1932

Abstract

Brucellosis, caused by bacteria of the genus , is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021815-111326
2016-02-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/4/1/annurev-animal-021815-111326.html?itemId=/content/journals/10.1146/annurev-animal-021815-111326&mimeType=html&fmt=ahah

Literature Cited

  1. Xavier MN, Paixão TA, Poester FP, Lage AP, Santos RL. 1.  2009. Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J. Comp. Pathol. 140:149–57 [Google Scholar]
  2. Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. 2.  2011. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65:523–41 [Google Scholar]
  3. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. 3.  2006. The new global map of human brucellosis. Lancet Infect. Dis. 6:91–99 [Google Scholar]
  4. Corbel MJ. 4.  1997. Brucellosis: an overview. Emerg. Infect. Dis. 3:213–21 [Google Scholar]
  5. Gorvel JP, Moreno E. 5.  2002. Brucella intracellular life: from invasion to intracellular replication. Vet. Microbiol. 90:281–97 [Google Scholar]
  6. Starr T, Ng TW, Wehrly TD, Knodler LA, Celli J. 6.  2008. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9:678–94 [Google Scholar]
  7. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT. 7.  et al. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. PNAS 102:9247–52 [Google Scholar]
  8. Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I. 8.  et al. 2006. Differential inductions of TNF-α and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell. Microbiol. 8:401–13 [Google Scholar]
  9. Fernández-Lago L, Monte M, Chordi A. 9.  1996. Endogenous gamma interferon and interleukin-10 in Brucella abortus 2308 infection in mice. FEMS Immunol. Med. Microbiol. 15:109–14 [Google Scholar]
  10. Fernandes DM, Jiang X, Jung JH, Baldwin CL. 10.  1996. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol. Med. Microbiol. 16:193–203 [Google Scholar]
  11. Fernandes DM, Baldwin CL. 11.  1995. Interleukin-10 downregulates protective immunity to Brucella abortus. Infect. Immun. 63:1130–33 [Google Scholar]
  12. Gorvel JP, Moreno E. 12.  2002. Brucella intracellular life: from invasion to intracellular replication. Vet. Microbiol. 90:281–97 [Google Scholar]
  13. Hong PC, Tsolis RM, Ficht TA. 13.  2000. Identification of genes required for chronic persistence of Brucella abortus in mice. Infect. Immun. 68:4102–7 [Google Scholar]
  14. Fretin D, Fauconnier A, Köhler S, Halling S, Léonard S. 14.  et al. 2005. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell. Microbiol. 7:687–98 [Google Scholar]
  15. Xavier MN, Paixão TA, Poester FP, Lage AP, Santos RL. 15.  2009. Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J. Comp. Pathol. 140:149–57 [Google Scholar]
  16. Xavier MN, Paixão TA, den Hartigh AB, Tsolis RM, Santos RL. 16.  2010. Pathogenesis of Brucella spp. Open Vet. Sci. J. 4:109–18 [Google Scholar]
  17. Verger JM, Grayon M, Zundel E, Lechopier P, Olivier-Bernardin V. 17.  1995. Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine 13:191–96 [Google Scholar]
  18. Banai M. 18.  2002. Control of small ruminant brucellosis by use of Brucella melitensis Rev. 1 vaccine: laboratory aspects and field observations. Vet. Microbiol. 90:497–519 [Google Scholar]
  19. Lucero NE, Ayala SM, Escobar GI, Jacob NR. 19.  2008. Brucella isolated in humans and animals in Latin America from 1968 to 2006. Epidemiol. Infect. 136:496–503 [Google Scholar]
  20. Alton GG, Forsyth JRL. 20.  1996. Brucella. Medical Microbiology S Baron, Chapter 28. Galveston: Univ. Tex. Med. Branch Galveston
  21. Meador VP, Deyoe BL. 21.  1989. Intracellular localization of Brucella abortus in bovine placenta. Vet. Pathol. 26:513–15 [Google Scholar]
  22. Nicoletti P. 22.  1980. The epidemiology of bovine brucellosis. Adv. Vet. Sci. Comp. Med. 24:69–98 [Google Scholar]
  23. Fretin D, Whatmore AM, Al Dahouk S, Neubauer H, Garin-Bastuji B. 23.  et al. 2008. Brucella suis identification and biovar typing by real-time PCR. Vet. Microbiol. 131:376–85 [Google Scholar]
