1932

Abstract

Anthropoid primates other than humans show a conspicuously disjunct geographic distribution today, inhabiting mostly tropical and subtropical parts of Asia, Africa, and Central and South America. During the latter part of the Eocene, early anthropoids showed a similarly disjunct distribution, although South America and Africa were both island continents then. Attempts to explain the historical biogeography of anthropoids as resulting from vicariance caused by tectonic rifting between South America and Africa conflict with both the chronology and the topology of anthropoid evolution. The only viable hypotheses that remain entail sweepstakes dispersal across marine barriers by early monkeys on natural rafts. Early anthropoids and certain Asian rodent clades seem to have been especially adept at accomplishing sweepstakes dispersal, particularly during the Eocene, although this process has classically been envisioned as highly random and extremely rare. This article identifies and discusses biological and geological factors that make sweepstakes dispersal by certain taxa at given times far less random than previously conceived.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102215-100019
2016-10-21
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anthro/45/1/annurev-anthro-102215-100019.html?itemId=/content/journals/10.1146/annurev-anthro-102215-100019&mimeType=html&fmt=ahah

Literature Cited

  1. Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerod M. et al. 2012. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc. R. Soc. B 279:1319–26 [Google Scholar]
  2. Beard KC. 1998a. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bull. Carnegie Mus. Nat. Hist. 34:5–39 [Google Scholar]
  3. Beard KC. 1998b. A new genus of Tarsiidae (Mammalia: Primates) from the middle Eocene of Shanxi Province, China, with notes on the historical biogeography of tarsiers. Bull. Carnegie Mus. Nat. Hist. 34:260–77 [Google Scholar]
  4. Beard KC. 2004. The Hunt for the Dawn Monkey: Unearthing the Origins of Monkeys, Apes, and Humans Berkeley: Univ. Calif. Press
  5. Beard KC. 2006. Mammalian biogeography and anthropoid origins. Primate Biogeography SM Lehman, JG Fleagle 439–67 New York: Springer [Google Scholar]
  6. Beard KC, Coster PMC, Salem MJ, Chaimanee Y, Jaeger J-J. 2016. A new species of Apidium (Anthropoidea, Parapithecidae) from the Sirt Basin, central Libya: first record of Oligocene primates from Libya. J. Hum. Evol. 90:29–37 [Google Scholar]
  7. Beard KC, Marivaux L, Chaimanee Y, Jaeger J-J, Marandat B. et al. 2009. A new primate from the Eocene Pondaung Formation of Myanmar and the monophyly of Burmese amphipithecids. Proc. R. Soc. B 276:3285–94 [Google Scholar]
  8. Beard KC, Qi T, Dawson MR, Wang B-Y, Li C-K. 1994. A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China. Nature 368:604–9 [Google Scholar]
  9. Beard KC, Tong Y-S, Dawson MR, Wang J-W, Huang X-S. 1996. Earliest complete dentition of an anthropoid primate from the late middle Eocene of Shanxi Province, China. Science 272:82–85 [Google Scholar]
  10. Beard KC, Wang J-W. 2004. The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan Provinces, People's Republic of China. J. Hum. Evol. 46:401–32 [Google Scholar]
  11. Bloch JI, Woodruff ED, Wood AR, Rincon AF, Harrington AR. et al. 2016. First North American fossil monkey and early Miocene tropical biotic interchange. Nature 533:243–46 [Google Scholar]
