1932

Abstract

Eukaryotic membranes contain small amounts of phospholipids that have regulatory effects on the physiological functions of cells, tissues, and organs. Phosphoinositides (PIs)—the phosphorylated derivatives of phosphatidylinositol—are one example of such regulatory lipids. Although PIs were described in plants decades ago, their contribution to the regulation of physiological processes in plants is not well understood. In the past few years, evidence has emerged that PIs are essential for plant function and development. Recently reported phenotypes associated with the perturbation of different PIs suggest that some subgroups of PIs influence specific processes. Although the molecular targets of PI-dependent regulation in plants are largely unknown, the effects of perturbed PI metabolism can be used to propose regulatory modules that involve particular downstream targets of PI regulation. This review summarizes phenotypes associated with the perturbation of the plant PI network to categorize functions and suggest possible downstream targets of plant PI regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-041022
2017-04-28
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-042916-041022.html?itemId=/content/journals/10.1146/annurev-arplant-042916-041022&mimeType=html&fmt=ahah

Literature Cited

  1. Amadio M, Battaini F, Pascale A. 1.  2006. The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol. Res. 54:317–25 [Google Scholar]
  2. Anishkin A, Kung C. 2.  2013. Stiffened lipid platforms at molecular force foci. PNAS 110:4886–92 [Google Scholar]
  3. Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L. 3.  et al. 2004. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15:5118–29 [Google Scholar]
  4. Audhya A, Emr SD. 4.  2003. Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J 22:4223–36 [Google Scholar]
  5. Bak G, Lee EJ, Lee Y, Kato M, Segami S. 5.  et al. 2013. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25:2202–16Contains the first demonstration of catalytic activity of plant FAB1-like enzymes and reports important effects on vacuolar function. [Google Scholar]
  6. Balla T.6.  2007. Imaging and manipulating phosphoinositides in living cells. J. Physiol. 582:927–37 [Google Scholar]
  7. Bankaitis VA, Mousley CJ, Schaaf G. 7.  2010. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem. Sci. 35:150–60 [Google Scholar]
  8. Berridge MJ, Irvine RF. 8.  1989. Inositol phosphates and cell signalling. Nature 341:197–205 [Google Scholar]
  9. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R. 9.  2005. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. PNAS 102:3135–40 [Google Scholar]
  10. Boss WF, Im YJ. 10.  2012. Phosphoinositide signaling. Annu. Rev. Plant Biol. 63:409–29 [Google Scholar]
  11. Boss WF, Lynch DV, Wang X. 11.  2008. Lipid-mediated signaling. Intracellular Signaling in Plants Z Yang 232–43 Oxford, UK: Wiley-Blackwell [Google Scholar]
  12. Braun M, Baluska F, von Witsch M, Menzel D. 12.  1999. Redistribution of actin, profilin and phosphatidylinositol-4, 5-bisphosphate in growing and maturing root hairs. Planta 209:435–43 [Google Scholar]
  13. Camacho L, Smertenko AP, Perez-Gomez J, Hussey PJ, Moore I. 13.  2009. Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J. Cell Sci. 122:4383–92Reports a defined interaction between GTPases and PtdIns4P 5-kinases and characterizes effects on in vitro activity. [Google Scholar]
  14. Carland FM, Nelson T. 14.  2004. COTYLEDON VASCULAR PATTERN2–mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16:1263–75 [Google Scholar]
  15. Carland FM, Nelson T. 15.  2009. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. Plant J 59:895–907 [Google Scholar]
  16. Carlton JG, Cullen PJ. 16.  2005. Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–47 [Google Scholar]
  17. Chernomordik LV, Zimmerberg J, Kozlov MM. 17.  2006. Membranes of the world unite!. J. Cell Biol. 175:201–7 [Google Scholar]
  18. Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O. 18.  et al. 2016. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 7:11710 [Google Scholar]
  19. DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR. 19.  et al. 2001. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–69 [Google Scholar]
  20. Dieck CB, Wood A, Brglez I, Rojas-Pierce M, Boss WF. 20.  2012. Increasing phosphatidylinositol (4,5) bisphosphate biosynthesis affects plant nuclear lipids and nuclear functions. Plant Physiol. Biochem. 57:32–44 [Google Scholar]
  21. Dowd PE, Coursol S, Skirpan AL, Kao TH, Gilroy S. 21.  2006. Petunia phospholipase C1 is involved in pollen tube growth. Plant Cell 18:1438–53 [Google Scholar]