  24. Ewalt DR, Payeur JB, Rhyan JC, Geer PL. 24.  1997. Brucella suis biovar 1 in naturally infected cattle: a bacteriological, serological, and histological study. J. Vet. Diagn. Investig. 9:417–20 [Google Scholar]
  25. Deyoe BL. 25.  1967. Pathogenesis of three strains of Brucella suis in swine. Am. J. Vet. Res. 28:951–57 [Google Scholar]
  26. Wanke MM. 26.  2004. Canine brucellosis. Anim. Reprod. Sci. 82–83:195–207 [Google Scholar]
  27. 27. US Dep. Health Hum. Serv. 2015. CDC burden of canine brucellosis information collection–new–National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC) Rep. 2015-12094, US Dep. Health Hum. Serv 809628615–17 Washington, DC: US Gov. Pub. Off. [Google Scholar]
  28. Carmichael LE, Kenney RM. 28.  1970. Canine brucellosis: the clinical disease, pathogenesis, and immune response. J. Am. Vet. Med. Assoc. 156:1726–34 [Google Scholar]
  29. Carmichael LE, Joubert JC. 29.  1988. Transmission of Brucella canis by contact exposure. Cornell Vet. 78:63–73 [Google Scholar]
  30. George LW, Duncan JR, Carmichael LE. 30.  1979. Semen examination in dogs with canine brucellosis. Am. J. Vet. Res. 40:1589–95 [Google Scholar]
  31. Burgess GW. 31.  1982. Ovine contagious epididymitis: a review. Vet. Microbiol. 7:551–75 [Google Scholar]
  32. Lawrence WE. 32.  1961. Ovine brucellosis: a review of the disease in sheep manifested by epididymitis and abortion. Br. Vet. J. 117:435–47 [Google Scholar]
  33. Carvalho Júnior CA, Moustacas VS, Xavier MN, Costa EA, Costa LF. 33.  et al. 2012. Andrological, pathologic, morphometric, and ultrasonographic findings in rams experimentally infected with Brucella ovis. Small Rumin. Res. 102:213–22 [Google Scholar]
  34. Xavier MN, Silva TM, Costa EA, Paixao TA, Moustacas VS. 34.  et al. 2010. Development and evaluation of a species-specific PCR assay for the detection of Brucella ovis infection in rams. Vet. Microbiol. 145:158–64 [Google Scholar]
  35. Meinershagen WA, Frank FW, Waldhalm DG. 35.  1974. Brucella ovis as a cause of abortion in ewes. Am. J. Vet. Res. 35:723–24 [Google Scholar]
  36. Hughes KL. 36.  1972. Experimental Brucella ovis infection in ewes. 1. Breeding performance of infected ewes. Aust. Vet. J. 48:12–17 [Google Scholar]
  37. Brown GM, Pietz DE, Price DA. 37.  1973. Studies on the transmission of Brucella ovis infection in rams. Cornell Vet. 63:29–40 [Google Scholar]
  38. Rubach MP, Halliday JE, Cleaveland S, Crump JA. 38.  2013. Brucellosis in low-income and middle-income countries. Curr. Opin. Infect. Dis. 26:404–12 [Google Scholar]
  39. Abu Shaqra QM. 39.  2000. Epidemiological aspects of brucellosis in Jordan. Eur. J. Epidemiol. 16:581–84 [Google Scholar]
  40. Bonfoh B, Kasymbekov J, Durr S, Toktobaev N, Doherr MG. 40.  et al. 2012. Representative seroprevalences of brucellosis in humans and livestock in Kyrgyzstan. Ecohealth 9:132–38 [Google Scholar]
  41. Abdullayev R, Kracalik I, Ismayilova R, Ustun N, Talibzade A, Blackburn JK. 41.  2012. Analyzing the spatial and temporal distribution of human brucellosis in Azerbaijan (1995–2009) using spatial and spatio-temporal statistics. BMC Infect. Dis. 12:185 [Google Scholar]
  42. Dean AS, Crump L, Greter H, Schelling E, Zinsstag J. 42.  2012. Global burden of human brucellosis: a systematic review of disease frequency. PLOS Negl. Trop. Dis. 6:e1865 [Google Scholar]
  43. Doyle TJ, Bryan RT. 43.  2000. Infectious disease morbidity in the US region bordering Mexico, 1990–1998. J. Infect. Dis. 182:1503–10 [Google Scholar]
  44. Guerrier G, Daronat JM, Morisse L, Yvon JF, Pappas G. 44.  2011. Epidemiological and clinical aspects of human Brucella suis infection in Polynesia. Epidemiol. Infect. 139:1621–25 [Google Scholar]
  45. Lucero NE, Corazza R, Almuzara MN, Reynes E, Escobar GI. 45.  et al. 2010. Human Brucella canis outbreak linked to infection in dogs. Epidemiol. Infect. 138:280–85 [Google Scholar]
