Ashish VJ, Jiang Z, Jun H, Joan C. 105.  2006. Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter. Meas. Sci. Technol. 17:1706–14 [Google Scholar]
  106. Ashish VJ, Joan C, Jiang Z. 106.  2011. A microfluidic multichannel resistive pulse sensor using frequency division multiplexing for high throughput counting of micro particles. J. Micromech. Microeng. 21:065004 [Google Scholar]
  107. Kim J, Kim EG, Bae S, Kwon S, Chun H. 107.  2013. Potentiometric multichannel cytometer microchip for high-throughput microdispersion analysis. Anal. Chem. 85:362–68 [Google Scholar]
  108. Einstein A.108.  1905. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 322:549–60 [Google Scholar]
  109. White RJ, White HS. 109.  2005. A random walk through electron-transfer kinetics. Anal. Chem. 77:214A–20A [Google Scholar]
  110. Gershow M, Golovchenko JA. 110.  2007. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2:775–79 [Google Scholar]
  111. Stein D.111.  2007. Nanopores: molecular ping-pong. Nat. Nanotechnol. 2:741–42 [Google Scholar]
  112. Lan W-J, White HS. 112.  2012. Diffusional motion of a particle translocating through a nanopore. ACS Nano 6:1757–65 [Google Scholar]
  113. German SR, Luo L, White HS, Mega TL. 113.  2013. Controlling nanoparticle dynamics in conical nanopores. J. Phys. Chem. C 117:703–11 [Google Scholar]
  114. Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M. 114.  2001. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotechnol. 19:248–52 [Google Scholar]
  115. White HS, Bund A. 115.  2008. Ion current rectification at nanopores in glass membranes. Langmuir 24:2212–18 [Google Scholar]
  116. Smeets RM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C. 116.  2006. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6:89–95 [Google Scholar]
  117. Japrung D, Dogan J, Freedman KJ, Nadzeyka A, Bauerdick S. 117.  et al. 2013. Single-molecule studies of intrinsically disordered proteins using solid-state nanopores. Anal. Chem. 85:2449–56 [Google Scholar]
  118. Lan W-J, Kubeil C, Xiong J-W, Bund A, White HS. 118.  2014. Effect of surface charge on the resistive pulse waveshape during particle translocation through glass nanopores. J. Phys. Chem. C 118:2726–34 [Google Scholar]
  119. Lan W-J, Holden DA, White HS. 119.  2011. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133:13300–3 [Google Scholar]
  120. Ye C, Sinton D, Erickson D, Li D. 120.  2002. Electrophoretic motion of a circular cylindrical particle in a circular cylindrical microchannel. Langmuir 18:9095–101 [Google Scholar]
  121. Hsu JP, Kuo CC. 121.  2006. Electrophoresis of a finite cylinder positioned eccentrically along the axis of a long cylindrical pore. J. Phys. Chem. B 110:17607–15 [Google Scholar]
  122. Liu H, Qian SZ, Bau HH. 122.  2007. The effect of translocating cylindrical particles on the ionic current through a nanopore. Biophys. J. 92:1164–77 [Google Scholar]
  123. Qian S, Joo SW, Hou WS, Zhao X. 123.  2008. Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Langmuir 24:5332–40 [Google Scholar]
  124. Jubery TZ, Prabhu AS, Kim MJ, Dutta P. 124.  2012. Modeling and simulation of nanoparticle separation through a solid-state nanopore. Electrophoresis 33:325–33 [Google Scholar]
  125. Tseng S, Hsu JP, Lo HM, Yeh LH. 125.  2013. Electrophoresis of a soft sphere in a necked cylindrical nanopore. Phys. Chem. Chem. Phys. 15:11758–65 [Google Scholar]
  126. Huang CH, Cheng WL, He YY, Lee E. 126.  2010. Electrophoresis of a soft particle within a cylindrical pore: polarization effect with the nonlinear Poisson-Boltzmann equation. J. Phys. Chem. B 114:10114–25 [Google Scholar]
