1932

Abstract

This article reviews progress in the study of materials using X-ray-based techniques from an electrochemistry perspective. We focus on in situ/in operando surface X-ray scattering, X-ray absorption spectroscopy, and the combination of both methods. The background of these techniques together with key concepts is introduced. Key examples of in situ and in operando investigation of liquid–solid and liquid–liquid interfaces are presented. X-ray scattering and spectroscopy have helped to develop an understanding of the underlying atomic and molecular processes associated with electrocatalysis, electrodeposition, and battery materials. We highlight recent developments, including resonant surface diffraction and time-resolved studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091020-100631
2021-07-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091020-100631.html?itemId=/content/journals/10.1146/annurev-anchem-091020-100631&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kolb D. 1996. Reconstruction phenomena at metal-electrolyte interfaces. Prog. Surface Sci. 51:109–73
    [Google Scholar]
  2. 2. 
    Wagner F-T, Ross P Jr. 1983. LEED analysis of electrode surfaces: structural effects of potentiodynamic cycling on Pt single crystals. J. Electroanal. Chem. Interfacial Electrochem. 150:141–64
    [Google Scholar]
  3. 3. 
    Stuve EM, Krasnopoler A, Sauer DE. 1995. Relating the in-situ, ex-situ, and non-situ environments in surface electrochemistry. Surf. Sci. 335:177–85
    [Google Scholar]
  4. 4. 
    Weaver MJ, Gao X. 1993. In-situ electrochemical surface science. Annu. Rev. Phys. Chem. 44:459–94
    [Google Scholar]
  5. 5. 
    Cristofolini L. 2014. Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Curr. Opin. Colloid Interface Sci. 19:228–41
    [Google Scholar]
  6. 6. 
    Bak S-M, Shadike Z, Lin R, Yu X, Yang X-Q. 2018. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater 10:563–80
    [Google Scholar]
  7. 7. 
    Lin F, Liu Y, Yu X, Cheng L, Singer A et al. 2017. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117:13123–86
    [Google Scholar]
  8. 8. 
    Yan Y, Cheng C, Zhang L, Li Y, Lu J. 2019. Deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 9:1900148
    [Google Scholar]
  9. 9. 
    Seok J, Yu S-H, Abruña HD. 2020. Operando synchrotron-based X-ray study of Prussian blue and its analogue as cathode materials for sodium-ion batteries. J. Phys. Chem. C 124:16332–37
    [Google Scholar]
  10. 10. 
    Adarsh KS, Chandrasekaran N, Chakrapani V. 2020. In-situ spectroscopic techniques as critical evaluation tools for electrochemical carbon dioxide reduction: a mini review. Front. Chem. 8:137
    [Google Scholar]
  11. 11. 
    Velasco-Vélez JJ, Pfeifer V, Hävecker M, Wang R, Centeno A et al. 2016. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: bridging the pressure gap. Rev. Sci. Instrum. 87:053121
    [Google Scholar]
  12. 12. 
    Weiland C, Rumaiz AK, Pianetta P, Woicik JC. 2016. Recent applications of hard X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Films 34:030801
    [Google Scholar]
  13. 13. 
    Liu Z, Bluhm H. 2016. Liquid/solid interfaces studied by ambient pressure HAXPES. Hard X-Ray Photoelectron Spectroscopy (HAXPES) JC Woicik 447–66 Cham, Switz: Springer Verlag
    [Google Scholar]
  14. 14. 
    Robinson IK, Tweet DJ. 1992. Surface X-ray diffraction. Rep. Prog. Phys. 55:599
    [Google Scholar]
  15. 15. 
    Feidenhans R. 1989. Surface structure determination by X-ray diffraction. Surf. Sci. Rep. 10:105–88
    [Google Scholar]
  16. 16. 
    Als-Nielsen J, McMorrow D. 2011. Elements of Modern X-Ray Physics Hoboken, NJ: John Wiley & Sons
  17. 17. 
    Robinson I. 1998. X-ray crystallography of surfaces and interfaces. Acta Crystallogr. A Found. Crystallogr. 54:772–78
    [Google Scholar]
  18. 18. 
    Nichols RJ, Nouar T, Lucas CA, Haiss W, Hofer WA. 2002. Surface relaxation and surface stress of Au(111). Surf. Sci. 513:263–71
    [Google Scholar]
  19. 19. 