  22. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D. 22.  et al. 2010. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–34 [Google Scholar]
  23. Einspahr KJ, Maeda M, Thompson GA Jr. 23.  1988. Concurrent changes in Dunaliella salina ultrastructure and membrane phospholipid metabolism after hyperosmotic shock. J. Cell Biol. 107:529–38 [Google Scholar]
  24. Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE. 24.  2008. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. Plant Mol. Biol. 67:375–88 [Google Scholar]
  25. Fairn GD, Ogata K, Botelho RJ, Stahl PD, Anderson RA. 25.  et al. 2009. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. J. Cell Biol. 187:701–14 [Google Scholar]
  26. Faure J, Vignais PV, Dagher MC. 26.  1999. Phosphoinositide-dependent activation of Rho A involves partial opening of the RhoA/Rho-GDI complex. Eur. J. Biochem. 262:879–89 [Google Scholar]
  27. Frescatada-Rosa M, Stanislas T, Backues SK, Reichardt I, Men S. 27.  et al. 2014. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function. Plant J 80:745–57 [Google Scholar]
  28. Furt F, König S, Bessoule JJ, Sargueil F, Zallot R. 28.  et al. 2010. Polyphosphoinositides are enriched in plant membrane rafts and form microdomains in the plasma membrane. Plant Physiol 152:2173–87 [Google Scholar]
  29. Furt F, Simon-Plas F, Mongrand S. 29.  2011. Lipids of the plant plasma membrane. The Plant Plasma Membrane AS Murphy, W Peer, B Schulz 3–30 Berlin: Springer [Google Scholar]
  30. Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA. 30.  et al. 2013. Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23:2044–50 [Google Scholar]
  31. Galvão RM, Kota U, Soderblom EJ, Goshe MB, Boss WF. 31.  2008. Characterization of a new family of protein kinases from Arabidopsis containing phosphoinositide 3/4-kinase and ubiquitin-like domains. Biochem. J. 409:117–27 [Google Scholar]
  32. Gao HB, Chu YJ, Xue HW. 32.  2013. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization. Mol. Plant 6:1692–702 [Google Scholar]
  33. Gerbeau-Pissot P, Der C, Grebe M, Stanislas T. 33.  2016. Ratiometric fluorescence live imaging analysis of membrane lipid order in Arabidopsis mitotic cells using a lipid order-sensitive probe. Methods Mol. Biol. 1370:227–39 [Google Scholar]
  34. Ghosh R, de Campos MK, Huang J, Huh SK, Orlowski A. 34.  et al. 2015. Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Mol. Biol. Cell 26:1764–81 [Google Scholar]
  35. Gong P, Wu G, Ort DR. 35.  2006. Slow dark deactivation of Arabidopsis chloroplast ATP synthase caused by a mutation in a nonplastidic SAC domain protein. Photosynth. Res. 88:133–42 [Google Scholar]
  36. Gonorazky G, Laxalt AM, Dekker HL, Rep M, Munnik T. 36.  et al. 2012. Phosphatidylinositol 4-phosphate is associated to extracellular lipoproteic fractions and is detected in tomato apoplastic fluids. Plant Biol. (Stuttg.) 14:41–49 [Google Scholar]
  37. Gonorazky G, Laxalt AM, Testerink C, Munnik T, de la Canal L. 37.  2008. Phosphatidylinositol 4-phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions. Plant Cell Environ 31:1051–62 [Google Scholar]
  38. Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V. 38.  et al. 2016. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27:1228–50 [Google Scholar]
  39. Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE. 39.  2007. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol 143:1408–17 [Google Scholar]
  40. He B, Xi F, Zhang X, Zhang J, Guo W. 40.  2007. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26:4053–65 [Google Scholar]
  41. Heilmann I.41.  2016. Phosphoinositide signaling in plant development. Development 143:2044–55 [Google Scholar]
  42. Heilmann I.42.  2016. Plant phosphoinositide signaling—dynamics on demand. Biochim. Biophys. Acta 1861:1345–51 [Google Scholar]
  43. Heilmann I, Perera IY, Gross W, Boss WF. 43.  1999. Changes in phosphoinositide metabolism with days in culture affect signal transduction pathways in Galdieria sulphuraria. Plant Physiol. 119:1331–39 [Google Scholar]
  44. Heilmann I, Perera IY, Gross W, Boss WF. 44.  2001. Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. Plant Physiol 126:1507–18 [Google Scholar]
  45. Heilmann M, Heilmann I. 45.  2013. Arranged marriage in lipid signalling? The limited choices of PtdIns(4,5)P2 in finding the right partner. Plant Biol. (Stuttg.) 15:789–97 [Google Scholar]
  46. Heilmann M, Heilmann I. 46.  2013. Mass measurement of polyphosphoinositides by thin-layer and gas chromatography. Methods Mol. Biol. 1009:25–32 [Google Scholar]
