1932

Abstract

Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022114-111009
2015-02-16
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/animal/3/1/annurev-animal-022114-111009.html?itemId=/content/journals/10.1146/annurev-animal-022114-111009&mimeType=html&fmt=ahah

Literature Cited

  1. Murphy KM. 2013. Transcriptional control of dendritic cell development. Adv. Immunol. 120:239–67 [Google Scholar]
  2. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888–99 [Google Scholar]
  3. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A et al. 2008. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 9:R17 [Google Scholar]
  4. Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D et al. 2013. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. PNAS 110:2946–51 [Google Scholar]
  5. Schlitzer A, Ginhoux F. 2014. Organization of the mouse and human DC network. Curr. Opin. Immunol. 26:90–99 [Google Scholar]
  6. Haniffa M, Collin M, Ginhoux F. 2013. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv. Immunol. 120:1–49 [Google Scholar]
  7. Fitzgerald-Bocarsly P. 1993. Human natural interferon-α producing cells. Pharmacol. Ther. 60:39–62 [Google Scholar]
  8. Charley B, Lavenant L. 1990. Characterization of blood mononuclear cells producing IFN alpha following induction by coronavirus-infected cells (porcine transmissible gastroenteritis virus). Res. Immunol. 141:141–51 [Google Scholar]
  9. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K et al. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–37 [Google Scholar]
  10. Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N et al. 2001. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2:1144–50 [Google Scholar]
  11. Summerfield A, Guzylack-Piriou L, Schaub A, Carrasco CP, Tache V et al. 2003. Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology 110:440–49 [Google Scholar]
  12. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207:1247–60 [Google Scholar]
  13. Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M et al. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207:1273–81 [Google Scholar]
  14. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA et al. 2010. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207:1283–92 [Google Scholar]
  15. Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  16. Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:104–15 [Google Scholar]
  17. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:571–78 [Google Scholar]
  18. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–38 [Google Scholar]
  19. Varol C, Vallon-Eberhard A, Elinav E, Aychek T, Shapira Y et al. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31:502–12 [Google Scholar]
  20. Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B et al. 2007. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204:171–80 [Google Scholar]
  21. Mildner A, Yona S, Jung S. 2013. A close encounter of the third kind: monocyte-derived cells. Adv. Immunol. 120:69–103 [Google Scholar]
  22. Ginhoux F, Jung S. 2014. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14:392–404 [Google Scholar]
  23. Seillet C, Belz GT. 2013. Terminal differentiation of dendritic cells. Adv. Immunol. 120:185–210 [Google Scholar]
  24. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J et al. 2014. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat. Immunol. 15:98–108 [Google Scholar]
  25. Iwasaki A. 2007. Mucosal dendritic cells. Annu. Rev. Immunol. 25:381–418 [Google Scholar]
  26. Saurer L, McCullough KC, Summerfield A. 2007. In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179:3504–14 [Google Scholar]
  27. McKeever DJ, Awino E, Morrison WI. 1992. Afferent lymph veiled cells prime CD4+ T cell responses in vivo. Eur. J. Immunol. 22:3057–61 [Google Scholar]
  28. Howard CJ, Sopp P, Brownlie J, Kwong LS, Parsons KR, Taylor G. 1997. Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J. Immunol. 159:5372–82 [Google Scholar]