    Gallagher ME, Lucas CA, Stamenković V, Marković NM, Ross PN. 2003. Surface structure and relaxation at the Pt3Sn(111)/electrolyte interface. Surf. Sci. 544:L729–34
    [Google Scholar]
  20. 20. 
    Grunder Y, Beane J, Kolodziej A, Lucas C, Rodriguez P. 2019. Potential dependent structure and stability of Cu(111) in neutral phosphate electrolyte. Surfaces 2:145–58
    [Google Scholar]
  21. 21. 
    Lucas CA. 2002. Surface relaxation at the metal/electrolyte interface. Electrochim. Acta 47:3065–74
    [Google Scholar]
  22. 22. 
    Robinson KM, Robinson IK, O'Grady WE 1992. Electrochemically induced surface roughness on Au(100) studied by surface X-ray diffraction. Electrochim. Acta 37:2169–72
    [Google Scholar]
  23. 23. 
    Sisson N, Gründer Y, Lucas CA. 2016. Structure and stability of underpotentially deposited Ag on Au(111) in alkaline electrolyte. J. Phys. Chem. C 120:16100–9
    [Google Scholar]
  24. 24. 
    Magnussen OM. 2002. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102:679–725
    [Google Scholar]
  25. 25. 
    Wang J, Ocko BM, Davenport AJ, Isaacs HS. 1992. In situ x-ray-diffraction and -reflectivity studies of the Au(111)/electrolyte interface: reconstruction and anion adsorption. Phys. Rev. B 46:10321–38
    [Google Scholar]
  26. 26. 
    Ocko BM, Wang J, Davenport A, Isaacs H. 1990. In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys. Rev. Lett. 65:1466–69
    [Google Scholar]
  27. 27. 
    Samant MG, Toney MF, Borges GL, Blum L, Melroy OR. 1988. Grazing incidence X-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface. J. Phys. Chem. 92:220–25
    [Google Scholar]
  28. 28. 
    Samant MG, Toney MF, Borges GL, Blum L, Melroy OR. 1988. In-situ grazing incidence X-ray diffraction study of electrochemically deposited Pb monolayers on Ag(111). Surf. Sci. 193:L29–36
    [Google Scholar]
  29. 29. 
    Melroy OR, Toney MF, Borges GL, Samant MG, Kortright JB et al. 1988. Two-dimensional compressibility of electrochemically adsorbed lead on silver (111). Phys. Rev. B 38:10962–65
    [Google Scholar]
  30. 30. 
    Melroy OR, Toney MF, Borges GL, Samant MG, Kortright JB et al. 1989. An in-situ grazing incidence X-ray scattering study of the initial stages of electrochemical growth of lead on silver (111). J. Electroanal. Chem. 258:403–14
    [Google Scholar]
  31. 31. 
    Toney MF, Gordon JG, Melroy OR. 1991. In-situ surface x-ray scattering of metal monolayers adsorbed at solid-liquid interfaces. Proc. SPIE 1550, X Rays in Mater. Anal. II: Novel Appl. Recent Dev. https://doi.org/10.1117/12.49475
    [Crossref] [Google Scholar]
  32. 32. 
    Tidswell IM, Marković NM, Lucas CA, Ross PN. 1993. In situ x-ray-scattering study of the Au(001) reconstruction in alkaline and acidic electrolytes. Phys. Rev. B 47:16542–53
    [Google Scholar]
  33. 33. 
    Gründer Y, Harlow GS, Cocklin E, Fogg J, Beane JW, Lucas CA. 2019. Potential-dependent surface compression of gold and its link to electrocatalytic reactivity. Surf. Sci. 680:113–18
    [Google Scholar]
  34. 34. 
    Ocko B, Magnussen O, Adžić R, Wang J, Shi Z, Lipkowski J. 1994. A critical comparison of electrochemical and surface X-ray scattering results at the Au(111) electrode in KBr solutions. J. Electroanal. Chem. 376:35–39
    [Google Scholar]
  35. 35. 
    Wang J, Davenport AJ, Isaacs HS, Ocko B. 1992. Surface charge–induced ordering of the Au(111) surface. Science 255:1416–18
    [Google Scholar]
  36. 36. 
    Ocko B, Helgesen G, Schardt B, Wang J, Hamelin A 1992. Charge induced (1 × 3) reconstruction of the Au(110) surface: an x-ray scattering study. Phys. Rev. Lett. 69:3350
    [Google Scholar]
  37. 37. 