  47. Heilmann M, Heilmann I. 47.  2015. Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim. Biophys. Acta 1851:759–69 [Google Scholar]
  48. Helling D, Possart A, Cottier S, Klahre U, Kost B. 48.  2006. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell 18:3519–34 [Google Scholar]
  49. Higaki T, Kutsuna N, Sano T, Hasezawa S. 49.  2008. Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol 8:80 [Google Scholar]
  50. Hirano T, Matsuzawa T, Takegawa K, Sato MH. 50.  2011. Loss-of-function and gain-of-function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol 155:797–807 [Google Scholar]
  51. Hirano T, Munnik T, Sato MH. 51.  2015. Phosphatidylinositol 3-phosphate 5-kinase, FAB1/PIKfyve kinase mediates endosome maturation to establish endosome-cortical microtubule interaction in Arabidopsis. Plant Physiol 169:1961–74Describes an important and interesting insight into the possible roles of 3-phosphorylated PIs. [Google Scholar]
  52. Huang S, Blanchoin L, Kovar DR, Staiger CJ. 52.  2003. Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J. Biol. Chem. 278:44832–42 [Google Scholar]
  53. Ischebeck T, Seiler S, Heilmann I. 53.  2010. At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240:13–31 [Google Scholar]
  54. Ischebeck T, Stenzel I, Heilmann I. 54.  2008. Type B phosphatidylinositol-4-phosphate 5-kinases mediate pollen tube growth in Nicotiana tabacum and Arabidopsis by regulating apical pectin secretion. Plant Cell 20:3312–30 [Google Scholar]
  55. Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I. 55.  2011. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J. 65:453–68 [Google Scholar]
  56. Ischebeck T, Vu LH, Jin X, Stenzel I, Löfke C, Heilmann I. 56.  2010. Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. Mol. Plant 3:870–81 [Google Scholar]
  57. Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M. 57.  et al. 2013. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25:4894–911 [Google Scholar]
  58. Kale SD, Gu B, Capelluto DG, Dou D, Feldman E. 58.  et al. 2010. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–95 [Google Scholar]
  59. Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T. 59.  2012. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLOS ONE 7:e48241 [Google Scholar]
  60. Kim YW, Park DS, Park SC, Kim SH, Cheong GW, Hwang I. 60.  2001. Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol 4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol 127:1243–55 [Google Scholar]
  61. König S, Hoffmann M, Mosblech A, Heilmann I. 61.  2008. Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin layer chromatography and gas chromatography. Anal. Biochem. 378:197–201 [Google Scholar]
  62. König S, Ischebeck T, Lerche J, Stenzel I, Heilmann I. 62.  2008. Salt stress-induced association of phosphatidylinositol-4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem. J. 415:387–99 [Google Scholar]
  63. König S, Mosblech A, Heilmann I. 63.  2007. Stress-inducible and constitutive phosphoinositide pools have distinct fatty acid patterns in Arabidopsis thaliana. FASEB J. 21:1958–67 [Google Scholar]
  64. Konopka CA, Backues SK, Bednarek SY. 64.  2008. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–80 [Google Scholar]
  65. Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH. 65.  2005. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41:162–74 [Google Scholar]
  66. Kost B.66.  2008. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–27 [Google Scholar]
  67. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K. 67.  et al. 1999. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145:317–30Reports on seminal experiments utilizing fluorescent reporters for PtdIns(4,5)P2 in plant cells that were the basis for numerous follow-up studies. [Google Scholar]
  68. Krinke O, Novotna Z, Valentova O, Martinec J. 68.  2007. Inositol trisphosphate receptor in higher plants: Is it real?. J. Exp. Bot. 58:361–76 [Google Scholar]
  69. Krinke O, Ruelland E, Valentova O, Vergnolle C, Renou JP. 69.  et al. 2007. Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol 144:1347–59 [Google Scholar]
  70. Krishnamoorthy P, Sanchez-Rodriguez C, Heilmann I, Persson S. 70.  2014. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann. Bot. 114:1049–57 [Google Scholar]
  71. Kusano H, Testerink C, Vermeer JEM, Tsuge T, Shimada H. 71.  et al. 2008. The Arabidopsis phosphatidylinositol phosphate 5-kinase PIP5K3 is a key regulator of root hair tip growth. Plant Cell 20:367–80Provides one of the first clear studies of a functional contribution of a defined PI to a specific physiological process. [Google Scholar]