  29. Howard CJ, Brooke GP, Werling D, Sopp P, Hope JC et al. 1999. Dendritic cells in cattle: phenotype and function. Vet. Immunol. Immunopathol. 72:119–24 [Google Scholar]
  30. Gliddon DR, Howard CJ. 2002. CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Eur. J. Immunol. 32:1472–81 [Google Scholar]
  31. Contreras V, Urien C, Guiton R, Alexandre Y, Vu Manh TP et al. 2010. Existence of CD8α-like dendritic cells with a conserved functional specialization and a common molecular signature in distant mammalian species. J. Immunol. 185:3313–25 [Google Scholar]
  32. Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H et al. 2011. Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8α+ type. J. Immunol. 187:4411–15 [Google Scholar]
  33. Guzylack-Piriou L, Alves MP, McCullough KC, Summerfield A. 2010. Porcine Flt3 ligand and its receptor: generation of dendritic cells and identification of a new marker for porcine dendritic cells. Dev. Comp. Immunol. 34:455–64 [Google Scholar]
  34. Summerfield A, McCullough KC. 2009. The porcine dendritic cell family. Dev. Comp. Immunol. 33:299–309 [Google Scholar]
  35. Bimczok D, Sowa EN, Faber-Zuschratter H, Pabst R, Rothkötter HJ. 2005. Site-specific expression of CD11b and SIRPα (CD172a) on dendritic cells: implications for their migration patterns in the gut immune system. Eur. J. Immunol. 35:1418–27 [Google Scholar]
  36. Reid E, Juleff N, Gubbins S, Prentice H, Seago J, Charleston B. 2011. Bovine plasmacytoid dendritic cells are the major source of type I interferon in response to foot-and-mouth disease virus in vitro and in vivo. J. Virol. 85:4297–308 [Google Scholar]
  37. Pascale F, Contreras V, Bonneau M, Courbet A, Chilmonczyk S et al. 2008. Plasmacytoid dendritic cells migrate in afferent skin lymph. J. Immunol. 180:5963–72 [Google Scholar]
  38. Calzada-Nova G, Schnitzlein W, Husmann R, Zuckermann FA. 2010. Characterization of the cytokine and maturation responses of pure populations of porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor agonists. Vet. Immunol. Immunopathol. 135:20–33 [Google Scholar]
  39. Baumann A, Mateu E, Murtaugh MP, Summerfield A. 2013. Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Vet. Res. 44:33 [Google Scholar]
  40. Fiebach AR, Guzylack-Piriou L, Python S, Summerfield A, Ruggli N. 2011. Classical Swine Fever virus Npro limits type I interferon induction in plasmacytoid dendritic cells by interacting with interferon regulatory factor 7. J. Virol. 85:8002–11 [Google Scholar]
  41. Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield A. 2004. Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-α, tumour necrosis factor-α and interleukin-12. Immunology 112:28–37 [Google Scholar]
  42. Guzylack-Piriou L, Bergamin F, Gerber M, McCullough KC, Summerfield A. 2006. Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexes. Eur. J. Immunol. 36:1674–83 [Google Scholar]
  43. Balmelli C, Vincent IE, Rau H, Guzylack-Piriou L, McCullough K, Summerfield A. 2005. FcγRII-dependent sensitisation of natural interferon-producing cells for viral infection and interferon-α responses. Eur. J. Immunol. 35:2406–15 [Google Scholar]
  44. Python S, Gerber M, Suter R, Ruggli N, Summerfield A. 2013. Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease Erns. PLOS Pathog. 9:e1003412 [Google Scholar]
  45. Sallusto F, Lanzavecchia A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179:1109–18 [Google Scholar]
  46. Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard CJ. 1999. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J. Leukoc. Biol. 66:50–58 [Google Scholar]
  47. Mackenzie-Dyck S, Attah-Poku S, Juillard V, Babiuk LA, van Drunen Littel-van den Hurk S. 2011. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet. Immunol. Immunopathol. 143:87–107 [Google Scholar]
