1932

Abstract

The plant endomembrane system is an extensively connected functional unit for exchanging material between compartments. Secretory and endocytic pathways allow dynamic trafficking of proteins, lipids, and other molecules, regulating a myriad of biological processes. Chemical genetics—the use of compounds to perturb biological processes in a fast, tunable, and transient manner—provides elegant tools for investigating this system. Here, we review how chemical genetics has helped to elucidate different aspects of membrane trafficking. We discuss different strategies for uncovering the modes of action of such compounds and their use in unraveling membrane trafficking regulators. We also discuss how the bioactive chemicals that are currently used as probes to interrogate endomembrane trafficking were discovered and analyze the results regarding membrane trafficking and pathway crosstalk. The integration of different expertises and the rational implementation of chemical genetic strategies will improve the identification of molecular mechanisms that drive intracellular trafficking and our understanding of how trafficking interfaces with plant physiology and development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042916-041107
2017-04-28
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-042916-041107.html?itemId=/content/journals/10.1146/annurev-arplant-042916-041107&mimeType=html&fmt=ahah

Literature Cited

  1. Alonso JM.1.  2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–57 [Google Scholar]
  2. Alonso JM, Ecker JR. 2.  2006. Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat. Rev. Genet. 7:524–36 [Google Scholar]
  3. Banbury DN, Oakley JD, Sessions RB, Banting G. 3.  2003. Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J. Biol. Chem. 278:12022–28 [Google Scholar]
  4. Barberon M, Zelazny E, Robert S, Conéjéro G, Curie C. 4.  et al. 2011. Monoubiquitin-dependent endocytosis of the IRON-REGULATED TRANSPORTER 1 (IRT1) transporter controls iron uptake in plants. PNAS 108:E450–58 [Google Scholar]
  5. Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA. 5.  et al. 2008. The secretory system of Arabidopsis. Arabidopsis Book 6:e0116 [Google Scholar]
  6. Ben Khaled S, Postma J, Robatzek S. 6.  2015. A moving view: subcellular trafficking processes in pattern recognition receptor-triggered plant immunity. Annu. Rev. Phytopathol. 53:379–402 [Google Scholar]
  7. Betina V.7.  1992. Biological effects of the antibiotic brefeldin A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiol 37:3–11 [Google Scholar]
  8. Bolle C, Schneider A, Leister D. 8.  2011. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends. Curr. Genom. 12:1–14 [Google Scholar]
  9. Borghi L, Kang J, Ko D, Lee Y, Martinoia E. 9.  2015. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43:924–30 [Google Scholar]
  10. Braakman I, Hebert DN. 10.  2013. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5:a013201 [Google Scholar]
  11. Brandizzi F, Irons SL, Johansen J, Kotzer A, Neumann U. 11.  2004. GFP is the way to glow: bioimaging of the plant endomembrane system. J. Microsc. 214:138–58 [Google Scholar]
  12. Busch M, Mayer U, Jürgens G. 12.  1996. Molecular analysis of the Arabidopsis pattern formation gene GNOM: gene structure and intragenic complementation. Mol. Gen. Genet. 250:681–91 [Google Scholar]
  13. Carland F, Defries A, Cutler S, Nelson T. 13.  2015. Novel vein patterns in Arabidopsis induced by small molecules. Plant Physiol 170:338–53 [Google Scholar]
  14. Chen X, Irani NG, Friml J. 14.  2011. Clathrin-mediated endocytosis: the gateway into plant cells. Curr. Opin. Plant Biol. 14:674–82 [Google Scholar]
  15. Chong YT, Gidda SK, Sanford C, Parkinson J, Mullen RT, Goring DR. 15.  2009. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol 185:401–19 [Google Scholar]
  16. Crump CM, Williams JL, Stephens DJ, Banting G. 16.  1998. Inhibition of the interaction between tyrosine-based motifs and the medium chain subunit of the AP-2 adaptor complex by specific tyrphostins. J. Biol. Chem. 273:28073–77 [Google Scholar]
