1932

Abstract

The pig was first used in biomedical research in ancient Greece and over the past few decades has quickly grown into an important biomedical research tool. Pigs have genetic and physiological traits similar to humans, which make them one of the most useful and versatile animal models. Owing to these similarities, data generated from porcine models are more likely to lead to viable human treatments than those from murine work. In addition, the similarity in size and physiology to humans allows pigs to be used for many experimental approaches not feasible in mice. Research areas that employ pigs range from neonatal development to translational models for cancer therapy. Increasing numbers of porcine models are being developed since the release of the swine genome sequence, and the development of additional porcine genomic and epigenetic resources will further their use in biomedical research.

Keyword(s): biomedicaldiseaseepigenomemodelsporcine
Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022114-110815
2015-02-16
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/animal/3/1/annurev-animal-022114-110815.html?itemId=/content/journals/10.1146/annurev-animal-022114-110815&mimeType=html&fmt=ahah

Literature Cited

  1. Schook L, Beattie C, Beever J, Donovan S, Jamison R et al. 2005. Swine in biomedical research: creating the building blocks of animal models. Anim. Biotechnol 16:2183–90 [Google Scholar]
  2. Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491:7424393–98 [Google Scholar]
  3. Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. 2013. Genetically engineered pig models for human diseases. Annu. Rev. Anim. Biosci 1:203–19 [Google Scholar]
  4. Kuzmuk KN, Schook LB. 2011. Pigs as a model for biomedical sciences. The Genetics of the Pig Rothschild MF, Ruvinsky A. 426–44 Wallingford, UK: CAB Int. [Google Scholar]
  5. Tumbleson ME, Schook LB. 1997. Advances in Swine in Biomedical Research Vol. 1 New York: Springer
  6. Humphray SJ, Scott CE, Clark R, Marron B, Bender C et al. 2007. A high utility integrated map of the pig genome. Genome Biol 8:7R139 [Google Scholar]
  7. Hau J. 2008. Sourcebook of Models for Biomedical Research Totowa, NJ: Humana Press
  8. Chow P. 2008. Using animal models in biomedical research. Using Animal Models in Biomedical Research: A Primer for the Investigator Chow P, Ng R, Ogden B. 48–53 Hackensack, NJ: World Sci. [Google Scholar]
  9. Shoja MM, Tubbs RS, Ghabili K, Griessenauer CJ, Balch MW, Cuceu M. 2014. The Roman Empire legacy of Galen (129–200 ad). Child's Nerv. Syst. In press
  10. Bernard C. 1957 (1865). An Introduction to the Study of Experimental Medicine, transl. HC Greene. New York: Dover
  11. Lunney JK. 2007. Advances in swine biomedical model genomics. Int. J. Biol. Sci 3:179–84 [Google Scholar]
  12. Kuzmuk KN, Schook LB. 2009. Animal models for elucidating human disease: confronting cancer and other chronic diseases. CAB Rev 4:321–9 [Google Scholar]
  13. Pathak S, Multani A, McConkey D, Imam A, Amoss M. 2000. Spontaneous regression of cutaneous melanoma in sinclair swine is associated with defective telomerase activity and extensive telomere erosion. Int. J. Oncol 17:61219–24 [Google Scholar]
  14. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM. 2007. Genetic induction of tumorigenesis in swine. Oncogene 26:71038–45 [Google Scholar]
  15. Pollock C, Rogatcheva M, Schook LB. 2007. Comparative genomics of xenobiotics metabolism: a porcine-human PXR gene comparison. Mamm. Genome 18:210–19 [Google Scholar]
  16. Schook LB, Kuzmuk K, Adam S, Rund L, Chen K et al. 2008. DNA-based animal models of human disease: from genotype to phenotype. Dev. Biol 132:15–25 [Google Scholar]