  48. Bajer AA, Garcia-Tapia D, Jordan KR, Haas KM, Werling D et al. 2003. Peripheral blood-derived bovine dendritic cells promote IgG1-restricted B cell responses in vitro. J. Leukoc. Biol. 73:100–6 [Google Scholar]
  49. Mirkovitch J, König A, Sauter KS, Brcic M, Hope JC et al. 2006. Single-cell analysis divides bovine monocyte-derived dendritic cells into subsets expressing either high or low levels of inducible nitric oxide synthase. Vet. Immunol. Immunopathol. 114:1–14 [Google Scholar]
  50. Hope JC, Whelan AO, Hewinson RG, Vordermeier M, Howard CJ. 2003. Maturation of bovine dendritic cells by lipopeptides. Vet. Immunol. Immunopathol. 95:21–31 [Google Scholar]
  51. Norimatsu M, Harris J, Chance V, Dougan G, Howard CJ, Villarreal-Ramos B. 2003. Differential response of bovine monocyte-derived macrophages and dendritic cells to infection with Salmonella typhimurium in a low-dose model in vitro. Immunology 108:55–61 [Google Scholar]
  52. Hope JC, Thom ML, McCormick PA, Howard CJ. 2004. Interaction of antigen presenting cells with mycobacteria. Vet. Immunol. Immunopathol. 100:187–95 [Google Scholar]
  53. Werling D, Hope JC, Howard CJ, Jungi TW. 2004. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology 111:41–52 [Google Scholar]
  54. Willcocks S, Yamakawa Y, Stalker A, Coffey TJ, Goldammer T, Werling D. 2006. Identification and gene expression of the bovine C-type lectin Dectin-1. Vet. Immunol. Immunopathol. 113:234–42 [Google Scholar]
  55. Pinchuk LM, Boyd BL, Kruger EF, Roditi I, Furger A. 2003. Bovine dendritic cells generated from monocytes and bone marrow progenitors regulate immunoglobulin production in peripheral blood B cells. Comp. Immunol. Microbiol. Infect. Dis. 26:233–49 [Google Scholar]
  56. Hope JC, Werling D, Collins RA, Mertens B, Howard CJ. 2000. Flt-3 ligand, in combination with bovine granulocyte-macrophage colony-stimulating factor and interleukin-4, promotes the growth of bovine bone marrow derived dendritic cells. Scand. J. Immunol. 51:60–66 [Google Scholar]
  57. Hope JC, Kwong LS, Sopp P, Collins RA, Howard CJ. 2000. Dendritic cells induce CD4+ and CD8+ T-cell responses to Mycobacterium bovis and M. avium antigens in Bacille Calmette Guérin vaccinated and nonvaccinated cattle. Scand. J. Immunol. 52:285–91 [Google Scholar]
  58. Chan SS, McConnell I, Blacklaws BA. 2002. Generation and characterization of ovine dendritic cells derived from peripheral blood monocytes. Immunology 107:366–72 [Google Scholar]
  59. Bonneau M, Epardaud M, Payot F, Niborski V, Thoulouze MI et al. 2006. Migratory monocytes and granulocytes are major lymphatic carriers of Salmonella from tissue to draining lymph node. J. Leukoc. Biol. 79:268–76 [Google Scholar]
  60. Fach SJ, Brockmeier SL, Hobbs LA, Lehmkuhl HD, Sacco RE. 2006. Pulmonary dendritic cells isolated from neonatal and adult ovine lung tissue. Vet. Immunol. Immunopathol. 112:171–82 [Google Scholar]
  61. Foulon E, Foucras G. 2008. Two populations of ovine bone marrow-derived dendritic cells can be generated with recombinant GM-CSF and separated on CD11b expression. J. Immunol. Methods 339:1–10 [Google Scholar]
  62. Ezquerra A, Revilla C, Alvarez B, Pérez C, Alonso F, Domínguez J. 2009. Porcine myelomonocytic markers and cell populations. Dev. Comp. Immunol. 33:284–98 [Google Scholar]
  63. Moreno S, Alvarez B, Poderoso T, Revilla C, Ezquerra A et al. 2010. Porcine monocyte subsets differ in the expression of CCR2 and in their responsiveness to CCL2. Vet. Res. 41:76 [Google Scholar]
  64. Chamorro S, Revilla C, Gómez N, Álvarez B, Alonso F et al. 2004. In vitro differentiation of porcine blood CD163 and CD163+ monocytes into functional dendritic cells. Immunobiology 209:57–65 [Google Scholar]
  65. Alvarez B, Poderoso T, Alonso F, Ezquerra A, Domínguez J, Revilla C. 2013. Antigen targeting to APC: from mice to veterinary species. Dev. Comp. Immunol. 41:153–63 [Google Scholar]
  66. Huang YW, Dryman BA, Li W, Meng XJ. 2009. Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics. Dev. Comp. Immunol. 33:464–80 [Google Scholar]