  46. Dean AS, Crump L, Greter H, Hattendorf J, Schelling E, Zinsstag J. 46.  2012. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLOS Negl. Trop. Dis. 6:e1929 [Google Scholar]
  47. Abo-shehada MN, Abu-Halaweh M. 47.  2011. Seroprevalence of Brucella species among women with miscarriage in Jordan. East Mediter. Health J. 17:871–74 [Google Scholar]
  48. Karcaaltincaba D, Sencan I, Kandemir O, Guvendag-Guven ES, Yalvac S. 48.  2010. Does brucellosis in human pregnancy increase abortion risk? Presentation of two cases and review of literature. J. Obstet. Gynaecol. Res. 36:418–23 [Google Scholar]
  49. Fugier E, Pappas G, Gorvel JP. 49.  2007. Virulence factors in brucellosis: implications for aetiopathogenesis and treatment. Expert Rev. Mol. Med. 9:1–10 [Google Scholar]
  50. Aydin B, Beken S, Akansel R, Dilli D, Okumus N. 50.  et al. 2013. Prematurity due to maternal Brucella infection and review of the literature. Turk. J. Pediatr. 55:433–37 [Google Scholar]
  51. Hoebe K, Janssen E, Beutler B. 51.  2004. The interface between innate and adaptive immunity. Nat. Immunol. 5:971–74 [Google Scholar]
  52. Joiner KA, Puentes SM, Warren KA, Scales RA, Judd RC. 52.  1989. Complement binding on serum-sensitive and serum-resistant transformants of Neisseria gonorrhoeae: effect of presensitization with a non-bactericidal monoclonal antibody. Microb. Pathog. 6:343–50 [Google Scholar]
  53. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzmán-Verri C, Chacón-Díaz C. 53.  et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLOS ONE 2:e631 [Google Scholar]
  54. Hoffmann EM, Houle JJ. 54.  1983. Failure of Brucella abortus lipopolysaccharide (LPS) to activate the alternative pathway of complement. Vet. Immunol. Immunopathol. 5:65–76 [Google Scholar]
  55. Wilson RP, Winter SE, Spees AM, Winter MG, Nishimori JH. 55.  et al. 2011. The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect. Immun. 79:830–37 [Google Scholar]
  56. Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G. 56.  et al. 2007. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110:228–36 [Google Scholar]
  57. Terwagne M, Ferooz J, Rolan HG, Sun YH, Atluri V. 57.  et al. 2013. Innate immune recognition of flagellin limits systemic persistence of Brucella. Cell. Microbiol. 15:942–60 [Google Scholar]
  58. Svetić A, Jian YC, Lu P, Finkelman FD, Gause WC. 58.  1993. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN-gamma in CD4+ T cells. Int. Immunol. 5:877–83 [Google Scholar]
  59. Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. 59.  2008. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J. Immunol. 180:1080–87 [Google Scholar]
  60. Copin R, De Baetselier P, Carlier Y, Letesson JJ, Muraille E. 60.  2007. MyD88-dependent activation of B220CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J. Immunol. 178:5182–91 [Google Scholar]
  61. Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G. 61.  et al. 2008. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLOS Pathog. 4:e21 [Google Scholar]
  62. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S. 62.  et al. 2008. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med. 14:399–406 [Google Scholar]
  63. Sengupta D, Koblansky A, Gaines J, Brown T, West AP. 63.  et al. 2010. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J. Immunol. 184:956–64 [Google Scholar]
  64. Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K. 64.  et al. 2013. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front. Cell. Infect. Microbiol. 3:28 [Google Scholar]
  65. Zhan Y, Cheers C. 65.  1995. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect. Immun. 63:1387–90 [Google Scholar]
  66. Zhan Y, Liu Z, Cheers C. 66.  1996. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms. Infect. Immun. 64:2782–86 [Google Scholar]
  67. Rolán HG, Tsolis RM. 67.  2008. Inactivation of the type IV secretion system reduces the Th1 polarization of the immune response to Brucella abortus infection. Infect. Immun. 76:3207–13 [Google Scholar]