  17. Jensen TW, Mazur MJ, Pettigew JE, Perez-Mendoza VG, Zachary J, Schook LB. 2010. A cloned pig model for examining atherosclerosis induced by high fat, high cholesterol diets. Anim. Biotechnol 21:3179–87 [Google Scholar]
  18. McKenzie JE, Scandling DM, Ahle NW, Bryant HJ, Kyle RR, Abbrecht PH. 1996. Effects of soman (pinacolyl methylphosphonofluoridate) on coronary blood flow and cardiac function in swine. Fundam. Appl. Toxicol 29:1140–46 [Google Scholar]
  19. Spurlock ME, Gabler NK. 2008. The development of porcine models of obesity and the metabolic syndrome. J. Nutr 138:2397–402 [Google Scholar]
  20. Swindle MM, Smith A. 2000. Information Resources on Swine in Biomedical Research. AWIC Res. Ser. 11. http://www.nal.usda.gov/awic/pubs/swine/swine.htm
  21. Elmore MRP, Dilger RN, Johnson RW. 2012. Place and direction learning in a spatial t-maze task by neonatal piglets. Anim. Cogn 15:4667–76 [Google Scholar]
  22. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. 2007. The use of pigs in neuroscience: modeling brain disorders. Neurosci. Biobehav. Rev 31:5728–51 [Google Scholar]
  23. Conrad MS, Dilger RN, Nickolls A, Johnson RW. 2012. Magnetic resonance imaging of the neonatal piglet brain. Pediatr. Res 71:2179–84 [Google Scholar]
  24. Harington CR. 1926. Chemistry of thyroxine: constitution and synthesis of desiodo-thyroxine. Biochem. J 20:2300–13 [Google Scholar]
  25. Kendall EC. 1915. The isolation in crystalline form of the compound containing iodin, which occurs in the thyroid: its chemical nature and physiologic activity. J. Am. Med. Assoc 64:252042–43 [Google Scholar]
  26. Harington C, Barger G. 1927. Chemistry of thyroxine: constitution and synthesis of thyroxine. Biochem. J 21:1169–83 [Google Scholar]
  27. Slater S. 2010. The discovery of thyroid replacement therapy. JLL Bull. Comment. Hist. Treat. Eval. http://www.jameslindlibrary.org/illustrating/articles/the-discovery-of-thyroid-replacement-therapy
  28. Rohrer G, Beever J, Rothschild M, Schook LB, Gibbs R, Weinstock G. 2002. Porcine Genomic Sequencing Initiative. NIH White Pap. http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/PorcineSEQ021203.pdf
  29. Wade N. 1978. Guillemin and Schally: the three-lap race to Stockholm. Science 200:411–15 [Google Scholar]
  30. Manji RA, Menkis AH, Ekser B, Cooper DKC. 2012. The future of bioprosthetic heart valves. Indian J. Med. Res 135:150–51 [Google Scholar]
  31. Jenkins ED, Melman L, Deeken CR, Greco SC, Frisella MM, Matthews BD. 2011. Biomechanical and histologic evaluation of fenestrated and nonfenestrated biologic mesh in a porcine model of ventral hernia repair. J. Am. Coll. Surg 212:3327–39 [Google Scholar]
  32. Thörn HA, Lundahl A, Schrickx JA, Dickinson PA, Lennernäs H. 2011. Drug metabolism of cyp3a4, cyp2c9 and cyp2d6 substrates in pigs and humans. Eur. J. Pharm. Sci 43:389–98 [Google Scholar]
  33. Thörn HA, Hedeland M, Bondesson U, Knutson L, Yasin M et al. 2009. Different effects of ketoconazole on the stereoselective first-pass metabolism of R/S-verapamil in the intestine and the liver: important for the mechanistic understanding of first-pass drug-drug interactions abstract. Drug Metab. Dispos 37:112186–96 [Google Scholar]
  34. Bode G, Clausing P, Gervais F, Loegsted J, Luft J et al. 2010. The utility of the minipig as an animal model in regulatory toxicology. J. Pharmacol. Toxicol. Methods 62:3196–220 [Google Scholar]
  35. Swindle MM. 2009. Swine as surgical models in biomedical research. Proc. ACVP/ASVCP Concur. Annu. Meet., Dec. 5–9. Madison, WI: Am. Soc. Vet. Clin. Pathol.