  17. Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. 17.  2016. Biogenesis of plant prevacuolar multivesicular bodies. Mol. Plant 9:774–86 [Google Scholar]
  18. Davis DJ, McDowell SC, Park E, Hicks G, Wilkop TE, Drakakaki G. 18.  2015. The RAB GTPase RABA1e localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 treatment. Plant Signal. Behav. 11:e984520 [Google Scholar]
  19. Day KJ, Staehelin LA, Glick BS. 19.  2013. A three-stage model of Golgi structure and function. Histochem. Cell Biol. 140:239–49 [Google Scholar]
  20. Dejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O. 20.  et al. 2016. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 7:11710 [Google Scholar]
  21. Dejonghe W, Russinova E. 21.  2014. Target identification strategies in plant chemical biology. Front. Plant Sci. 5:352 [Google Scholar]
  22. Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K. 22.  2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–30 [Google Scholar]
  23. Dettmer J, Schubert D, Calvo-Weimar O, Stierhof Y-D, Schmidt R, Schumacher K. 23.  2005. Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–24 [Google Scholar]
  24. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M. 24.  et al. 2005. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9:109–19 [Google Scholar]
  25. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J. 25.  et al. 2007. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17:520–27 [Google Scholar]
  26. Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG. 26.  et al. 2008. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. PNAS 105:4489–94 [Google Scholar]
  27. Doyle SM, Haeger A, Vain T, Rigal A, Viotti C. 27.  et al. 2015. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. PNAS 112:E806–15 [Google Scholar]
  28. Drakakaki G, Robert S, Szatmari A-M, Brown MQ, Nagawa S. 28.  et al. 2011. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. PNAS 108:17850–55 [Google Scholar]
  29. Fan L, Li R, Pan J, Ding Z, Lin J. 29.  2015. Endocytosis and its regulation in plants. Trends Plant Sci 20:388–97 [Google Scholar]
  30. Feraru E, Feraru MI, Asaoka R, Paciorek T, De Rycke R. 30.  et al. 2012. BEX5/RabA1b regulates trans-Golgi network-to-plasma membrane protein trafficking in Arabidopsis. Plant Cell 24:3074–86 [Google Scholar]
  31. Flis VV, Daum G. 31.  2013. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect. Biol. 5:a013235 [Google Scholar]
  32. Geldner N.32.  2009. Cell polarity in plants: a PARspective on PINs. Curr. Opin. Plant Biol. 12:42–48 [Google Scholar]
  33. Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K. 33.  2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–28 [Google Scholar]
  34. Haseloff J, Siemering KR, Prasher DC, Hodge S. 34.  1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. PNAS 94:2122–27 [Google Scholar]
  35. Hayashi K-I, Neve J, Hirose M, Kuboki A, Shimada Y. 35.  et al. 2012. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem. Biol. 7:590–98 [Google Scholar]
  36. Hayashi K-I, Tan X, Zheng N, Hatate T, Kimura Y. 36.  et al. 2008. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. PNAS 105:5632–37 [Google Scholar]
  37. Hicks GR, Raikhel NV. 37.  2012. Small molecules present large opportunities in plant biology. Annu. Rev. Plant Biol. 63:261–82 [Google Scholar]
  38. Huss M, Ingenhorst G, König S, Gaßel M, Dröse S. 38.  et al. 2002. Concanamycin A, the specific inhibitor of V-ATPases, binds to the Vo subunit c. J. Biol. Chem. 277:40544–48 [Google Scholar]
  39. Hwang I, Robinson DG. 39.  2009. Transport vesicle formation in plant cells. Curr. Opin. Plant Biol. 12:660–69 [Google Scholar]
  40. Ito Y, Uemura T, Nakano A. 40.  2014. Formation and maintenance of the Golgi apparatus in plant cells. Int. Rev. Cell Mol. Biol. 310:221–87 [Google Scholar]
  41. Jauh G, Phillips T, Rogers J. 41.  1999. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–82 [Google Scholar]
  42. Jiang L, Rogers JC. 42.  1998. Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J. Cell Biol. 143:1183–99 [Google Scholar]
  43. Kania U, Fendrych M, Friml J. 43.  2014. Polar delivery in plants; commonalities and differences to animal epithelial cells. Open Biol 4:140017 [Google Scholar]