  12. Bohaty SM, Zachos JC. 2003. Significant southern ocean warming event in the late middle Eocene. Geology 31:1017–20 [Google Scholar]
  13. Bond M, Tejedor MF, Campbell KE, Chornogubsky L, Novo N, Goin F. 2015. Eocene primates of South America and the African origins of New World monkeys. Nature 520:538–41 [Google Scholar]
  14. Censky EJ, Hodge K, Dudley J. 1998. Over-water dispersal of lizards due to hurricanes. Nature 395:556 [Google Scholar]
  15. Chaimanee Y, Chavasseau O, Beard KC, Aung Aung Kyaw, Aung Naing Soe. et al. 2012. Late middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa. PNAS 109:10293–97 [Google Scholar]
  16. Chaimanee Y, Lebrun R, Yamee C, Jaeger J-J. 2011. A new middle Miocene tarsier from Thailand and the reconstruction of its orbital morphology using a geometric-morphometric method. Proc. R. Soc. B 278:1956–63 [Google Scholar]
  17. Chaimanee Y, Suteethorn V, Jaeger J-J, Ducrocq S. 1997. A new late Eocene anthropoid primate from Thailand. Nature 385:429–31 [Google Scholar]
  18. Ciochon RL, Chiarelli AB. 1980. Evolutionary Biology of the New World Monkeys and Continental Drift New York: Plenum Press
  19. Ciochon RL, Gunnell GF. 2002. Chronology of primate discoveries in Myanmar: influences on the anthropoid origins debate. Yearb. Phys. Anthropol. 45:2–35 [Google Scholar]
  20. Coster P, Benammi M, Lazzari V, Billet G, Martin T. et al. 2010. Gaudeamus lavocati sp. nov. (Rodentia, Hystricognathi) from the early Oligocene of Zallah, Libya: first African caviomorph?. Naturwissenschaften 97:697–706 [Google Scholar]
  21. Coster PMC, Beard KC, Salem MJ, Chaimanee Y, Jaeger J-J. 2015. New fossils from the Paleogene of central Libya illuminate the evolutionary history of endemic African anomaluroid rodents. Front. Earth Sci. 3:56 [Google Scholar]
  22. Coster PMC, Beard KC, Aung Naing Soe, Chit Sein, Chaimanee Y. et al. 2013. Uniquely derived upper molar morphology of Eocene Amphipithecidae (Primates: Anthropoidea): homology and phylogeny. J. Hum. Evol. 65:143–55 [Google Scholar]
  23. Dawson MR, Tsubamoto T, Takai M, Egi N, Soe Thura Tun, Chit Sein. 2003. Rodents of the family Anomaluridae (Mammalia) from southeast Asia (middle Eocene, Pondaung Formation, Myanmar). Ann. Carnegie Mus. 72:203–13 [Google Scholar]
  24. de Bonis L, Jaeger J-J, Coiffat B, Coiffat P-E. 1988. Dècouverte du plus ancien primate catarrhinien connu dans l'Éocène supérieur d'Afrique du Nord. C. R. Acad. Sci. ParisSér. 2 306:929–34 [Google Scholar]
  25. de Queiroz A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20:68–73 [Google Scholar]
  26. de Queiroz A. 2014. The Monkey's Voyage: How Improbable Journeys Shaped the History of Life New York: Basic Books
  27. Domning DP. 2001. The earliest known fully quadrupedal sirenian. Nature 413:625–27 [Google Scholar]
  28. Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A. et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS 108:8363–66 [Google Scholar]
  29. Fleagle JG, Kay RF. 1987. The phyletic position of the Parapithecidae. J. Hum. Evol. 16:483–532 [Google Scholar]
  30. Gebo DL, Dagosto M, Beard KC, Qi T, Wang J-W. 2000. The oldest known anthropoid postcranial fossils and the early evolution of higher primates. Nature 404:276–78 [Google Scholar]
  31. Gheerbrant E, Rage J-C. 2006. Paleobiogeography of Africa: how distinct from Gondwana and Laurasia?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241:224–46 [Google Scholar]