  72. Lee Y, Bak G, Choi Y, Chuang WI, Cho HT. 72.  2008. Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–35 [Google Scholar]
  73. Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY. 73.  2008. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147:1886–97 [Google Scholar]
  74. Lemmon MA.74.  2003. Phosphoinositide recognition domains. Traffic 4:201–13 [Google Scholar]
  75. Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C. 75.  et al. 2003. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. PNAS 100:10091–95 [Google Scholar]
  76. Li S, Chen M, Yu D, Ren S, Sun S. 76.  et al. 2013. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. Plant Cell 25:1774–86 [Google Scholar]
  77. Liu J, Zuo X, Yue P, Guo W. 77.  2007. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell 18:4483–92 [Google Scholar]
  78. Löfke C, Ischebeck T, König S, Freitag S, Heilmann I. 78.  2008. Alternative metabolic fates of phosphatidylinositol produced by PI-synthase isoforms in Arabidopsis thaliana. Biochem. J. 413:115–24 [Google Scholar]
  79. Lou Y, Gou JY, Xue HW. 79.  2007. PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase, interacts with a cytosolic invertase to negatively regulate sugar-mediated root growth. Plant Cell 19:163–81 [Google Scholar]
  80. Markham JE, Molino D, Gissot L, Bellec Y, Hematy K. 80.  et al. 2011. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23:2362–78 [Google Scholar]
  81. McLaughlin S, Murray D. 81.  2005. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–11 [Google Scholar]
  82. McLaughlin S, Wang J, Gambhir A, Murray D. 82.  2002. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31:151–75 [Google Scholar]
  83. Mei Y, Jia WJ, Chu YJ, Xue HW. 83.  2012. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 22:581–97 [Google Scholar]
  84. Meijer HJ, Berrie CP, Iurisci C, Divecha N, Musgrave A, Munnik T. 84.  2001. Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem. J. 360:491–98 [Google Scholar]
  85. Meijer HJ, Divecha N, van den Ende H, Musgrave A, Munnik T. 85.  1999. Hyperosmotic stress induces rapid synthesis of phosphatidyl-d-inositol 3,5-bisphosphate in plant cells. Planta 208:294–98 [Google Scholar]
  86. Men S, Boutte Y, Ikeda Y, Li X, Palme K. 86.  et al. 2008. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat. Cell Biol. 10:237–44 [Google Scholar]
  87. Mishkind M, Vermeer JE, Darwish E, Munnik T. 87.  2009. Heat stress activates phospholipase D and triggers PIP accumulation at the plasma membrane and nucleus. Plant J 60:10–21 [Google Scholar]
  88. Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I, Heilmann I. 88.  2008. Phosphoinositide and inositolpolyphosphate-signaling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol. Plant 1:249–61 [Google Scholar]
  89. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I. 89.  2011. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–57 [Google Scholar]
  90. Mueller-Roeber B, Pical C. 90.  2002. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130:22–46Describes a seminal genome-wide screen for sequences related to lipid signaling in Arabidopsis. [Google Scholar]
  91. Munnik T, Vermeer JE. 91.  2010. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33:655–69 [Google Scholar]
  92. Munnik T, Zarza X. 92.  2013. Analyzing plant signaling phospholipids through 32Pi-labeling and TLC. Methods Mol. Biol. 1009:3–15 [Google Scholar]
  93. Novakova P, Hirsch S, Feraru E, Tejos R, van Wijk R. 93.  et al. 2014. SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. PNAS 111:2818–23Provides an important insight into the role of PI degradation and steady-state levels in mediating tonoplast function. [Google Scholar]
  94. Okazaki K, Miyagishima SY, Wada H. 94.  2015. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis. Plant Cell 27:663–74 [Google Scholar]
  95. Oxley D, Ktistakis N, Farmaki T. 95.  2013. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography. J. Proteom. 91:580–94 [Google Scholar]
  96. Perera IY, Heilmann I, Boss WF. 96.  1999. Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. PNAS 96:5838–43 [Google Scholar]
  97. Perera IY, Love J, Heilmann I, Thompson WF, Boss WF. 97.  2002. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol 129:1795–806 [Google Scholar]
  98. Pérez-Sancho J, Vanneste S, Lee E, McFarlane HE, Esteban del Valle A. 98.  et al. 2015. The Arabidopsis Synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol 168:132–43 [Google Scholar]