  44. Kaur N, Reumann S, Hu J. 44.  2009. Peroxisome biogenesis and function. Arabidopsis Book 7:e0123 [Google Scholar]
  45. Kim J-Y, Henrichs S, Bailly A, Vincenzetti V, Sovero V. 45.  et al. 2010. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J. Biol. Chem. 285:23309–17 [Google Scholar]
  46. Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J. 46.  et al. 2008. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr. Biol. 18:526–31 [Google Scholar]
  47. Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J. 47.  2006. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–81 [Google Scholar]
  48. Kleine-Vehn J, Friml J. 48.  2008. Polar targeting and endocytic recycling in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol. 24:447–73 [Google Scholar]
  49. Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L. 49.  et al. 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. PNAS 105:17812–17 [Google Scholar]
  50. Laxmi A, Pan J, Morsy M, Chen R. 50.  2008. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLOS ONE 3:e1510 [Google Scholar]
  51. Li HM, Chiu CC. 51.  2010. Protein transport into chloroplasts. Annu. Rev. Plant Biol. 61:157–80 [Google Scholar]
  52. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. 52.  2006. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10:839–50 [Google Scholar]
  53. Matsuoka K, Bassham DC, Raikhel NV, Nakamura K. 53.  1995. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J. Cell Biol. 130:1307–18 [Google Scholar]
  54. Müller B, Grossniklaus U. 54.  2010. Model organisms—a historical perspective. J. Proteom. 73:2054–63 [Google Scholar]
  55. Nishimura T, Hayashi K-I, Suzuki H, Gyohda A, Takaoka C. 55.  et al. 2014. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–66 [Google Scholar]
  56. Nishimura T, Matano N, Morishima T, Kakinuma C, Hayashi K-I. 56.  et al. 2012. Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems. Plant Cell Physiol 53:1671–82 [Google Scholar]
  57. Norambuena L, Zouhar J, Hicks GR, Raikhel NV. 57.  2008. Identification of cellular pathways affected by Sortin2, a synthetic compound that affects protein targeting to the vacuole in Saccharomyces cerevisiae. BMC Chem. Biol. 8:1 [Google Scholar]
  58. Novick P, Ferro S, Schekman R. 58.  1981. Order of events in the yeast secretory pathway. Cell 25:461–69 [Google Scholar]
  59. Novick P, Field C, Schekman R. 59.  1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–15 [Google Scholar]
  60. Novick P, Schekman R. 60.  1979. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae. PNAS 76:1858–62 [Google Scholar]
  61. O'Connor CJ, Laraia L, Spring DR. 61.  2011. Chemical genetics. Chem. Soc. Rev. 40:4332–15 [Google Scholar]
  62. Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masiá D, Aniento F. 62.  2006. Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48:757–70 [Google Scholar]
  63. Paez Valencia J, Goodman K, Otegui MS. 63.  2016. Endocytosis and endosomal trafficking in plants. Annu. Rev. Plant Biol. 67:309–35 [Google Scholar]
  64. Paris N, Stanley CM, Jones RL, Rogers JC. 64.  1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–72 [Google Scholar]
  65. Park E, Díaz-Moreno SM, Davis DJ, Wilkop TE, Bulone V, Drakakaki G. 65.  2014. Endosidin 7 specifically arrests late cytokinesis and inhibits callose biosynthesis, revealing distinct trafficking events during cell plate maturation. Plant Physiol 165:1019–34 [Google Scholar]
  66. Paudyal R, Jamaluddin A, Warren JP, Doyle SM, Robert S. 66.  et al. 2014. Trafficking modulator TENin1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana. Biochem. J. 460:177–85 [Google Scholar]
  67. Paul MJ, Frigerio L. 67.  2007. Coated vesicles in plant cells. Semin. Cell Dev. Biol. 18:471–78 [Google Scholar]
  68. Pedrazzini E, Komarova NY, Rentsch D, Vitale A. 68.  2013. Traffic routes and signals for the tonoplast. Traffic 14:622–28 [Google Scholar]
  69. Pérez-Henríquez P, Raikhel NV, Norambuena L. 69.  2012. Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana. Mol. Plant 5:1195–1209 [Google Scholar]
  70. Pizarro L, Norambuena L. 70.  2014. Regulation of protein trafficking: posttranslational mechanisms and the unexplored transcriptional control. Plant Sci 225:24–33 [Google Scholar]