  32. Heads M. 2010. Evolution and biogeography of primates: a new model based on molecular phylogenetics, vicariance and plate tectonics. Zool. Scripta 39:107–27 [Google Scholar]
  33. Holroyd PA, Maas MC. 1994. Paleogeography, paleobiogeography, and anthropoid origins. Anthropoid Origins JG Fleagle, RF Kay 297–334 New York: Plenum Press [Google Scholar]
  34. Holway DA, Suarez AV. 1999. Animal behavior: an essential component of invasion biology. Trends Ecol. Evol. 14:328–30 [Google Scholar]
  35. Hooker JJ, Sanchez-Villagra MR, Goin FJ, Simons EL, Attia Y, Seiffert ER. 2008. The origin of Afro-Arabian ‘didelphimorph’ marsupials. Palaeontology 51:635–48 [Google Scholar]
  36. Houle A. 1998. Floating islands: a mode of long-distance dispersal for small and medium-sized terrestrial vertebrates. Divers. Distrib. 4:201–16 [Google Scholar]
  37. Jaeger J-J, Beard KC, Chaimanee Y, Salem M, Benammi M. et al. 2010a. Late middle Eocene epoch of Libya yields earliest known radiation of African anthropoids. Nature 467:1095–98 [Google Scholar]
  38. Jaeger J-J, Denys C, Coiffat B. 1985. New Phiomorpha and Anomaluridae from the late Eocene of north-west Africa: phylogenetic implications. Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis WP Luckett, J-L Hartenberger 567–88 New York: Plenum Press [Google Scholar]
  39. Jaeger J-J, Marivaux L, Salem M, Bilal AA, Benammi M. et al. 2010b. New rodent assemblages from the Eocene Dur At-Talah escarpment (Sahara of central Libya): systematic, biochronological, and paleobiogeographical implications. Zool. J. Linn. Soc. 160:195–213 [Google Scholar]
  40. Jaeger J-J, Tin Thein, Benammi M, Chaimanee Y, Aung Naing Soe. et al. 1999. A new primate from the middle Eocene of Myanmar and the Asian early origin of anthropoids. Science 286:528–30 [Google Scholar]
  41. Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A. et al. 2007. Molecular and genomic data identify the closest living relative of Primates. Science 318:792–94 [Google Scholar]
  42. Kappelman J, Rasmussen DT, Sanders WJ, Feseha M, Bown T. et al. 2003. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature 426:549–52 [Google Scholar]
  43. Katz ME, Miller KG, Wright JD, Wade BS, Browning JV. et al. 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nat. Geosci. 1:329–34 [Google Scholar]
  44. Kay RF, Williams BA, Ross CF, Takai M, Shigehara N. 2004. Anthropoid origins: a phylogenetic analysis. Anthropoid Origins: New Visions CF Ross, RF Kay 91–135 New York: Kluwer Acad./Plenum [Google Scholar]
  45. Kolar CS, Lodge DM. 2001. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16:199–204 [Google Scholar]
  46. Licht A, France-Lanord C, Reisberg L, Fontaine C, Aung Naing Soe, Jaeger J-J. 2013. A palaeo Tibet-Myanmar connection? Reconstructing the late Eocene drainage system of central Myanmar using a multi-proxy approach. J. Geol. Soc. Lond. 170:929–39 [Google Scholar]
  47. Licht A, van Cappelle M, Abels HA, Ladant J-B, Trabucho-Alexandre J. et al. 2014. Asian monsoons in a late Eocene greenhouse world. Nature 513:501–6 [Google Scholar]
  48. Lihoreau F, Boisserie J-R, Manthi FK, Ducrocq S. 2015. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa. Nat. Commun. 6:6264 [Google Scholar]
  49. Marivaux L, Antoine P-O, Baqri SRH, Benammi M, Chaimanee Y. et al. 2005a. Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): data on early anthropoid evolution and biogeography. PNAS 102:8436–41 [Google Scholar]