  99. Pical C, Westergren T, Dove SK, Larsson C, Sommarin M. 99.  1999. Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells. J. Biol. Chem. 274:38232–40 [Google Scholar]
  100. Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. 100.  2014. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96:144–57 [Google Scholar]
  101. Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E. 101.  2006. A role for the RabA4b effector protein PI-4Kβ1 in polarized expansion of root hair cells in Arabidopsis thaliana. J. Cell Biol. 172:991–98 [Google Scholar]
  102. Pribat A, Sormani R, Rousseau-Gueutin M, Julkowska MM, Testerink C. 102.  et al. 2012. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid. Biochem. J. 441:161–71 [Google Scholar]
  103. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. 103.  1998. Structure of type IIβ phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829–39 [Google Scholar]
  104. Rodriguez-Villalon A, Gujas B, van Wijk R, Munnik T, Hardtke CS. 104.  2015. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching. Development 142:1437–46 [Google Scholar]
  105. Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L. 105.  et al. 2010. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–75 [Google Scholar]
  106. Saavedra L, Catarino R, Heinz T, Heilmann I, Bezanilla M, Malho R. 106.  2015. Phosphatase and tensin homolog is a growth repressor of both rhizoid and gametophore development in the moss Physcomitrella patens. Plant Physiol 169:2572–86 [Google Scholar]
  107. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE. 107.  et al. 2008. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily. Mol. Cell 29:191–206Makes an important contribution regarding the effects of proteins of the Arabidopsis Sec14-like family on the PI network. [Google Scholar]
  108. Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R. 108.  et al. 2008. Arabidopsis Synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–88 [Google Scholar]
  109. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G. 109.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–5 [Google Scholar]
  110. Simon ML, Platre MP, Assil S, van Wijk R, Chen WY. 110.  et al. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77:322–37 [Google Scholar]
  111. Simon ML, Platre MP, Marques-Bueno MM, Armengot L, Stanislas T. 111.  et al. 2016. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat. Plants 2:16089Describes a new set of fluorescent reporters for charge distribution at the cytosolic surface of cellular membranes. [Google Scholar]
  112. Sousa E, Kost B, Malho R. 112.  2008. Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling. Plant Cell 20:3050–64 [Google Scholar]
  113. Stenzel I, Ischebeck T, König S, Holubowska A, Sporysz M. 113.  et al. 2008. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20:124–41 [Google Scholar]
  114. Stenzel I, Ischebeck T, Quint M, Heilmann I. 114.  2012. Variable regions of PI4P 5-kinases direct PtdIns(4,5)P2 toward alternative regulatory functions in tobacco pollen tubes. Front. Plant Sci. 2:1–14 [Google Scholar]
  115. Stevenson JM, Perera IY, Boss WF. 115.  1998. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J. Biol. Chem. 273:22761–67 [Google Scholar]
  116. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. 116.  2005. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. PNAS 102:12612–17 [Google Scholar]
  117. Sun T, Li S, Ren H. 117.  2013. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells. Front. Plant Sci. 4:512 [Google Scholar]
  118. Synek L, Schlager N, Elias M, Quentin M, Hauser MT, Zarsky V. 118.  2006. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72 [Google Scholar]
  119. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV. 119.  et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45 [Google Scholar]
  120. Tan Z, Boss WF. 120.  1992. Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase, and diacylglycerol kinase with the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture: response to cell wall-degrading enzymes. Plant Physiol 100:2116–20 [Google Scholar]
  121. Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H. 121.  et al. 2014. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell 5:2114–28 [Google Scholar]
  122. Thole JM, Nielsen E. 122.  2008. Phosphoinositides in plants: novel functions in membrane trafficking. Curr. Opin. Plant Biol. 11:620–31 [Google Scholar]
  123. Thole JM, Vermeer JE, Zhang Y, Jr Gadella TW. 123.  Nielsen E; 2008. ROOT HAIR DEFECTIVE4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20:381–95 [Google Scholar]