    Markovic N, Tidswell I, Ross P. 1994. Oxygen and hydrogen peroxide reduction on the gold (100) surface in alkaline electrolyte: the roles of surface structure and hydroxide adsorption. Langmuir 10:1–4
    [Google Scholar]
  38. 38. 
    Marković N, Lucas C, Rodes A, Stamenković V, Ross P. 2002. Surface electrochemistry of CO on Pt(111): anion effects. Surf. Sci. 499:L149–58
    [Google Scholar]
  39. 39. 
    Harlow GS, Aldous IM, Thompson P, Gründer Y, Hardwick LJ, Lucas CA. 2019. Adsorption, surface relaxation and electrolyte structure at Pt(111) electrodes in non-aqueous and aqueous acetonitrile electrolytes. Phys. Chem. Chem. Phys. 21:8654–62
    [Google Scholar]
  40. 40. 
    Lucas C. 2002. Surface relaxation at the metal/electrolyte interface. Electrochim. Acta 47:3065–74
    [Google Scholar]
  41. 41. 
    Nakamura M, Banzai T, Maehata Y, Endo O, Tajiri H et al. 2017. Real–time observation of interfacial ions during electrocrystallization. Sci. Rep. 7:914
    [Google Scholar]
  42. 42. 
    Tamam L, Ocko BM, Nakamura N, Ogawa Y, Deutsch M. 2013. The structure of Langmuir films of long diols on mercury. Soft Matter 9:11204–13
    [Google Scholar]
  43. 43. 
    Gründer Y, Lucas CA. 2016. Surface X-ray diffraction studies of single crystal electrocatalysts. Nano Energy 29:378–93
    [Google Scholar]
  44. 44. 
    Marković NM, Grgur BN, Lucas CA, Ross PN. 1999. Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions. J. Phys. Chem. B 103:487–95
    [Google Scholar]
  45. 45. 
    Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F et al. 2017. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim. Acta 224:220–27
    [Google Scholar]
  46. 46. 
    Ruge M, Drnec J, Rahn B, Reikowski F, Harrington DA et al. 2017. Electrochemical oxidation of smooth and nanoscale rough Pt(111): an in situ surface X-ray scattering study. J. Electrochem. Soc. 164:H608–14
    [Google Scholar]
  47. 47. 
    Ruge M, Drnec J, Rahn B, Reikowski F, Harrington DA et al. 2017. Structural reorganization of Pt (111) electrodes by electrochemical oxidation and reduction. J. Am. Chem. Soc. 139:4532–39
    [Google Scholar]
  48. 48. 
    Kondo T, Masuda T, Aoki N, Uosaki K. 2016. Potential-dependent structures and potential-induced structure changes at Pt(111) single-crystal electrode/sulfuric and perchloric acid interfaces in the potential region between hydrogen underpotential deposition and surface oxide formation by in situ surface X-ray scattering. J. Phys. Chem. C 120:16118–31
    [Google Scholar]
  49. 49. 
    Liu Y, Barbour A, Komanicky V, You H. 2016. X-ray crystal truncation rod studies of surface oxidation and reduction on Pt(111). J. Phys. Chem. C 120:16174–78
    [Google Scholar]
  50. 50. 
    Renner FU, Stierle A, Dosch H, Kolb DM, Lee TL, Zegenhagen J. 2006. Initial corrosion observed on the atomic scale. Nature 439:707–10
    [Google Scholar]
  51. 51. 
    Renner FU, Stierle A, Dosch H, Kolb DM, Zegenhagen J. 2007. The influence of chloride on the initial anodic dissolution of Cu3Au(111). Electrochem. Commun. 9:1639–42
    [Google Scholar]
  52. 52. 
    Renner FU, Gründer Y, Lyman PF, Zegenhagen J. 2007. In-situ X-ray diffraction study of the initial dealloying of Cu3Au(001) and Cu0.83Pd0.17(001). Solid Films 515:5574–80
    [Google Scholar]
  53. 53. 
    Renner FU, Stierle A, Dosch H, Kolb DM, Lee TL, Zegenhagen J. 2008. In situ x-ray diffraction study of the initial dealloying and passivation of Cu3Au (111) during anodic dissolution. Phys. Rev. B Condens. Matter Mater. Phys. 77:235433
    [Google Scholar]
  54. 54. 
    Renner FU, Ankah GN, Pareek A. 2012. In-situ surface-sensitive X-ray diffraction study on the influence of iodide over the selective electrochemical etching of Cu3Au (111). Surf. Sci. 606:L37–40
    [Google Scholar]
  55. 55. 