  71. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L. 71.  et al. 2007. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–35 [Google Scholar]
  72. Qi X, Zheng H. 72.  2013. Rab-A1c GTPase defines a population of the trans-Golgi network that is sensitive to endosidin1 during cytokinesis in Arabidopsis. Mol. Plant 6:847–59 [Google Scholar]
  73. Raikhel NV.73.  2017. Firmly planted, always moving. Annu. Rev. Plant Biol. 68:1–27 [Google Scholar]
  74. Raturi A, Simmen T. 74.  2013. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim. Biophys. Acta 1833:213–24 [Google Scholar]
  75. Reymond J-L, Awale M. 75.  2012. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem. Neurosci. 3:649–57 [Google Scholar]
  76. Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M. 76.  2012. A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLOS ONE 7:e44735 [Google Scholar]
  77. Robatzek S, Chinchilla D, Boller T. 77.  2006. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20:537–42 [Google Scholar]
  78. Robert S, Chary SN, Drakakaki G, Li S, Yang Z. 78.  et al. 2008. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. PNAS 105:8464–69 [Google Scholar]
  79. Robert S, Raikhel NV, Hicks GR. 79.  2009. Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7:e0109 [Google Scholar]
  80. Robineau S, Chabre M, Antonny B. 80.  2000. Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. PNAS 97:9913–18 [Google Scholar]
  81. Robinson DG, Brandizzi F, Hawes C, Nakano A. 81.  2015. Vesicles versus tubes: Is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes?. Plant Physiol 168:393–406 [Google Scholar]
  82. Rodriguez-Furlán C, Hicks GR, Norambuena L. 82.  2014. Chemical genomics: characterizing target pathways for bioactive compounds using the endomembrane trafficking network. Methods Mol. Biol. 1174:317–28 [Google Scholar]
  83. Rodriguez-Furlán C, Miranda G, Reggiardo M, Hicks GR, Norambuena L. 83.  2016. High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from Arabidopsis to crops. Plant Sci 245:50–60 [Google Scholar]
  84. Rojas-Pierce M, Titapiwatanakun B, Sohn EJ, Fang F, Larive CK. 84.  et al. 2007. Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem. Biol. 14:1366–76 [Google Scholar]
  85. Rosado A, Hicks GR, Norambuena L, Rogachev I, Meir S. 85.  et al. 2011. Sortin1-hypersensitive mutants link vacuolar-trafficking defects and flavonoid metabolism in Arabidopsis vegetative tissues. Chem. Biol. 18:187–97 [Google Scholar]
  86. Sanderfoot AA, Assaad FF, Raikhel NV. 86.  2000. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558–69 [Google Scholar]
  87. Sata M, Donaldson JG, Moss J, Vaughan M. 87.  1998. Brefeldin A-inhibited guanine nucleotide-exchange activity of Sec7 domain from yeast Sec7 with yeast and mammalian ADP ribosylation factors. PNAS 95:4204–8 [Google Scholar]
  88. Scheuring D, Viotti C, Krüger F, Künzl F, Sturm S. 88.  et al. 2011. Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23:3463–81 [Google Scholar]
  89. Sessions A, Burke E, Presting G, Aux G, McElver J. 89.  et al. 2002. A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–94 [Google Scholar]
  90. Slepnev VI, Ochoa GC, Butler MH, De Camilli P. 90.  2000. Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin 1 and disruption of clathrin coat function by amphiphysin fragments comprising these sites. J. Biol. Chem. 275:17583–89 [Google Scholar]
  91. Sorieul M, Langhans M, Guetzoyan L, Hillmer S, Clarkson G. 91.  et al. 2011. An Exo2 derivative affects ER and Golgi morphology and vacuolar sorting in a tissue-specific manner in Arabidopsis. Traffic 12:1552–62 [Google Scholar]
  92. Sparkes I, Brandizzi F. 92.  2012. Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. Plant J 70:96–107 [Google Scholar]
  93. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL. 93.  et al. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–18 [Google Scholar]
  94. Surpin M, Raikhel NV. 94.  2004. Traffic jams affect plant development and signal transduction. Nat. Rev. Mol. Cell Biol. 5:100–109 [Google Scholar]
  95. Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV. 95.  2005. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. PNAS 102:4902–7 [Google Scholar]