  36. Ekser B, Rigotti P, Gridelli B, Cooper DKC. 2009. Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol 21:287–92 [Google Scholar]
  37. Denner J, Tönjes RR. 2012. Infection barriers to successful xenotransplantation focusing on porcine endogenous retrovirus. Clin. Microbiol. Rev 25:318–43 [Google Scholar]
  38. Busby S, Crossan C, Godwin J, Petersen B, Galli C et al. 2013. Suggestions for the diagnosis and elimination of hepatitis E virus in pigs used for xenotransplantation. Xenotransplantation 20:3188–92 [Google Scholar]
  39. Semaan M, Rotem A, Barkai U, Bornstein S, Denner J. 2013. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation 20:3148–56 [Google Scholar]
  40. Schook LB. 2007. The porcine genome initiative: implications for digestive physiology. Livest. Sci 108:6–12 [Google Scholar]
  41. McAnulty PA, Dayan AD, Ganderup NG, Hastings KL. 2011. The Minipig in Biomedical Research Boca Raton, FL: CRC Press
  42. Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MAM et al. 2010. Pig genome sequence—analysis and publication strategy. BMC Genomics 11:438 [Google Scholar]
  43. Lin CS, Sun YL, Liu CY, Yang PC, Chang LC et al. 1999. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236:1107–14 [Google Scholar]
  44. Ursing BM, Arnason U. 1998. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol 47:3302–6 [Google Scholar]
  45. Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E et al. 2012. Generation of an inbred miniature pig model of retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci 53:1501–7 [Google Scholar]
  46. Do DN, Strathe AB, Ostersen T, Jensen J, Mark T, Kadarmideen HN. 2013. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping. PLOS ONE 8:8e71509 [Google Scholar]
  47. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G et al. 2006. The human obesity gene map: the 2005 update. Obesity 14:4529–644 [Google Scholar]
  48. World Health Organ 2005. The Current Evidence for the Burden of Group A Streptococcal Diseases Geneva: World Health Organ.
  49. Skold BH, Getty R, Ramsey F. 1966. Spontaneous atherosclerosis in the arterial system of aging swine. Am. J. Vet. Res 27:116257–73 [Google Scholar]
  50. Grunwald KA, Schueler K, Uelmen PJ, Lipton BA, Kaiser M et al. 1999. Identification of a novel Arg→Cys mutation in the LDL receptor that contributes to spontaneous hypercholesterolemia in pigs. J. Lipid Res 40:3475–85 [Google Scholar]
  51. Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB et al. 2013. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med 5:166166ra1 [Google Scholar]
  52. Schuleri KH, Boyle AJ, Centola M, Amado LC, Evers R et al. 2008. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med 58:6568–79 [Google Scholar]
  53. Bray GA. 2006. Obesity: the disease. J. Med. Chem 49:144001–7 [Google Scholar]
  54. Kreutz RP, Alloosh M, Mansour K, Neeb Z, Kreutz Y et al. 2011. Morbid obesity and metabolic syndrome in Ossabaw miniature swine are associated with increased platelet reactivity. Diabetes Metab. Syndr. Obes 4:99–105 [Google Scholar]
  55. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M. 2010. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp. Med 60:4300–15 [Google Scholar]
  56. Cent. Dis. Control Prev 2013. Adolescent and School Health: Childhood Obesity Facts. Atlanta, GA: Cent. Dis. Control Prev. http://www.cdc.gov/healthyyouth/obesity/facts.htm
  57. Fisher KD, Scheffler TL, Kasten SC, Reinholt BM, van Eyk GR et al. 2013. Energy dense, protein restricted diet increases adiposity and perturbs metabolism in young, genetically lean pigs. PLOS ONE 8:8e72320 [Google Scholar]
  58. Peek RM, Blaser MJ. 2002. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2:128–37 [Google Scholar]
  59. Krakowka S, Morgan DR, Kraft WG, Leunk RD. 1987. Establishment of gastric Campylobacter pylori infection in the neonatal gnotobiotic piglet. Infect. Immun 55:112789–96 [Google Scholar]
  60. Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A et al. 2013. Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect. Immun 81:103803–13 [Google Scholar]
  61. Am. Cancer Soc 2008. Cancer Facts and Figures 2008. Atlanta, GA: Am. Cancer Soc
  62. Eaglstein W, Mertz P. 1978. New method for assessing epidermal wound healing: the effects of triamcinolone acetonide and polyethelene film occlusion. J. Investig. Dermatol 71:6382–84 [Google Scholar]
  63. Tissot RG, Beattie CW, Amoss MS. 1987. Inheritance of Sinclair swine cutaneous malignant melanoma. Cancer Res 47:215542–45 [Google Scholar]
  64. Horak V, Fortyn K, Hruban V, Klaudy J. 1999. Hereditary melanoblastoma in miniature pigs and its successful therapy by devitalization technique. Cell. Mol. Biol 45:71119–29 [Google Scholar]
  65. Larzul C. 2013. Pig genetics, insights in minipigs. Bilater. Symp. Miniat. Pigs Biomed. Res., Tainan City, Taiwan, Oct. 22–23. Paris/Tainan: Taiwan Livest. Res. Inst./Inst. Natl. Rech. Agron.