    Gründer Y, Stettner J, Magnussen OM. 2018. Review—in-situ surface X-ray diffraction studies of copper electrodes: atomic-scale interface structure and growth behavior. J. Electrochem. Soc. 166:D3049–57
    [Google Scholar]
  56. 56. 
    Golks F, Stettner J, Gründer Y, Krug K, Zegenhagen J, Magnussen OM. 2011. Anomalous potential dependence in homoepitaxial Cu(001) electrodeposition: an in situ surface X-ray diffraction study. Phys. Rev. Lett. 108:256101
    [Google Scholar]
  57. 57. 
    Krug K, Kaminski D, Golks F, Stettner J, Magnussen OM. 2010. Real-time surface X-ray scattering study of Au(111) electrochemical dissolution. J. Phys. Chem. C 114:18634–44
    [Google Scholar]
  58. 58. 
    Krug K, Stettner J, Magnussen OM. 2006. In-situ surface X-ray diffraction studies of homoepitaxial electrochemical growth on Au(100). Phys. Rev. Lett. 96:246101
    [Google Scholar]
  59. 59. 
    Kaminski D, Krug K, Golks F, Stettner J, Magnussen OM. 2007. Time-dependent diffraction studies of Au(100) electrode surface during deposition. J. Phys. Chem. C 111:17067–71
    [Google Scholar]
  60. 60. 
    Golks F, Krug K, Gründer Y, Zegenhagen J, Stettner J, Magnussen OM. 2011. High-speed in situ surface X-ray diffraction studies of the electrochemical dissolution of Au(001). J. Am. Chem. Soc. 133:3772–75
    [Google Scholar]
  61. 61. 
    Martens I, Chattot R, Rasola M, Blanco MV, Honkimäki V et al. 2019. Probing the dynamics of platinum surface oxides in fuel cell catalyst layers using in situ X-ray diffraction. ACS Appl. Energy Mater. 2:7772–80
    [Google Scholar]
  62. 62. 
    Wiegman T, Drnec J, Reikowski F, Stettner J, Maroun F, Magnusson OM. 2020. In situ transmission X-ray micro-diffraction from thin metal films electrodeposited in microfluidic channels. J. Electrochem. Soc. 167:112505
    [Google Scholar]
  63. 63. 
    Shirasawa T, Masuda T, Voegeli W, Arakawa E, Kamezawa C et al. 2017. Fast structure determination of electrode surfaces for investigating electrochemical dynamics using wavelength-dispersive X-ray crystal truncation rod measurements. J. Phys. Chem. C 121:24726–32
    [Google Scholar]
  64. 64. 
    Shirasawa T. 2019. Real-time observation of interface atomic structures by an energy-dispersive surface X-ray diffraction. e-J. Surf. Sci. Nanotechnol. 17:155–62
    [Google Scholar]
  65. 65. 
    Matsushita T, Takahashi T, Shirasawa T, Arakawa E, Toyokawa H, Tajiri H. 2011. Quick measurement of crystal truncation rod profiles in simultaneous multi-wavelength dispersive mode. J. Appl. Phys. 110:102209
    [Google Scholar]
  66. 66. 
    Pershan PS, Schlossman ML, eds. 2012. Liquid Surfaces and Interfaces: Synchrotron X-Ray Methods Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  67. 67. 
    Murphy BM, Festersen S, Magnussen OM. 2016. The atomic scale structure of liquid metal–electrolyte interfaces. Nanoscale 8:13859–66
    [Google Scholar]
  68. 68. 
    Runge B, Festersen S, Koops CT, Elsen A, Deutsch M et al. 2016. Temperature- and potential-dependent structure of the mercury-electrolyte interface. Phys. Rev. B 93:165408
    [Google Scholar]
  69. 69. 
    Elsen A, Murphy BM, Ocko BM, Tamam L, Deutsch M et al. 2010. Surface layering at the mercury-electrolyte interface. Phys. Rev. Lett. 104:105501
    [Google Scholar]
  70. 70. 
    Elsen A, Festersen S, Runge B, Koops CT, Ocko BM et al. 2013. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid–liquid interface. PNAS 110:6663–68
    [Google Scholar]
  71. 71. 
    Hou B, Laanait N, Yu H, Bu W, Yoon J et al. 2013. Ion distributions at the water/1,2-dichloroethane interface: potential of mean force approach to analyzing X-ray reflectivity and interfacial tension measurements. J. Phys. Chem. B 117:5365–78
    [Google Scholar]
  72. 72. 