  68. Araya LN, Elzer PH, Rowe GE, Enright FM, Winter AJ. 68.  1989. Temporal development of protective cell-mediated and humoral immunity in BALB/c mice infected with Brucella abortus. J. Immunol. 143:3330–37 [Google Scholar]
  69. Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL. 69.  2001. Interferon-γ is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103:511–18 [Google Scholar]
  70. Ko J, Gendron-Fitzpatrick A, Splitter GA. 70.  2002. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. J. Immunol. 168:2433–40 [Google Scholar]
  71. Rafiei A, Ardestani SK, Kariminia A, Keyhani A, Mohraz M, Amirkhani A. 71.  2006. Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease. J. Infect. 53:315–24 [Google Scholar]
  72. Rodríguez-Zapata M, Matías MJ, Prieto A, Jonde MA, Monserrat J. 72.  et al. 2010. Human brucellosis is characterized by an intense Th1 profile associated with a defective monocyte function. Infect. Immun. 78:3272–79 [Google Scholar]
  73. Budak F, Göral G, Heper Y, Yilmaz E, Aymak F. 73.  et al. 2007. IL-10 and IL-6 gene polymorphisms as potential host susceptibility factors in Brucellosis. Cytokine 38:32–36 [Google Scholar]
  74. Karaoglan I, Pehlivan S, Namiduru M, Pehlivan M, Kilincarslan C. 74.  et al. 2009. TNF-α, TGF-β, IL-10, IL-6 and IFN-γ gene polymorphisms as risk factors for brucellosis. New Microbiol. 32:173–78 [Google Scholar]
  75. Xavier MN, Winter MG, Spees AM, Nguyen K, Atluri VL. 75.  et al. 2013. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLOS Pathog. 9:e1003454 [Google Scholar]
  76. Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA. 76.  2006. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. PNAS 103:16514–19 [Google Scholar]
  77. O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G. 77.  et al. 1999. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33:1210–20 [Google Scholar]
  78. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V. 78.  et al. 2001. Identification of Brucella spp. genes involved in intracellular trafficking. Cell. Microbiol. 3:487–97 [Google Scholar]
  79. den Hartigh AB, Rolan HG, de Jong MF, Tsolis RM. 79.  2008. VirB3-VirB6 and VirB8-VirB11, but not VirB7, are essential for mediating persistence Brucella in the reticuloendothelial system. J. Bacteriol. 190:4427–36 [Google Scholar]
  80. den Hartigh AB, Sun YH, Sondervan D, Heuvelmans N, Reinders MO. 80.  et al. 2004. Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect. Immun. 72:5143–49 [Google Scholar]
  81. Zygmunt MS, Hagius SD, Walker JV, Elzer PH. 81.  2006. Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect. 8:2849–54 [Google Scholar]
  82. Kahl-McDonagh MM, Elzer PH, Hagius SD, Walker JV, Perry QL. 82.  et al. 2006. Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine 24:5169–77 [Google Scholar]
  83. Roux CM, Rolan HG, Santos RL, Beremand PD, Thomas TL. 83.  et al. 2007. Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell. Microbiol. 9:1851–69 [Google Scholar]
  84. Rolan HG, Tsolis RM. 84.  2007. Mice lacking components of adaptive immunity show increased Brucella abortus virB mutant colonization. Infect. Immun. 75:2965–73 [Google Scholar]
  85. Gomes MT, Campos PC, Oliveira FS, Corsetti PP, Bortoluci KR. 85.  et al. 2013. Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection. J. Immunol. 190:3629–38 [Google Scholar]
  86. Blander JM, Sander LE. 86.  2012. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12:215–25 [Google Scholar]
  87. Marchesini MI, Herrmann CK, Salcedo SP, Gorvel JP, Comerci DJ. 87.  2011. In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell. Microbiol. 13:1261–74 [Google Scholar]
  88. de Jong MF, Sun YH, den Hartigh AB, van Dijl JM, Tsolis RM. 88.  2008. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol. Microbiol. 70:1378–96 [Google Scholar]
  89. Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD. 89.  et al. 2013. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLOS Pathog. 9:e1003556 [Google Scholar]