  50. Marivaux L, Beard KC, Chaimanee Y, Dagosto M, Gebo DL. et al. 2010. Talar morphology, phylogenetic affinities, and locomotor adaptation of a large-bodied amphipithecid primate from the late middle Eocene of Myanmar. Am. J. Phys. Anthropol. 143:208–22 [Google Scholar]
  51. Marivaux L, Ducrocq S, Jaeger J-J, Marandat B, Sudre J. et al. 2005b. New remains of Pondaungimys anomaluropsis (Rodentia, Anomaluroidea) from the latest middle Eocene Pondaung Formation of central Myanmar. J. Vert. Paleontol. 25:214–27 [Google Scholar]
  52. Marivaux L, Essid EM, Marzougui W, Ammar HK, Adnet S. et al. 2014a. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: macroevolutionary and paleobiogeographic implications of early anthropoids. Am. J. Phys. Anthropol. 154:387–401 [Google Scholar]
  53. Marivaux L, Essid EM, Marzougui W, Ammar HK, Adnet S. et al. 2014b. A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late middle Eocene of Djebel el Kébar, central Tunisia. Palaeovertebrata 38:e2 [Google Scholar]
  54. Marivaux L, Essid EM, Marzougui W, Ammar HK, Merzeraud G. et al. 2015. The early evolutionary history of anomaluroid rodents in Africa: new dental remains of a zegdoumyid (Zegdoumyidae, Anomaluroidea) from the Eocene of Tunisia. Zool. Scripta 44:117–34 [Google Scholar]
  55. Marivaux L, Vianey-Liaud M, Welcomme J-L, Jaeger J-J. 2002. The role of Asia in the origin and diversification of hystricognathous rodents. Zool. Scripta 31:225–39 [Google Scholar]
  56. Matthew WD. 1915. Climate and evolution. Ann. N. Y. Acad. Sci. 24:171–318 [Google Scholar]
  57. Métais G, Antoine P-O, Baqri SRH, Crochet J-Y, de Franchesi D. et al. 2009. Lithofacies, depositional environments, regional biostratigraphy and age of the Chitarwata Formation in the Bugti Hills, Balochistan, Pakistan. J. Asian Earth Sci. 34:154–67 [Google Scholar]
  58. Miller ER, Gunnell GF, Martin RD. 2005. Deep time and the search for anthropoid origins. Yearb. Phys. Anthropol. 48:60–95 [Google Scholar]
  59. Ni X-J, Gebo DL, Dagosto M, Meng J, Tafforeau P. et al. 2013. The oldest known primate skeleton and early haplorhine evolution. Nature 498:60–64 [Google Scholar]
  60. Ni X-J, Li Q, Li L, Beard KC. 2016. Oligocene primates from China reveal divergence between African and Asian primate evolution. Science 352:673–77 [Google Scholar]
  61. Norell MA. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Extinction and Phylogeny MJ Novacek, QD Wheeler 89–118 New York: Columbia Univ. Press [Google Scholar]
  62. Nowak RM, Paradiso JL. 1983. Walker's Mammals of the World II Baltimore, MD: Johns Hopkins Univ. Press., 4th ed..
  63. Partridge TC. 2010. Tectonics and geomorphology of Africa during the Phanerozoic. Cenozoic Mammals of Africa L Werdelin, WJ Sanders 3–17 Berkeley: Univ. Calif. Press [Google Scholar]
  64. Sallam HM, Seiffert ER, Simons EL. 2010a. A highly derived anomalurid rodent (Mammalia) from the earliest late Eocene of Egypt. Palaeontology 53:803–13 [Google Scholar]
  65. Sallam HM, Seiffert ER, Simons EL. 2011. Craniodental morphology and systematics of a new family of hystricognathous rodents (Gaudeamuridae) from the late Eocene and early Oligocene of Egypt. PLOS ONE 6:e16525 [Google Scholar]
  66. Sallam HM, Seiffert ER, Simons EL. 2012. A basal phiomorph (Rodentia, Hystricognathi) from the late Eocene of the Fayum Depression, Egypt. Swiss J. Palaeontol. 131:283–301 [Google Scholar]
  67. Sallam HM, Seiffert ER, Simons EL, Brindley C. 2010b. A large-bodied anomaluroid rodent from the earliest late Eocene of Egypt: phylogenetic and biogeographic implications. J. Vert. Paleontol. 30:1579–93 [Google Scholar]