  66. Du Z-Q, Vincent-Naulleau S, Gilbert H, Vignoles F, Créchet F et al. 2007. Detection of novel quantitative trait loci for cutaneous melanoma by genome-wide scan in the MeLiM swine model. Int. J. Cancer 120:2303–20 [Google Scholar]
  67. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ et al. 1986. Genetic engineering of mammalian embryos. J. Anim. Sci 63:1269–78 [Google Scholar]
  68. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–83 [Google Scholar]
  69. Prather S, Sims M, First L. 1989. Nuclear transplantation in early pig embryos. Biol. Reprod 41:3414–18 [Google Scholar]
  70. Tao T, Machàty Z, Boquest AC, Day BN, Prather RS. 1999. Development of pig embryos reconstructed by microinjection of cultured fetal fibroblast cells into in vitro matured oocytes. Anim. Reprod. Sci 56:2133–41 [Google Scholar]
  71. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J et al. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:680086–90 [Google Scholar]
  72. Lai L, Prather RS. 2004. A method for producing cloned pigs by using somatic cells as donors. Methods Mol. Biol 254:149–64 [Google Scholar]
  73. Whyte JJ, Prather RS. 2011. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev 78:10–11879–91 [Google Scholar]
  74. Bordignon V, El-Beirouthi N, Gasperin BG, Albornoz MS, Martinez-Diaz MA et al. 2013. Production of cloned pigs with targeted attenuation of gene expression. PLOS ONE 8:5e64613 [Google Scholar]
  75. Gaj T, Gersbach C, Barbas CF III. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:7397–405 [Google Scholar]
  76. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C et al. 2013. Live pigs produced from genome edited zygotes. Sci. Rep 3:2847 [Google Scholar]
  77. Niada S, Ferreira LM, Arrigoni E, Addis A, Campagnol M et al. 2013. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res. Ther 4:6148 [Google Scholar]
  78. Wilson SM, Goldwasser MS, Clark SG, Monaco E, Bionaz M et al. 2012. Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine. J. Oral Maxillofac. Surg 70:3e193–203 [Google Scholar]
  79. Kwon D-J, Jeon H, Oh KB, Ock S-A, Im G-S et al. 2013. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed Res. Int 2013:140639 [Google Scholar]
  80. Montserrat N, Bahima EG, Batlle L, Häfner S, Rodrigues AMC et al. 2011. Generation of pig iPS cells: a model for cell therapy. J. Cardiovasc. Transl. Res 4:2121–30 [Google Scholar]
  81. Ezashi T, Telugu BPVL, Roberts RM. 2012. Induced pluripotent stem cells from pigs and other ungulate species: An alternative to embryonic stem cells?. Reprod. Domest. Anim 47:Suppl. 492–97 [Google Scholar]
  82. Deponti D, Di Giancamillo A, Gervaso F, Domenicucci M, Domeneghini C et al. 2014. Collagen scaffold for cartilage tissue engineering: the benefit of fibrin glue and the proper culture time in an infant cartilage model. Tissue Eng. A 20:5–61113–26 [Google Scholar]
  83. Müller C, Marzahn U, Kohl B, El Sayed K, Lohan A et al. 2013. Hybrid pig versus Göttingen minipig-derived cartilage and chondrocytes show pig line-dependent differences. Exp. Biol. Med 238:111210–22 [Google Scholar]
  84. Lai L, Kolber-Simonds D, Park K-W, Cheong H-T, Greenstein JL et al. 2002. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:55571089–92 [Google Scholar]
  85. Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M et al. 2010. Transgenic pigs as models for translational biomedical research. J. Mol. Med 88:7653–64 [Google Scholar]
  86. Loveland B, Milland J, Kyriakou P, Thorley B, Christiansen D et al. 2004. Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 11:2171–83 [Google Scholar]