    Hou BY, Bu W, Luo GM, Vanysek P, Schlossman ML. 2015. Ion distributions at electrified water-organic interfaces: PB-PMF calculations and impedance spectroscopy measurements. J. Electrochem. Soc. 162:H890–97
    [Google Scholar]
  73. 73. 
    Laanait N, Mihaylov M, Hou B, Yu H, Vanýsek P et al. 2012. Tuning ion correlations at an electrified soft interface. PNAS 109:20326–31
    [Google Scholar]
  74. 74. 
    Luo G, Malkova S, Yoon J, Schultz DG, Lin B et al. 2006. Ion distributions near a liquid-liquid interface. Science 311:216–18
    [Google Scholar]
  75. 75. 
    Bera MK, Chan H, Moyano DF, Yu H, Tatur S et al. 2014. Interfacial localization and voltage-tunable arrays of charged nanoparticles. Nano Lett 14:6816–22
    [Google Scholar]
  76. 76. 
    Schlossman ML, Tikhonov AM. 2008. Molecular ordering and phase behavior of surfactants at water-oil interfaces as probed by X-ray surface scattering. Annu. Rev. Phys. Chem. 59:153–77
    [Google Scholar]
  77. 77. 
    Fenter P, Sturchio NC. 2004. Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Prog. Surface Sci. 77:171–258
    [Google Scholar]
  78. 78. 
    Toney MF, Howard JN, Richer J, Borges GL, Gordon JG et al. 1995. Distribution of water molecules at Ag(111)/electrolyte interface as studied with surface X-ray scattering. Surf. Sci. 335:326–32
    [Google Scholar]
  79. 79. 
    Lucas CA, Thompson P, Gründer Y, Markovic NM. 2011. The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte. Electrochem. Commun. 13:1205–8
    [Google Scholar]
  80. 80. 
    Steinrück H-G, Cao C, Tsao Y, Takacs CJ, Konovalov O et al. 2018. The nanoscale structure of the electrolyte–metal oxide interface. Energy Environ. Sci. 11:594–602
    [Google Scholar]
  81. 81. 
    Kawaguchi T, Liu Y, Reiter A, Cammarot C, Pierce MS, You H. 2018. Direct determination of one-dimensional interphase structures using normalized crystal truncation rod analysis. J. Appl. Crystallogr. 51:679–84
    [Google Scholar]
  82. 82. 
    Liu Y, Kawaguchi T, Pierce MS, Komanicky V, You H. 2018. Layering and ordering in electrochemical double layers. J. Phys. Chem. Lett. 9:1265–71
    [Google Scholar]
  83. 83. 
    Kawaguchi T, Rao RR, Lunger JR, Liu Y, Walko D et al. 2020. Stern layers on RuO2 (100) and (110) in electrolyte: surface X-ray scattering studies. J. Electroanal. Chem. 875:114228
    [Google Scholar]
  84. 84. 
    Renaud G, Lazzari R, Leroy F. 2009. Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 64:255–380
    [Google Scholar]
  85. 85. 
    Müller-Buschbaum P 2009. A basic introduction to grazing incidence small-angle X-ray scattering. Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences M Gomez, A Nogales, MC Garcia-Gutierrez, TA Ezquerra 61–89 Berlin/Heidelberg: Springer
    [Google Scholar]
  86. 86. 
    Ruge M, Golks F, Zegenhagen J, Magnussen OM, Stettner J. 2014. In operando GISAXS studies of mound coarsening in electrochemical homoepitaxy. Phys. Rev. Lett. 112:055503
    [Google Scholar]
  87. 87. 
    Wang Q, Frenkel AI 2017. Characterization of model nanocatalysts by X-ray absorption spectroscopy. Studies in Surface Science and Catalysis P Fornasiero, M Cargnello 149–83 Amsterdam: Elsevier
    [Google Scholar]
  88. 88. 
    Penner-Hahn JE 2019. X-ray absorption spectroscopy. Encyclopedia of Analytical Science P Worsfold, C Poole, A Townshend, M Miró 404–19 Oxford, UK: Academic. , 3rd ed..
    [Google Scholar]
  89. 89. 
    Sun Z, Wei S, Zhang X 2018. The application of X-ray Absorption fine structure spectroscopy in functional materials. Synchrotron Radiation Applications X Zhang 149–224 Singapore: World Sci.
    [Google Scholar]
  90. 90. 