  68. Sallam HM, Seiffert ER, Steiper ME, Simons EL. 2009. Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents. PNAS 106:16722–27 [Google Scholar]
  69. Seiffert ER. 2012. Early primate evolution in Afro-Arabia. Evol. Anthropol. 21:239–53 [Google Scholar]
  70. Seiffert ER, Bown TM, Clyde WC, Simons EL. 2008. Geology, paleoenvironment, and age of Birket Qarun locality 2 (BQ-2), Fayum Depression, Egypt. Elwyn Simons: A Search for Origins JG Fleagle, CC Gilbert 71–86 New York: Springer [Google Scholar]
  71. Seiffert ER, Perry JMG, Simons EL, Boyer DM. 2009. Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates. Nature 461:1118–21 [Google Scholar]
  72. Seiffert ER, Simons EL, Clyde WC, Rossie JB, Attia Y. et al. 2005. Basal anthropoids from Egypt and the antiquity of Africa's higher primate radiation. Science 310:300–4 [Google Scholar]
  73. Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC. et al. 2016. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31:27–34 [Google Scholar]
  74. Simons EL. 1995. Egyptian Oligocene primates: a review. Yearb. Phys. Anthropol. 38:199–238 [Google Scholar]
  75. Simons EL, Plavcan JM, Fleagle JG. 1999. Canine sexual dimorphism in Egyptian Eocene anthropoid primates: Catopithecus and Proteopithecus. PNAS 96:2559–62 [Google Scholar]
  76. Simpson GG. 1978. Early mammals in South America: fact, controversy, and mystery. Proc. Am. Phil. Soc. 122:318–25 [Google Scholar]
  77. Smith AG, Smith DG, Funnell BM. 1994. Atlas of Mesozoic and Cenozoic Coastlines Cambridge, UK: Cambridge Univ. Press
  78. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J. et al. 2012. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLOS ONE 7:e49521 [Google Scholar]
  79. Springer MS, Meredith RW, Janecka JE, Murphy WJ. 2011. The historical biogeography of Mammalia. Phil. Trans. R. Soc. B 366:2478–502 [Google Scholar]
  80. Steiper ME, Seiffert ER. 2012. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. PNAS 109:6006–11 [Google Scholar]
  81. Tabuce R, Marivaux L, Lebrun R, Adaci M, Bensalah M. et al. 2009. Anthropoid versus strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proc. R. Soc. B 276:4087–94 [Google Scholar]
  82. Takai M, Shigehara N, Aung Aung Kyaw, Soe Thura Tun, Aung Naing Soe. et al. 2001. A new anthropoid from the latest middle Eocene of Pondaung, central Myanmar. J. Hum. Evol. 40:393–409 [Google Scholar]
  83. Vermeij GJ. 1996. An agenda for invasion biology. Biol. Conserv. 78:3–9 [Google Scholar]
  84. Vianey-Liaud M, Jaeger J-J, Hartenberger J-L, Mahboubi M. 1994. Les rongeurs de l'Eocène d'Afrique nord-occidentale [Glib Zegdou (Algérie) et Chambi (Tunisie)] et l'origine des Anomaluridae. Palaeovertebrata 25:349–58 [Google Scholar]
  85. Williams BA, Kay RF, Kirk EC. 2010. New perspectives on anthropoid origins. PNAS 107:4797–804 [Google Scholar]
  86. Wing SL, Boucher LD. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annu. Rev. Earth Planet. Sci. 26:379–421 [Google Scholar]
  87. Zhou Z-H, Barrett PM, Hilton J. 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–14 [Google Scholar]
  88. Zijlstra JS, Flynn LJ, Wessels W. 2013. The westernmost tarsier: a new genus and species from the Miocene of Pakistan. J. Hum. Evol. 65:544–50 [Google Scholar]
/content/journals/10.1146/annurev-anthro-102215-100019
Loading
/content/journals/10.1146/annurev-anthro-102215-100019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error