1932

Abstract

Pest and pathogen disturbances are ubiquitous across forest ecosystems, impacting their species composition, structure, and function. Whereas severe abiotic disturbances (e.g., clear-cutting and fire) largely reset successional trajectories, pest and pathogen disturbances cause diffuse mortality, driving forests into nonanalogous system states. Biotic perturbations that disrupt forest carbon dynamics either reduce or enhance net primary production (NPP) and carbon storage, depending on pathogen type. Relative to defoliators, wood borers and invasive pests have the largest negative impact on NPP and the longest recovery time. Forest diversity is an important contributing factor to productivity: NPP is neutral, marginally enhanced, or reduced in high-diversity stands in which a small portion of the canopy is affected (temperate deciduous or mixed forests) but very negative in low-diversity stands in which a large portion of the canopy is affected (western US forests). Pests and pathogens reduce forest structural and functional redundancy, affecting their resilience to future climate change or new outbreaks. Therefore, pests and pathogens can be considered biotic forcing agents capable of causing consequences of similar magnitude to climate forcing factors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043014-115540
2015-04-29
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/arplant/66/1/annurev-arplant-043014-115540.html?itemId=/content/journals/10.1146/annurev-arplant-043014-115540&mimeType=html&fmt=ahah

Literature Cited

  1. Amiro BD, Barr AG, Barr JG, Black TA, Bracho R. 1.  et al. 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J. Geophys. Res. 115:G00K02 [Google Scholar]
  2. Anagnostakis SL. 2.  1987. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37 [Google Scholar]
  3. Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 3.  2010. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60:886–97 [Google Scholar]
  4. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM. 4.  et al. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8:1–16 [Google Scholar]
  5. Barbosa P, Waldvogel M, Martinat P, Douglass LW. 5.  1983. Developmental reproductive performance of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), on selected hosts common to mid-Atlantic and southern forests. Environ. Entomol. 12:1858–62 [Google Scholar]
  6. Barnes I, Crous PW, Wingfield BD, Wingfield MJ. 6.  2004. Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud. Mycol. 50:551–61 [Google Scholar]
  7. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A. 7.  et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15:2084–96 [Google Scholar]
  8. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M. 8.  et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–38 [Google Scholar]
  9. Bentz BJ, Logan JA, Amman GD. 9.  1991. Temperature-dependent development of the mountain pine-beetle (Coleoptera, Scolytidae) and simulation of its phenology. Can. Entomol. 123:1083–94 [Google Scholar]
  10. Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL. 10.  et al. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–13 [Google Scholar]
  11. Berry J, Björkman O. 11.  1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491–543 [Google Scholar]
  12. Bonan GB. 12.  2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–49 [Google Scholar]
  13. Bowman D, Balch JK, Artaxo P, Bond WJ, Carlson JM. 13.  et al. 2009. Fire in the Earth system. Science 324:481–84 [Google Scholar]
  14. Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB. 14.  et al. 2009. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front. Ecol. Environ. 7:185–89 [Google Scholar]
  15. Certini G. 15.  2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10 [Google Scholar]
  16. Chapman TB, Veblen TT, Schoennagel T. 16.  2012. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93:2175–85 [Google Scholar]
  17. Chaves MM, Maroco JP, Pereira JS. 17.  2003. Understanding plant responses to drought—from genes to the whole plant. Funct. Plant Biol. 30:239–64 [Google Scholar]
  18. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J. 18.  et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33 [Google Scholar]
  19. Cipollini D. 19.  2015. White fringetree (Chionanthus virginicus L.) as a novel larval host for emerald ash borer. J. Econ. Entomol In press
  20. Clark KL, Skowronski N, Hom J. 20.  2010. Invasive insects impact forest carbon dynamics. Glob. Change Biol. 16:88–101 [Google Scholar]
  21. Clements FE. 21.  1916. Plant Succession: An Analysis of the Development of Vegetation Washington, DC: Carnegie Inst. Wash.