  67. Auray G, Facci MR, van Kessel J, Buchanan R, Babiuk LA, Gerdts V. 2010. Differential activation and maturation of two porcine DC populations following TLR ligand stimulation. Mol. Immunol. 47:2103–11 [Google Scholar]
  68. Facci MR, Auray G, Buchanan R, van Kessel J, Thompson DR et al. 2010. A comparison between isolated blood dendritic cells and monocyte-derived dendritic cells in pigs. Immunology 129:396–405 [Google Scholar]
  69. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V et al. 2001. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 104:175–84 [Google Scholar]
  70. Dominguez J, Alvarez B, Alonso F, Thacker E, Haverson K et al. 2001. Workshop studies on monoclonal antibodies in the myeloid panel with CD11 specificity. Vet. Immunol. Immunopathol. 80:111–19 [Google Scholar]
  71. Haverson K, Bailey M, Higgins VR, Bland PW, Stokes CR. 1994. Characterization of monoclonal antibodies specific for monocytes, macrophages and granulocytes from porcine peripheral blood and mucosal tissues. J. Immunol. Methods 170:233–45 [Google Scholar]
  72. Whittall JT, Parkhouse RM. 1997. Monoclonal antibodies defining differentiation antigens of swine lymphoid and myeloid cells. Vet. Immunol. Immunopathol. 60:149–60 [Google Scholar]
  73. Ricklin Gutzwiller ME, Moulin HR, Zurbriggen A, Roosje P, Summerfield A. 2010. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells. Vet. Res. 41:40 [Google Scholar]
  74. Bonnefont-Rebeix C, de Carvalho CM, Bernaud J, Chabanne L, Marchal T, Rigal D. 2006. CD86 molecule is a specific marker for canine monocyte-derived dendritic cells. Vet. Immunol. Immunopathol. 109:167–76 [Google Scholar]
  75. Bonnefont-Rebeix C, Marchal T, Bernaud J, Pin JJ, Leroux C et al. 2007. Toll-like receptor 3 (TLR3): a new marker of canine monocytes-derived dendritic cells (cMo-DC). Vet. Immunol. Immunopathol. 118:134–39 [Google Scholar]
  76. Qeska V, Baumgartner W, Beineke A. 2013. Species-specific properties and translational aspects of canine dendritic cells. Vet. Immunol. Immunopathol. 151:181–92 [Google Scholar]
  77. Bienzle D, Reggeti F, Clark ME, Chow C. 2003. Immunophenotype and functional properties of feline dendritic cells derived from blood and bone marrow. Vet. Immunol. Immunopathol. 96:19–30 [Google Scholar]
  78. Freer G, Matteucci D, Mazzetti P, Bozzacco L, Bendinelli M. 2005. Generation of feline dendritic cells derived from peripheral blood monocytes for in vivo use. Clin. Diagn. Lab. Immunol. 12:1202–8 [Google Scholar]
  79. Sprague WS, Pope M, Hoover EA. 2005. Culture and comparison of feline myeloid dendritic cells vs. macrophages. J. Comp. Pathol. 133:136–45 [Google Scholar]
  80. Mauel S, Steinbach F, Ludwig H. 2006. Monocyte-derived dendritic cells from horses differ from dendritic cells of humans and mice. Immunology 117:463–73 [Google Scholar]
  81. Moyo NA, Marchi E, Steinbach F. 2013. Differentiation and activation of equine monocyte-derived dendritic cells are not correlated with CD206 or CD83 expression. Immunology 139:472–83 [Google Scholar]
  82. Renjifo X, Howard C, Kerkhofs P, Denis M, Urbain J et al. 1997. Purification and characterization of bovine dendritic cells from peripheral blood. Vet. Immunol. Immunopathol. 60:77–88 [Google Scholar]
  83. Miyazawa K, Aso H, Honda M, Kido T, Minashima T et al. 2006. Identification of bovine dendritic cell phenotype from bovine peripheral blood. Res. Vet. Sci. 81:40–45 [Google Scholar]
  84. Zhuang Y, Mwangi W, Brown WC, Davis WC, Hope JC, Palmer GH. 2006. Characterization of a phenotypically unique population of CD13+ dendritic cells resident in the spleen. Clin. Vaccine Immunol. 13:1064–69 [Google Scholar]
  85. Mielcarek M, Kucera KA, Nash R, Torok-Storb B, McKenna HJ. 2007. Identification and characterization of canine dendritic cells generated in vivo. Biol. Blood Marrow Transplant. 13:1286–93 [Google Scholar]