  87. Phelps CJ, Koike C, Vaught TD, Boone J, Wells K et al. 2003. Production of α1,3-galactosyltransferase– deficient pigs. Science 299:5605411–14 [Google Scholar]
  88. Ekser B, Bianchi J, Ball S, Iwase H, Walters A et al. 2012. Comparison of hematologic, biochemical, and coagulation parameters in α1,3-galactosyltransferase gene-knockout pigs, wild-type pigs, and four primate species. Xenotransplantation 19:6342–54 [Google Scholar]
  89. Liu Y, Yang JY, Lu Y, Yu P, Dove CR et al. 2013. α-1,3-Galactosyltransferase knockout pig induced pluripotent stem cells: a cell source for the production of xenotransplant pigs. Cell. Reprogr 15:2107–16 [Google Scholar]
  90. Xu C, Li CY, Kong AN. 2005. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res 28:3249–68 [Google Scholar]
  91. Xie W, Uppal H, Saini SPS, Mu Y, Little JM et al. 2004. Orphan nuclear receptor-mediated xenobiotic regulation in drug metabolism. Drug Discov. Today 9:10442–49 [Google Scholar]
  92. Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW. 2003. Comparison of cytochrome p450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18 [Google Scholar]
  93. Lewis DFV. 2003. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem 10:191955–72 [Google Scholar]
  94. Anzenbacher P, Soucek P, Anzenbacherova E, Gut I, Hruby K et al. 1998. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes: comparison with human liver samples. Drug Metab. Dispos 26:156–59 [Google Scholar]
  95. Gray MA, Pollock CB, Schook LB, Squires EJ. 2010. Characterization of porcine pregnane X receptor, farnesoid X receptor and their splice variants. Exp. Biol. Med 235:6718–36 [Google Scholar]
  96. Forster R, Ancian P, Fredholm M, Simianer H, Whitelaw B. 2010. The minipig as a platform for new technologies in toxicology. J. Pharmacol. Toxicol. Methods 62:3227–35 [Google Scholar]
  97. Fan N, Lai L. 2013. Genetically modified pig models for human diseases. J. Genet. Genomics 40:267–73 [Google Scholar]
  98. Willson TM, Kliewer SA. 2002. Pxr, car and drug metabolism. Nat. Rev. Drug Discov 1:4259–66 [Google Scholar]
  99. Pollock C, Rogatcheva M, Schook LB. 2007. Comparative genomics of xenobiotic metabolism: a porcine-human PXR gene comparison. Mamm. Genome 18:210–19 [Google Scholar]
  100. Welsh MJ, Rogers CS, Stoltz DA, Meyerholtz DK, Prather RS. 2009. Development of a porcine model of cystic fibrosis. Trans. Am. Clin. Climatol. Assoc 120:149–62 [Google Scholar]
  101. Sears EH, Gartman EJ, Casserly BP. 2011. Treatment options for cystic fibrosis: state of the art and future perspectives. Rev. Recent Clin. Trials 6:294–107 [Google Scholar]
  102. Elsik CG, Tellam RL, Worley KC. Bovine Genome Seq. Anal. Consort. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:5926522–28 [Google Scholar]
  103. Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S et al. 2012. Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J. Mol. Med 90:5597–608 [Google Scholar]
  104. Rogers C, Stoltz D, Meyerholz D, Ostedgaard LS, Rokhlina T et al. 2008. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:58971837–41 [Google Scholar]
  105. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN et al. 2011. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J. Cyst. Fibros 10:S152–71 [Google Scholar]
  106. Orr HT, Zoghbi HY. 2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci 30:575–621 [Google Scholar]
  107. Reiner AI, Dragatsis DP. 2011. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol 98:325–72 [Google Scholar]
  108. Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R et al. 2001. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 10:577–82 [Google Scholar]