  22. Cook BD, Bolstad PV, Martin JG, Heinsch FA, Davis KJ. 22.  et al. 2008. Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance. Ecosystems 11:26–44 [Google Scholar]
  23. Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD. 23.  et al. 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 165:136–48 [Google Scholar]
  24. Cowles HC. 24.  1899. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Bot. Gaz. 27:95–117, 167–202, 281–308, 361–91 [Google Scholar]
  25. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP. 25.  et al. 2001. Climate change and forest disturbances. Bioscience 51:723–34 [Google Scholar]
  26. De Elía R, Biner S, Frigon A. 26.  2013. Interannual variability and expected regional climate change over North America. Clim. Dyn. 41:1245–67 [Google Scholar]
  27. DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler MA. 27.  2007. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production?. Glob. Change Biol. 13:1157–67 [Google Scholar]
  28. Dewey JE. 28.  1970. Damage to Douglas-fir cones by Choristoneura occidentalis. J. Econ. Entomol. 63:1804–6 [Google Scholar]
  29. Dordel J, Feller MC, Simard SW. 29.  2008. Effects of mountain pine beetle (Dendroctonus ponderosae Hopkins) infestations on forest stand structure in the southern Canadian Rocky Mountains. For. Ecol. Manag. 255:3563–70 [Google Scholar]
  30. Drake BG, Gonzalez-Meler MA, Long SP. 30.  1997. More efficient plants: a consequence of rising atmospheric CO2?. Annu. Rev. Plant Biol. 48:609–39 [Google Scholar]
  31. Dymond CC, Neilson ET, Stinson G, Porter K, MacLean DA. 31.  et al. 2010. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems 13:917–31 [Google Scholar]
  32. Eamus D, Boulain N, Cleverly J, Breshears DD. 32.  2013. Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol. Evol. 3:2711–29 [Google Scholar]
  33. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl R, Mearns LO. 33.  2000. Climate extremes: observations, modeling, and impacts. Science 289:2068–74 [Google Scholar]
  34. Edburg SL, Hicke JA, Brooks PB, Pendall EG, Ewers BE. 34.  et al. 2012. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10:416–24 [Google Scholar]
  35. Edburg SL, Hicke JA, Lawrence DM, Thornton PE. 35.  2011. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. J. Geophys. Res. 116:G04033 [Google Scholar]
  36. Edelstein-Keshet L, Rausher MD. 36.  1989. The effects of inducible plant defenses on herbivore populations. 1. Mobile herbivores in continuous time. Am. Nat. 133:787–810 [Google Scholar]
  37. Ehrenfeld JG. 37.  2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41:59–80 [Google Scholar]
  38. Elkinton JS, Liebhold AM. 38.  1990. Population dynamics of gypsy moth in North America. Annu. Rev. Entomol. 35:571–96 [Google Scholar]
  39. Ellison AM, Bank MS, Clinton BD, Colburn EA, Ford CR. 39.  et al. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3:479–86 [Google Scholar]
  40. 40. FAO (Food Agric. Organ. UN) 2010. Global forest resources assessment 2010: main report. FAO For. Pap. 163, FAO, Rome
  41. Flower CE, Knight KS, Gonzalez-Meler MA. 41.  2013. Impacts of the emerald ash borer (Agrilus planipennis Fairmaire) induced ash (Fraxinus spp.) mortality on forest carbon cycling and successional dynamics in the eastern United States. Biol. Invasions 15:931–44 [Google Scholar]
  42. Flower CE, Knight KS, Rebbeck J, Gonzalez-Meler MA. 42.  2013. The relationship between the emerald ash borer (Agrilus planipennis) and ash (Fraxinus spp.) tree decline: using visual canopy condition assessments and leaf isotope measurements to assess pest damage. For. Ecol. Manag. 303:143–47 [Google Scholar]
  43. Flower CE, Long LC, Knight KS, Rebbeck J, Brown JS. 43.  et al. 2014. Native bark-foraging birds preferentially forage in infected ash (Fraxinus spp.) and prove effective predators of the invasive emerald ash borer (Agrilus planipennis Fairmaire). For. Ecol. Manag. 313:300–6 [Google Scholar]
  44. Gleason HA. 44.  1917. The structure and development of the plant association. Bull. Torrey Bot. Club 44:463–81 [Google Scholar]