  86. Hope JC, Howard CJ, Prentice H, Charleston B. 2006. Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nat. Protoc. 1:982–87 [Google Scholar]
  87. Gliddon DR, Hope JC, Brooke GP, Howard CJ. 2004. DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology 111:262–72 [Google Scholar]
  88. Hope JC, Guzman E, Cubillos-Zapata C, Stephens SA, Gilbert SC et al. 2012. Migratory sub-populations of afferent lymphatic dendritic cells differ in their interactions with Mycobacterium bovis Bacille Calmette Guerin. Vaccine 30:2357–67 [Google Scholar]
  89. Hope JC, Sopp P, Collins RA, Howard CJ. 2001. Differences in the induction of CD8+ T cell responses by subpopulations of dendritic cells from afferent lymph are related to IL-1α secretion. J. Leukoc. Biol. 69:271–79 [Google Scholar]
  90. Cubillos-Zapata C, Guzman E, Turner A, Gilbert SC, Prentice H et al. 2011. Differential effects of viral vectors on migratory afferent lymph dendritic cells in vitro predict enhanced immunogenicity in vivo. J. Virol. 85:9385–94 [Google Scholar]
  91. Stephens SA, Brownlie J, Charleston B, Howard CJ. 2003. Differences in cytokine synthesis by the sub-populations of dendritic cells from afferent lymph. Immunology 110:48–57 [Google Scholar]
  92. Bujdoso R, Hopkins J, Dutia BM, Young P, McConnell I. 1989. Characterization of sheep afferent lymph dendritic cells and their role in antigen carriage. J. Exp. Med. 170:1285–301 [Google Scholar]
  93. Epardaud M, Bonneau M, Payot F, Cordier C, Mégret J et al. 2004. Enrichment for a CD26hi SIRP subset in lymph dendritic cells from the upper aero-digestive tract. J. Leukoc. Biol. 76:553–61 [Google Scholar]
  94. Geherin SA, Fintushel SR, Lee MH, Wilson RP, Patel RT et al. 2012. The skin, a novel niche for recirculating B cells. J. Immunol. 188:6027–35 [Google Scholar]
  95. Ryan S, Tiley L, McConnell I, Blacklaws B. 2000. Infection of dendritic cells by the Maedi-Visna lentivirus. J. Virol. 74:10096–103 [Google Scholar]
  96. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:3115–30 [Google Scholar]
  97. Marquet F, Bonneau M, Pascale F, Urien C, Kang C et al. 2011. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model. PLOS ONE 6:e16320 [Google Scholar]
  98. Maxymiv NG, Bharathan M, Mullarky IK. 2012. Bovine mammary dendritic cells: a heterogeneous population, distinct from macrophages and similar in phenotype to afferent lymph veiled cells. Comp. Immunol. Microbiol. Infect. Dis. 35:31–38 [Google Scholar]
  99. Jamin A, Gorin S, Le Potier MF, Kuntz-Simon G. 2006. Characterization of conventional and plasmacytoid dendritic cells in swine secondary lymphoid organs and blood. Vet. Immunol. Immunopathol. 114:224–37 [Google Scholar]
  100. Naessens J, Howard CJ, Hopkins J. 1997. Nomenclature and characterization of leukocyte differentiation antigens in ruminants. Immunol. Today 18:365–68 [Google Scholar]
  101. Rhind SM, Hopkins J, Grant ES. 2000. Differential expression of ovine CD1. Immunology 101:452–57 [Google Scholar]
  102. MacHugh ND, Bensaid A, Davis WC, Howard CJ, Parsons KR et al. 1988. Characterization of a bovine thymic differentiation antigen analogous to CD1 in the human. Scand. J. Immunol. 27:541–47 [Google Scholar]
  103. Nfon CK, Dawson H, Toka FN, Golde WT. 2008. Langerhans cells in porcine skin. Vet. Immunol. Immunopathol. 126:236–47 [Google Scholar]
  104. Ricklin ME, Roosje P, Summerfield A. 2010. Characterization of canine dendritic cells in healthy, atopic, and non-allergic inflamed skin. J. Clin. Immunol. 30:845–54 [Google Scholar]
  105. Woo JC, Moore PF. 1997. A feline homologue of CD1 is defined using a feline-specific monoclonal antibody. Tissue Antigens 49:244–51 [Google Scholar]
  106. Arzi B, Murphy B, Baumgarth N, Vapniarsky N, Nemec A et al. 2011. Analysis of immune cells within the healthy oral mucosa of specific pathogen-free cats. Anat. Histol. Embryol. 40:1–10 [Google Scholar]