  96. Suzuki H, Matano N, Nishimura T, Koshiba T. 96.  2014. A 2,4-dichlorophenoxyacetic acid analog screened using a maize coleoptile system potentially inhibits indole-3-acetic acid influx in Arabidopsis thaliana. Plant Signal. Behav. 9:e29077 [Google Scholar]
  97. Tabak HF, Braakman I, Zand AVD. 97.  2013. Peroxisome formation and maintenance are dependent on the endoplasmic reticulum. Annu. Rev. Biochem. 82:723–44 [Google Scholar]
  98. Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T. 98.  2005. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102:12276–81 [Google Scholar]
  99. Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J. 99.  2009. Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr. Biol. 19:391–97 [Google Scholar]
  100. Tanaka H, Kitakura S, Rakusová H, Uemura T, Feraru MI. 100.  et al. 2013. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLOS Genet. 9:e1003540 [Google Scholar]
  101. Tóth R, Gerding-Reimers C, Deeks MJ, Menninger S, Gallegos RM. 101.  et al. 2012. Prieurianin/endosidin 1 is an actin-stabilizing small molecule identified from a chemical genetic screen for circadian clock effectors in Arabidopsis thaliana. Plant J 71:338–52 [Google Scholar]
  102. Tóth R, van der Hoorn RAL. 102.  2010. Emerging principles in plant chemical genetics. Trends Plant Sci 15:81–88 [Google Scholar]
  103. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW. 103.  et al. 2004. Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–93 [Google Scholar]
  104. Uemura T, Ueda T. 104.  2014. Plant vacuolar trafficking driven by RAB and SNARE proteins. Curr. Opin. Plant Biol. 22:116–21 [Google Scholar]
  105. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH. 105.  2004. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29:49–65 [Google Scholar]
  106. Van Norman JM, Xuan W, Beeckman T, Benfey PN. 106.  2013. To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140:4301–10 [Google Scholar]
  107. Vásquez-Soto B, Manríquez N, Cruz-Amaya M, Zouhar J, Raikhel NV, Norambuena L. 107.  2015. Sortin2 enhances endocytic trafficking towards the vacuole in Saccharomyces cerevisiae. Biol. Res. 48:100–11 [Google Scholar]
  108. Viotti C, Bubeck J, Stierhof Y-D, Krebs M, Langhans M. 108.  et al. 2010. Endocytic and secretory traffic in Arabidopsis merge in the. trans -Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–57 [Google Scholar]
  109. von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D. 109.  et al. 2011. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146:471–84 [Google Scholar]
  110. Voss U, Larrieu A, Wells DM. 110.  2013. From jellyfish to biosensors: the use of fluorescent proteins in plants. Int. J. Dev. Biol. 57:525–33 [Google Scholar]
  111. Worden N, Wilkop TE, Esteve VE, Jeannotte R, Lathe R. 111.  et al. 2015. CESA TRAFFICKING INHIBITOR inhibits cellulose deposition and interferes with the trafficking of cellulose synthase complexes and their associated proteins KORRIGAN1 and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1. Plant Physiol 167:381–93 [Google Scholar]
  112. Yang Z.112.  2008. Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Biol. 24:551–75 [Google Scholar]
  113. Zhang C, Brown MQ, van de Ven W, Zhang Z-M, Wu B. 113.  et al. 2016. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. PNAS 113:E41–50 [Google Scholar]
  114. Zheng H, Staehelin LA. 114.  2011. Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol 155:2023–35 [Google Scholar]
  115. Zouhar J, Hicks GR, Raikhel NV. 115.  2004. Sorting inhibitors (Sortins): chemical compounds to study vacuolar sorting in Arabidopsis. PNAS 101:9497–9501 [Google Scholar]
  116. Zouhar J, Rojo E. 116.  2009. Plant vacuoles: Where did they come from and where are they heading?. Curr. Opin. Plant Biol. 12:677–84 [Google Scholar]
  117. Zwiewka M, Friml J. 117.  2012. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants. Front. Plant Sci. 3:97 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042916-041107
Loading
/content/journals/10.1146/annurev-arplant-042916-041107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error