    Joly YG, S 2016. Theory of X-ray absorption near edge structure. X-Ray Absorption and X-Ray Emission Spectroscopy JA Van Bokhoven, C Lamberti:73–97 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  91. 91. 
    Vickerman JC, Gilmore IS. 2011. Surface Analysis: The Principal Techniques Hoboken, NJ: John Wiley & Sons
  92. 92. 
    MV V, Nageswaran G. 2020. Operando X-ray spectroscopic techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8:23
    [Google Scholar]
  93. 93. 
    Russell AE, Rose A. 2004. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104:4613–35
    [Google Scholar]
  94. 94. 
    Amezawa K. 2020. X-ray absorption spectroscopic studies on solid oxide fuel cells and proton-conducting ceramic fuel cells. Curr. Opin. Electrochem. 21:250–56
    [Google Scholar]
  95. 95. 
    Zhang H, Li X, Jiang Z. 2019. Probe active sites of heterogeneous electrocatalysts by X-ray absorption spectroscopy: from single atom to complex multi-element composites. Curr. Opin. Electrochem. 14:7–15
    [Google Scholar]
  96. 96. 
    Wang M, Árnadóttir L, Xu ZJ, Feng Z. 2019. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett 11:47
    [Google Scholar]
  97. 97. 
    Firet NJ, Blommaert MA, Burdyny T, Venugopal A, Bohra D et al. 2019. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction. J. Mater. Chem. A 7:2597–607
    [Google Scholar]
  98. 98. 
    Albarelli MJ, White JH, Bommarito GM, McMillan M, Abruña HD. 1988. In-situ surface EXAFS at chemically modified electrodes. J. Electroanal. Chem. 248:77–86
    [Google Scholar]
  99. 99. 
    Melroy OR, Samant MG, Borges GL, Gordon JG, Blum L et al. 1988. In-plane structure of underpotentially deposited copper on gold(111) determined by surface EXAFS. Langmuir 4:728–32
    [Google Scholar]
  100. 100. 
    White JH, Abruña HD. 1988. Electrosorption of iodide on Pt(111) studied in situ by X-ray absorption spectroscopy. J. Phys. Chem. 92:7131–34
    [Google Scholar]
  101. 101. 
    White JH, Albarelli MJ, Abruña HD, Blum L, Melroy OR et al. 1988. Surface extended X-ray absorption fine structure of underpotentially deposited silver on Au(111) electrodes. J. Phys. Chem. 92:4432–36
    [Google Scholar]
  102. 102. 
    White JH, Abruña HD. 1989. An in-situ surface EXAFS study of copper underpotential deposition on Pt (111). Part I. The observation of strong in-plane scattering at submonolayer coverage. J. Electroanal. Chem. 274:185–99
    [Google Scholar]
  103. 103. 
    Herrero E, Buller LJ, Abruña HD. 2001. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101:1897–930
    [Google Scholar]
  104. 104. 
    Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J. 2017. Electrochemical CO2 reduction: a classification problem. Chem. Phys. Chem. 18:3266–73
    [Google Scholar]
  105. 105. 
    Weng Z, Wu Y, Wang M, Jiang J, Yang K et al. 2018. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9:415
    [Google Scholar]
  106. 106. 
    Möller T, Scholten F, Thanh TN, Sinev I, Timoshenko J et al. 2020. Electrocatalytic CO2 reduction on CuOx nanocubes: tracking the evolution of chemical state, geometric structure, and catalytic selectivity using operando spectroscopy. Angew. Chem. Int. Ed. 132:18130–39
    [Google Scholar]
  107. 107. 
    Mistry H, Varela AS, Bonifacio CS, Zegkinoglou I, Sinev I et al. 2016. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7:12123
    [Google Scholar]
  108. 108. 
    Grosse P, Gao D, Scholten F, Sinev I, Mistry H, RoldanCuenya B 2018. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57:6192–97
    [Google Scholar]
  109. 109. 
    Velasco-Velez J-J, Mom RV, Sandoval-Diaz L-E, Falling LJ, Chuang C-H et al. 2020. Revealing the active phase of copper during the electroreduction of CO2 in aqueous electrolyte by correlating in situ X-ray spectroscopy and in situ electron microscopy. ACS Energy Lett 5:2106–11
    [Google Scholar]
  110. 110. 
    Wu Y, Jiang J, Weng Z, Wang M, Broere DLJ et al. 2017. Electroreduction of CO2 catalyzed by a heterogenized Zn–porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 3:847–52
    [Google Scholar]
  111. 111. 