  109. Yang D, Wang CE, Zhao B, Li W, Ouyang Z et al. 2010. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Mol. Genet 19:203983–94 [Google Scholar]
  110. Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR et al. 1997. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol 15:965–70 [Google Scholar]
  111. Rund L, Collares T, Seixas F, Begnini K, Counter C, Schook L. 2014. Characterization of an inducible transgenic p53/kras oncopig model for cancer. Presented at Am. Assoc. Cancer Res. Annu. Meet., April 9, San Diego
  112. N’Djin WA, Melodelima D, Parmentier H, Rivoire M, Chapelon JY. 2007. A tumor-mimic model for evaluating the accuracy of HIFU preclinical studies: an in vivo study. Conf. Proc. IEEE Eng. Med. Biol. Soc 2007:3544–47 [Google Scholar]
  113. Hidalgo J, Belani J, Maxwell K, Lieber D, Talcott M et al. 2005. Development of exophytic tumor model for laparoscopic partial nephrectomy: technique and initial experience. Urology 65:5872–76 [Google Scholar]
  114. Li X, Zhou X, Guan Y, Wang Y-XJ, Scutt D, Gong Q-Y. 2006. N-nitrosodiethylamine-induced pig liver hepatocellular carcinoma model: radiological and histopathological studies. Cardiovasc. Interv. Radiol 29:3420–28 [Google Scholar]
  115. Borovanský J, Horák V, Elleder M, Fortýn K, Smit NP, Kolb AM. 2003. Biochemical characterization of a new melanoma model—the minipig MeLiM strain. Melanoma Res 13:6543–48 [Google Scholar]
  116. Vincent-Naulleau S, Le Chalony C, Leplat J-J, Bouet S, Bailly C et al. 2004. Clinical and histopathological characterization of cutaneous melanomas in the melanoblastoma-bearing Libechov minipig model. Pigment Cell Res 17:124–35 [Google Scholar]
  117. Greene JF, Morgan CD, Rao A, Amoss MS Jr, Arguello F. 1997. Regression by differentiation in the Sinclair swine model of cutaneous melanoma. Melanoma Res 7:6471–77 [Google Scholar]
  118. Yamakawa H, Nagai T, Harasawa R, Yamagami T, Takahashi J et al. 1999. Production of transgenic pig carrying MMTV/v-Ha-ras. J. Reprod. Dev 45:2111–18 [Google Scholar]
  119. McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA. 2010. Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2ΔN. Transgenic Res 19:5869–87 [Google Scholar]
  120. Luo Y, Li J, Liu Y, Lin L, Du Y et al. 2011. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20:5975–88 [Google Scholar]
  121. Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N et al. 2012. A porcine model of familial adenomatous polyposis. Gastroenterology 143:51173–75.e7 [Google Scholar]
  122. Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M et al. 2012. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLOS ONE 7:10e43323 [Google Scholar]
  123. Tatara MR, Śliwa E, Krupski W. 2007. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone 40:61615–22 [Google Scholar]
  124. Kandasamy S, Chattha KS, Vlasova AN, Saif LJ. 2014. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model. Vaccine 32:7816–24 [Google Scholar]
  125. Sangild PT, Schmidt M, Elnif J, Björnvad CR, Weström BR, Buddington RK. 2002. Prenatal development of gastrointestinal function in the pig and the effects of fetal esophageal obstruction. Pediatr. Res 52:3416–24 [Google Scholar]
  126. Barker DJP. 1995. Intrauterine programming of adult disease. Mol. Med. Today 1:9418–23 [Google Scholar]
  127. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:2611971–75 [Google Scholar]
  128. Schachtschneider KM, Yeoman CJ, Isaacson RE, White BA, Schook LB, Pieters M. 2013. Modulation of systemic immune responses through commensal gastrointestinal microbiota. PLOS ONE 8:1e53969 [Google Scholar]