  124. Ugalde JM, Rodriguez-Furlan C, Rycke RD, Norambuena L, Friml J. 124.  et al. 2016. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Sci 250:10–19 [Google Scholar]
  125. van Gisbergen PA, Li M, Wu SZ, Bezanilla M. 125.  2012. Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. J. Cell Biol. 198:235–50 [Google Scholar]
  126. van Leeuwen W, Ökrész L, Bögre L, Munnik T. 126.  2004. Learning the lipid language of plant signalling. Trends Plant Sci. 9:378–84Describes a seminal analysis of the Arabidopsis genome for sequences resembling PI-binding motifs. [Google Scholar]
  127. van Leeuwen W, Vermeer JE, Gadella TW Jr, Munnik T. 127.  2007. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52:1014–26 [Google Scholar]
  128. van Rossum DB, Patterson RL, Sharma S, Barrow RK, Kornberg M. 128.  et al. 2005. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104 [Google Scholar]
  129. Varnai P, Balla T. 129.  1998. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143:501–10 [Google Scholar]
  130. Varnai P, Bondeva T, Tamas P, Toth B, Buday L. 130.  et al. 2005. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J. Cell Sci. 118:4879–88 [Google Scholar]
  131. Vermeer JE, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TW Jr. 131.  2009. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–72 [Google Scholar]
  132. Vermeer JE, van Leeuwen W, Tobena-Santamaria R, Laxalt AM, Jones DR. 132.  et al. 2006. Visualization of PtdIns3P dynamics in living plant cells. Plant J 47:687–700 [Google Scholar]
  133. Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C. 133.  et al. 2016. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie 125:250–58 [Google Scholar]
  134. Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H. 134.  et al. 2005. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J. Cell Biol. 168:801–12 [Google Scholar]
  135. Wang C, Yan X, Chen Q, Jiang N, Fu W. 135.  et al. 2013. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25:499–516 [Google Scholar]
  136. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE. 136.  et al. 2008. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–79 [Google Scholar]
  137. Welters P, Takegawa K, Emr SD, Chrispeels MJ. 137.  1994. AtVSP34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. PNAS 91:11398–402 [Google Scholar]
  138. Westergren T, Dove SK, Sommarin M, Pical C. 138.  2001. AtPIP5K1, an Arabidopsis thaliana phosphatidylinositol phosphate kinase, synthesizes PtdIns(3,4)P2 and PtdIns(4,5)P2 in vitro and is inhibited by phosphorylation. Biochem. J. 359:583–89 [Google Scholar]
  139. Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I. 139.  et al. 2016. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986–90 [Google Scholar]
  140. Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B. 140.  2003. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–25 [Google Scholar]
  141. Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ. 141.  et al. 2005. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138:686–700 [Google Scholar]
  142. Yalovsky S, Bloch D, Sorek N, Kost B. 142.  2008. Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by ROP/RAC GTPases. Plant Physiol 147:1527–43 [Google Scholar]
  143. Zhang L, Mao YS, Janmey PA, Yin HL. 143.  2012. Phosphatidylinositol 4,5 bisphosphate and the actin cytoskeleton. Subcell. Biochem. 59:177–215 [Google Scholar]
  144. Zhang Y, He J, Lee D, McCormick S. 144.  2010. Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–10 [Google Scholar]
  145. Zhang Y, Immink R, Liu CM, Emons AM, Ketelaar T. 145.  2013. The Arabidopsis exocyst subunit SEC3A is essential for embryo development and accumulates in transient puncta at the plasma membrane. New Phytol 199:74–88 [Google Scholar]
  146. Zhang Y, Li S, Zhou LZ, Fox E, Pao J. 146.  et al. 2011. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. Plant J 68:1081–92 [Google Scholar]
  147. Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T. 147.  et al. 2010. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22:4031–44 [Google Scholar]
  148. Zhong R, Burk DH, Morrison WH III, Ye ZH. 148.  2004. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16:3242–59 [Google Scholar]
  149. Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WH III, Ye ZH. 149.  2005. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell 17:1449–66 [Google Scholar]
  150. Zhong R, Ye ZH. 150.  2003. The SAC domain-containing protein gene family in Arabidopsis. Plant Physiol 132:544–55 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-041022
Loading
/content/journals/10.1146/annurev-arplant-042916-041022
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error