    Calvillo L, Carraro F, Vozniuk O, Celorrio V, Nodari L et al. 2018. Insights into the durability of Co–Fe spinel oxygen evolution electrocatalysts via operando studies of the catalyst structure. J. Mater. Chem. A 6:7034–41
    [Google Scholar]
  112. 112. 
    Becknell N, Kang Y, Chen C, Resasco J, Kornienko N et al. 2015. Atomic structure of Pt3Ni nanoframe electrocatalysts by in situ X-ray absorption spectroscopy. J. Am. Chem. Soc. 137:15817–24
    [Google Scholar]
  113. 113. 
    Drevon D, Görlin M, Chernev P, Xi L, Dau H, Lange KM. 2019. Uncovering the role of oxygen in Ni-Fe(OxHy) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction. Sci. Rep. 9:1532
    [Google Scholar]
  114. 114. 
    Yang Y, Wang Y, Xiong Y, Huang X, Shen L et al. 2019. In situ X-ray absorption spectroscopy of a synergistic Co–Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141:1463–66
    [Google Scholar]
  115. 115. 
    Xiong Y, Yang Y, Feng X, DiSalvo FJ, Abruña HD. 2019. A strategy for increasing the efficiency of the oxygen reduction reaction in Mn-doped cobalt ferrites. J. Am. Chem. Soc. 141:4412–21
    [Google Scholar]
  116. 116. 
    Nong HN, Reier T, Oh H-S, Gliech M, Paciok P et al. 2018. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1:841–51
    [Google Scholar]
  117. 117. 
    Price SW, Speed JD, Kannan P, Russell AE. 2011. Exploring the first steps in core–shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles. J. Am. Chem. Soc. 133:19448–58
    [Google Scholar]
  118. 118. 
    Price SW, Rhodes JM, Calvillo L, Russell AE. 2013. Revealing the details of the surface composition of electrochemically prepared Au@Pd Core@shell nanoparticles with in situ EXAFS. J. Phys. Chem. C 117:24858–65
    [Google Scholar]
  119. 119. 
    Wise AM, Richardson PW, Price SW, Chouchelamane G, Calvillo L et al. 2018. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: an in situ EXAFS and XRD study. Electrochim. Acta 262:27–38
    [Google Scholar]
  120. 120. 
    Yu X, Lyu Y, Gu L, Wu H, Bak SM et al. 2014. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4:1300950
    [Google Scholar]
  121. 121. 
    Lin S-C, Chang C-C, Chiu S-Y, Pai H-T, Liao T-Y et al. 2020. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 11:3525
    [Google Scholar]
  122. 122. 
    Achilli E, Minguzzi A, Lugaresi O, Locatelli C, Rondinini S et al. 2014. In situ dispersive EXAFS in electrocatalysis: the investigation of the local structure of IrOx in chronoamperometric conditions as a case study. J. Spectrosc. 2014:480102
    [Google Scholar]
  123. 123. 
    Lucas CA, Marković NM, Ross PN. 1997. Electrochemical deposition of copper onto Pt(111) in the presence of (bi)sulfate anions. Phys. Rev. B Condens. Matter Mater. Phys. 56:3651–54
    [Google Scholar]
  124. 124. 
    Ramadan AR, Chabala ED, Rayment T. 1999. An in situ surface differential diffraction and anomalous scattering investigation of surface relaxation during underpotential deposition of Ag on Au(111). Phys. Chem. Chem. Phys. 1:1591–96
    [Google Scholar]
  125. 125. 
    Tidswell IM, Lucas CA, Marković NM, Ross PN. 1995. Surface-structure determination using anomalous x-ray scattering: underpotential deposition of copper on Pt(111). Phys. Rev. B 51:10205
    [Google Scholar]
  126. 126. 
    Shibata M, Hayashi N, Sakurai T, Kurokawa A, Fukumitsu H et al. 2012. Electrochemical layer-by-layer deposition of pseudomorphic Pt layers on Au(111) electrode surface confirmed by electrochemical and in situ resonance surface X-ray scattering measurements. J. Phys. Chem. C 116:26464–74
    [Google Scholar]
  127. 127. 
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN et al. 2007. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–97
    [Google Scholar]
  128. 128. 
    Fowler B, Lucas CA, Omer A, Wang G, Stamenković VR, Marković NM. 2008. Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles. Electrochim. Acta 53:6076–80
    [Google Scholar]
  129. 129. 