  129. Cilieborg MS, Boye M, Thymann T, Jensen BB, Sangild PT. 2011. Diet-dependent effects of minimal enteral nutrition on intestinal function and necrotizing enterocolitis in preterm pigs. J. Parenter. Enter. Nutr 35:132–42 [Google Scholar]
  130. Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M et al. 2009. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol 7:79 [Google Scholar]
  131. Thomas DJ, Husmann RJ, Villamar M, Winship TR, Buck RH, Zuckermann FA. 2011. Lactobacillus rhamnosus HN001 attenuates allergy development in a pig model. PLOS ONE 6:2e16577 [Google Scholar]
  132. Mahajan A, Alexander LS, Seabolt BS, Catrambone DE, McClung JP et al. 2011. Dietary calcium restriction affects mesenchymal stem cell activity and bone development in neonatal pigs. J. Nutr 141:3373–79 [Google Scholar]
  133. Rytych J, Elmore M, Burton M, Conrad M, Donovan S et al. 2012. Early life iron deficiency impairs spatial cognition in neonatal piglets. J. Nutr 142:112050–56 [Google Scholar]
  134. Elmore MRP, Burton MD, Conrad MS, Rytych JL, Van Alstine WG, Johnson RW. 2014. Respiratory viral infection in neonatal piglets causes marked microglia activation in the hippocampus and deficits in spatial learning. J. Neurosci 34:62120–29 [Google Scholar]
  135. Zhao M-T, Rivera RM, Prather RS. 2013. Locus-specific DNA methylation reprogramming during early porcine embryogenesis. Biol. Reprod 88:248 [Google Scholar]
  136. Hyldig SMW, Ostrup O, Vejlsted M, Thomsen PD. 2011. Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos. Biol. Reprod 84:61087–93 [Google Scholar]
  137. Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. 2012. Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-smc subunits of condensin I in liver and skeletal muscle. Epigenetics 7:3239–52 [Google Scholar]
  138. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. 2012. Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLOS ONE 7:2e30583 [Google Scholar]
  139. Yang C, Zhang M, Niu W, Yang R, Zhang Y et al. 2011. Analysis of DNA methylation in various swine tissues. PLOS ONE 6:1e16229 [Google Scholar]
  140. Li M, Wang T, Wu H, Zhang J, Zhou C et al. 2012. Genome-wide DNA methylation changes between the superficial and deep backfat tissues of the pig. Int. J. Mol. Sci 13:67098–108 [Google Scholar]
  141. Inglot P, Lewinska A, Potocki L, Oklejewicz B, Tabecka-Lonczynska A et al. 2012. Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat. Res 747:2182–89 [Google Scholar]
  142. Maher B. 2012. Encode: the human encyclopaedia. Nature 489:741446–48 [Google Scholar]
  143. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J et al. 2004. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLOS Biol 2:12e405 [Google Scholar]
  144. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J et al. 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet 38:121378–85 [Google Scholar]
  145. Elsheikh S, Green AR, Rakha EA, Powe DG, Ahmed RA et al. 2009. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69:93802–9 [Google Scholar]
  146. Smith AA, Huang Y-T, Eliot M, Houseman EA, Marsit CJ et al. 2014. A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression. Epigenetics 9:6873–83 [Google Scholar]
  147. Xiao S, Xie D, Cao X, Yu P, Xing X et al. 2012. Comparative epigenomic annotation of regulatory DNA. Cell 149:61381–92 [Google Scholar]
/content/journals/10.1146/annurev-animal-022114-110815
Loading
/content/journals/10.1146/annurev-animal-022114-110815
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error