  90. de Jong MF, Starr T, Winter MG, den Hartigh AB, Child R. 90.  et al. 2013. Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418–12 [Google Scholar]
  91. Mosser DM, Edwards JP. 91.  2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–69 [Google Scholar]
  92. Xavier MN, Winter MG, Spees AM, den Hartigh AB, Nguyen K. 92.  et al. 2013. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host. Microbe 14:159–70 [Google Scholar]
  93. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V. 93.  et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447:1116–20 [Google Scholar]
  94. Bensinger SJ, Tontonoz P. 94.  2008. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–77 [Google Scholar]
  95. Tontonoz P, Spiegelman BM. 95.  2008. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77:289–312 [Google Scholar]
  96. Zhang L, Chawla A. 96.  2004. Role of PPARγ in macrophage biology and atherosclerosis. Trends Endocrinol. Metab. 15:500–5 [Google Scholar]
  97. Roop RM 2nd, Caswell CC. 97.  2013. Bacterial persistence: finding the “sweet spot.”. Cell Host. Microbe 14:119–20 [Google Scholar]
  98. Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS. 98.  et al. 2013. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host. Microbe 14:171–82 [Google Scholar]
  99. Samartino LE, Enright FM. 99.  1993. Pathogenesis of abortion of bovine brucellosis. Comp. Immunol. Microbiol. Infect. Dis. 16:95–101 [Google Scholar]
  100. Carvalho Neta AV, Stynen AP, Paixao TA, Miranda KL, Silva FL. 100.  et al. 2008. Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect. Immun. 76:1897–907 [Google Scholar]
  101. Mol JP, Costa EA, Carvalho AF, Sun YH, Tsolis RM. 101.  et al. 2014. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection. PLOS ONE 9:e108606 [Google Scholar]
  102. Samartino LE, Enright FM. 102.  1992. Interaction of bovine chorioallantoic membrane explants with three strains of Brucella abortus. Am. J. Vet. Res. 53:359–63 [Google Scholar]
  103. Moreno E. 103.  2014. Retrospective and prospective perspectives on zoonotic brucellosis. Front. Microbiol. 5:213 [Google Scholar]
  104. Bellaire BH, Elzer PH, Hagius S, Walker J, Baldwin CL, Roop RM 2nd. 104.  2003. Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect. Immun. 71:1794–803 [Google Scholar]
  105. Grillo MJ, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 105.  2012. What have we learned from brucellosis in the mouse model?. Vet. Res. 43:29 [Google Scholar]
  106. Wang Z, Wang SS, Wang GL, Wu TL, Lv YL, Wu QM. 106.  2014. A pregnant mouse model for the vertical transmission of Brucella melitensis. Vet. J. 200:116–21 [Google Scholar]
  107. Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M. 107.  2005. Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol. 5:22 [Google Scholar]
  108. Watanabe K, Tachibana M, Tanaka S, Furuoka H, Horiuchi M. 108.  et al. 2008. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol. 8:212 [Google Scholar]
  109. Paixão TA, Roux CM, den Hartigh AB, Sankaran-Walters S, Dandekar S. 109.  et al. 2009. Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen. Infect. Immun. 77:4197–208 [Google Scholar]
  110. Rossetti CA, Drake KL, Siddavatam P, Lawhon SD, Nunes JE. 110.  et al. 2013. Systems biology analysis of Brucella infected Peyer's patch reveals rapid invasion with modest transient perturbations of the host transcriptome. PLOS ONE 8:e81719 [Google Scholar]
  111. de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G. 111.  et al. 2011. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell. Microbiol 13:1044–58 [Google Scholar]
  112. Dohmer PH, Valguarnera E, Czibener C, Ugalde JE. 112.  2014. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell. Microbiol. 16:396–410 [Google Scholar]
/content/journals/10.1146/annurev-animal-021815-111326
Loading
/content/journals/10.1146/annurev-animal-021815-111326
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error