    Park C, Fenter PA, Sturchio NC, Regalbuto JR. 2005. Probing outer-sphere adsorption of aqueous metal complexes at the oxide-water interface with resonant anomalous X-ray reflectivity. Phys. Rev. Lett. 94:076104
    [Google Scholar]
  130. 130. 
    Lee SS, Park C, Fenter P, Sturchio NC, Nagy KL. 2010. Competitive adsorption of strontium and fulvic acid at the muscovite-solution interface observed with resonant anomalous X-ray reflectivity. Geochim. Cosmochim. Acta 74:1762–76
    [Google Scholar]
  131. 131. 
    Fenter P, Park C, Nagy KL, Sturchio NC. 2007. Resonant anomalous X-ray reflectivity as a probe of ion adsorption at solid-liquid interfaces. Thin Solid Films 515:5654–59
    [Google Scholar]
  132. 132. 
    Kohli V, Zhang Z, Park C, Fenter P. 2010. Rb and Sr adsorption at the TiO2 (110)-electrolyte interface observed with resonant anomalous X-ray reflectivity. Langmuir 26:950–58
    [Google Scholar]
  133. 133. 
    Lee SS, Heberling F, Sturchio NC, Eng PJ, Fenter P. 2016. Surface charge of the calcite (104) terrace measured by Rb+ adsorption in aqueous solutions using resonant anomalous X-ray reflectivity. J. Phys. Chem. C 120:15216–23
    [Google Scholar]
  134. 134. 
    Bellucci F, Lee SS, Kubicki JD, Bandura A, Zhang Z et al. 2015. Rb+ adsorption at the quartz(101)–aqueous interface: comparison of resonant anomalous X-ray reflectivity with ab initio calculations. J. Phys. Chem. C 119:4778–88
    [Google Scholar]
  135. 135. 
    Chu YS, You H, Tanzer JA, Lister TE, Nagy Z. 1999. Surface resonance X-ray scattering observation of core-electron binding-energy shifts of Pt(111)-surface atoms during electrochemical oxidation. Phys. Rev. Lett. 83:552–55
    [Google Scholar]
  136. 136. 
    Menzel A, Chang K-C, Komanicky V, You H, Chu YS et al. 2006. Resonance anomalous surface X-ray scattering. Radiat. Phys. Chem. 75:1651–60
    [Google Scholar]
  137. 137. 
    Menzel A, Tolmachev YV, Chang KC, Komanicky V, Chu YS et al. 2006. Polarization-dependent resonant anomalous surface X-ray scattering of CO/Pt(111). Europhys. Lett. 74:1032–38
    [Google Scholar]
  138. 138. 
    Gründer Y, Kaminski D, Golks F, Krug K, Stettner J et al. 2010. Reversal of chloride-induced Cu(001) subsurface buckling in the electrochemical environment: an in situ surface x-ray diffraction and density functional theory study. Phys. Rev. B 81:174114
    [Google Scholar]
  139. 139. 
    Saracino M, Broekmann P, Gentz K, Becker M, Keller H et al. 2009. Surface relaxation phenomena at electrified interfaces: revealing adsorbate, potential, and solvent effects by combined x-ray diffraction, STM and DFT studies. Phys. Rev. B 79:115448
    [Google Scholar]
  140. 140. 
    Gründer Y, Thompson P, Brownrigg A, Darlington M, Lucas CA. 2012. Probing the halide–metal interaction by monolayer metal deposition at the electrochemical interface. J. Phys. Chem. C 116:6283–88
    [Google Scholar]
  141. 141. 
    Wandlowski T, Wang JX, Magnussen OM, Ocko BM. 1996. Structural and kinetic aspects of bromide adsorption on Au(100). J. Phys. Chem. 100:10277–87
    [Google Scholar]
  142. 142. 
    Ocko B, Magnussen O, Wang J. 1996. One-dimensional commensurate-incommensurate transition: Bromide on the Au(100) electrode. Phys. Rev. B Condens. Matter Mater. Phys. 53:R7654–57
    [Google Scholar]
  143. 143. 
    Gründer Y, Lucas CA. 2017. Probing the charge distribution at the electrochemical interface. Phys. Chem. Chem. Phys. 19:8416–22
    [Google Scholar]
  144. 144. 
    Joly Y, Abisset A, Bailly A, De Santis M, Fettar F et al. 2018. Simulation of surface resonant X-ray diffraction. J. Chem. Theory Comput. 14:973–80
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091020-100631
Loading
/content/journals/10.1146/annurev-anchem-091020-100631
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error