  107. Saint-André Marchal I, Dezutter-Dambuyant C, Willett BJ, Woo JC, Moore PF et al. 1997. Immunophenotypic characterization of feline Langerhans cells. Vet. Immunol. Immunopathol. 58:1–16 [Google Scholar]
  108. Åkesson CP, Press CMcL, Espenes A, Aleksandersen M. 2008. Phenotypic characterisation of intestinal dendritic cells in sheep. Dev. Comp. Immunol. 32:837–49 [Google Scholar]
  109. McNeilly TN, Brown JK, Harkiss G. 2006. Differential expression of cell surface markers by ovine respiratory tract dendritic cells. J. Histochem. Cytochem. 54:1021–30 [Google Scholar]
  110. Haverson K, Singha S, Stokes CR, Bailey M. 2000. Professional and non-professional antigen-presenting cells in the porcine small intestine. Immunology 101:492–500 [Google Scholar]
  111. Inman CF, Singha S, Lewis M, Bradley B, Stokes C, Bailey M. 2010. Dendritic cells interact with CD4 T cells in intestinal mucosa. J. Leukoc. Biol. 88:571–78 [Google Scholar]
  112. Devriendt B, Gallois M, Verdonck F, Wache Y, Bimczok D et al. 2009. The food contaminant fumonisin B1 reduces the maturation of porcine CD11R1+ intestinal antigen presenting cells and antigen-specific immune responses, leading to a prolonged intestinal ETEC infection. Vet. Res. 40:40 [Google Scholar]
  113. Bimczok D, Verdonck F, Hartig R, Cox E, Rothkotter HJ. 2010. Primary porcine CD11R1+ antigen-presenting cells isolated from small intestinal mucosa mature but lose their T cell stimulatory function in response to cholera toxin treatment. Vet. Immunol. Immunopathol. 134:239–48 [Google Scholar]
  114. Zhang W, Wen K, Azevedo MSP, Gonzalez A, Saif LJ et al. 2008. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet. Immunol. Immunopathol. 121:222–31 [Google Scholar]
  115. Vlasova AN, Chattha KS, Kandasamy S, Siegismund CS, Saif LJ. 2013. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. J. Immunol. 190:4742–53 [Google Scholar]
  116. Vlasova AN, Chattha KS, Kandasamy S, Liu Z, Esseili M et al. 2013. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLOS ONE 8:e76962 [Google Scholar]
  117. Gonzalez AM, Azevedo MS, Jung K, Vlasova A, Zhang W, Saif LJ. 2010. Innate immune responses to human rotavirus in the neonatal gnotobiotic piglet disease model. Immunology 131:242–56 [Google Scholar]
  118. Riffault S, Carrat C, van Reeth K, Pensaert M, Charley B. 2001. Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets. Vet. Res. 32:71–79 [Google Scholar]
  119. Summerfield A. 2011. Viewpoint: factors involved in type I interferon responses during porcine virus infections. Vet. Immunol. Immunopathol. 148:168–71 [Google Scholar]
  120. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. 2012. The pig: a model for human infectious diseases. Trends Microbiol. 20:50–57 [Google Scholar]
  121. Waters WR, Palmer MV, Thacker TC, Davis WC, Sreevatsan S et al. 2011. Tuberculosis immunity: opportunities from studies with cattle. Clin. Dev. Immunol. 2011:768542 [Google Scholar]
  122. Watkins C, Lau S, Thistlethwaite R, Hopkins J, Harkiss GD. 1999. Analysis of reporter gene expression in ovine dermis and afferent lymph dendritic cells in vitro and in vivo. Vet. Immunol. Immunopathol. 72:125–33 [Google Scholar]
  123. Gamvrellis A, Walsh K, Tatarczuch L, Smooker P, Plebanski M, Scheerlinck JP. 2013. Phenotypic analysis of ovine antigen presenting cells loaded with nanoparticles migrating from the site of vaccination. Methods 60:257–63 [Google Scholar]
  124. Hemati B, Contreras V, Urien C, Bonneau M, Takamatsu HH et al. 2009. Bluetongue virus targets conventional dendritic cells in skin lymph. J. Virol. 83:8789–99 [Google Scholar]
  125. Mair KH, Sedlak C, Kaser T, Pasternak A, Levast B et al. 2014. The porcine innate immune system: an update. Dev. Comp. Immunol. 45:321–43 [Google Scholar]
/content/journals/10.1146/annurev-animal-022114-111009
Loading
/content/journals/10.1146/annurev-animal-022114-111009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error