  127. Chen WJ, Keh HJ. 127.  2013. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness. J. Phys. Chem. B 117:9757–67 [Google Scholar]
  128. Hsu JP, Lo HM, Yeh LH, Tseng S. 128.  2012. Importance of boundary on the electrophoresis of a soft cylindrical particle. J. Phys. Chem. B 116:12626–32 [Google Scholar]
  129. Huang CH, Hsu HP, Lee E. 129.  2012. Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Phys. Chem. Chem. Phys. 14:657–67 [Google Scholar]
  130. Wang N, Yee CP, Chen YY, Hsu JP, Tseng S. 130.  2013. Electrophoresis of a pH-regulated zwitterionic nanoparticle in a ph-regulated zwitterionic capillary. Langmuir 29:7162–9 [Google Scholar]
  131. Lee SY, Yalcin SE, Joo SW, Baysal O, Qian S. 131.  2010. Diffusiophoretic motion of a charged spherical particle in a nanopore. J. Phys. Chem. B 114:6437–46 [Google Scholar]
  132. Yalcin SE, Lee SY, Joo SW, Baysal O, Qian S. 132.  2010. Electrodiffusiophoretic motion of a charged spherical particle in a nanopore. J. Phys. Chem. B 114:4082–93 [Google Scholar]
  133. Hsu J-P, Ko IF, Tseng S. 133.  2012. Importance of boundary effect on the diffusiophoretic behavior of a charged particle in an electrolyte medium. J. Phys. Chem. C 116:4455–64 [Google Scholar]
  134. Ai Y, Qian SZ. 134.  2011. Electrokinetic particle translocation through a nanopore. Phys. Chem. Chem. Phys. 13:4060–71 [Google Scholar]
  135. Ai Y, Qian S. 135.  2011. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson–Boltzmann approach. Electrophoresis 32:996–1005 [Google Scholar]
  136. Hsu J-P, Lin C-Y, Yeh L-H, Lin S-H. 136.  2012. Influence of the shape of a polyelectrolyte on its electrophoretic behavior. Soft Matter 8:9469–79 [Google Scholar]
  137. Yeh LH, Tai YH, Wang N, Hsu JP, Qian S. 137.  2012. Electrokinetics of pH-regulated zwitterionic polyelectrolyte nanoparticles. Nanoscale 4:7575–84 [Google Scholar]
  138. Yeh LH, Zhang M, Joo SW, Qian S, Hsu JP. 138.  2012. Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes. Anal. Chem. 84:9615–22 [Google Scholar]
  139. Tseng S, Lin CY, Hsu JP, Yeh LH. 139.  2013. Electrophoresis of deformable polyelectrolytes in a nanofluidic channel. Langmuir 29:2446–54 [Google Scholar]
  140. Zhang MK, Ai Y, Sharma A, Joo SW, Kim DS, Qian SZ. 140.  2011. Electrokinetic particle translocation through a nanopore containing a floating electrode. Electrophoresis 32:1864–74 [Google Scholar]
  141. Holden DA, Hendrickson G, Lyon LA, White HS. 141.  2011. Resistive pulse analysis of microgel deformation during nanopore translocation. J. Phys. Chem. C 115:2999–3004 [Google Scholar]
  142. Holden DA, Hendrickson GR, Lan W-J, Lyon LA, White HS. 142.  2011. Electrical signature of the deformation and dehydration of microgels during translocation through nanopores. Soft Matter 7:8035–40 [Google Scholar]
  143. Holden DA, Watkins JJ, White HS. 143.  2012. Resistive-pulse detection of multilamellar liposomes. Langmuir 28:7572–77 [Google Scholar]
  144. Lian T, Ho RJ. 144.  2001. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90:667–80 [Google Scholar]
  145. Lyon LA, Fernandez-Nieves A. 145.  2012. The polymer/colloid duality of microgel suspensions. Annu. Rev. Phys. Chem. 63:25–43 [Google Scholar]
  146. Dai Z, Ngai T. 146.  2013. Microgel particles: the structure-property relationships and their biomedical applications. J. Polym. Sci. A 51:2995–3003 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020107
Loading
/content/journals/10.1146/annurev-anchem-071213-020107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error