  45. Gleason HA. 45.  1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53:7–26 [Google Scholar]
  46. Gleason HA. 46.  1939. The individualistic concept of the plant association. Am. Midl. Nat. 21:92–110 [Google Scholar]
  47. Goetz SJ, Bond-Lamberty B, Law BE, Hicke JA, Huang C. 47.  et al. 2012. Observations and assessment of forest carbon dynamics following disturbance in North America. J. Geophys. Res. Biogeosci. 117:G02022 [Google Scholar]
  48. Goldewijk KK. 48.  2001. Estimating global land use change over the past 300 years: the HYDE database. Glob. Biogeochem. Cycles 15:417–33 [Google Scholar]
  49. Gonzalez-Meler MA, Blanc-Betes E, Flower CE, Gomez-Casanovas N. 49.  2009. Plastic and adaptive responses of plant respiration to changes in atmospheric CO2 concentration. Physiol. Plant. 137:473–84 [Google Scholar]
  50. Gonzalez-Meler MA, Rucks JS, Aubanell G. 50.  2014. Mechanistic insights on the responses of plant and ecosystem gas exchange to global environmental change: lessons from Biosphere 2. Plant Sci. 226:14–21 [Google Scholar]
  51. Gonzalez-Meler MA, Taneva L, Trueman RJ. 51.  2004. Plant respiration and elevated atmospheric CO2 concentration: cellular responses and global significance. Ann. Bot. 94:647–56 [Google Scholar]
  52. Gough CM, Hardiman BS, Nave LE, Bohrer G, Maurer KD. 52.  et al. 2013. Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecol. Appl. 23:1202–15 [Google Scholar]
  53. Gough CM, Vogel CS, Kazanski C, Nagel L, Flower CE, Curtis PS. 53.  2007. Coarse woody debris and the carbon balance of a north temperate forest. For. Ecol. Manag. 244:60–67 [Google Scholar]
  54. Gough CM, Vogel CS, Schmid HP, Curtis PS. 54.  2008. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58:609–22 [Google Scholar]
  55. Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL. 55.  et al. 2011. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17:855–71 [Google Scholar]
  56. Gray DR. 56.  2013. The influence of forest composition and climate on outbreak characteristics of the spruce budworm in eastern Canada. Can. J. For. Res. 43:1181–95 [Google Scholar]
  57. Gross HL. 57.  1991. Dieback and growth loss of sugar maple associated with defoliation by the forest tent caterpillar. For. Chron. 76:33–42 [Google Scholar]
  58. Hancock JE, Arthur MA, Weathers KC, Lovett GM. 58.  2008. Carbon cycling along a gradient of beech bark disease impact in the Catskill Mountains, New York. Can. J. For. Res. 38:1267–74 [Google Scholar]
  59. Hansen EM, Bentz BJ, Powell JA, Gray DR, Vandygriff JC. 59.  2011. Prepupal diapause and instar IV developmental rates of the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). J. Insect Physiol. 57:1347–57 [Google Scholar]
  60. Harvey BJ, Donato DC, Romme WH, Turner MG. 60.  2013. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 94:2475–86 [Google Scholar]
  61. Harvey BJ, Donato DC, Romme WH, Turner MG. 61.  2014. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions. Ecol. Appl. 24:1608–25 [Google Scholar]
  62. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ. 62.  et al. 2012. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Change Biol. 18:7–34 [Google Scholar]
  63. Hofmann DJ, Butler JH, Tans PP. 63.  2009. A new look at atmospheric carbon dioxide. Atmos. Environ. 43:2084–86 [Google Scholar]
  64. Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik CI. 64.  et al. 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytol. 199:339–51 [Google Scholar]
  65. Houston DR. 65.  1994. Major new tree disease epidemics: beech bark disease. Annu. Rev. Phytopathol. 32:75–87 [Google Scholar]
  66. 66. IPCC (Intergov. Panel Clim. Change) 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  67. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. 67.  2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subartic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77:257–64 [Google Scholar]
  68. Johns CV, Hughes L. 68.  2002. Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Glob. Change Biol. 8:142–52 [Google Scholar]
  69. Johnson DM, Buntgen U, Frank DC, Kausrud K, Haynes KJ. 69.  et al. 2010. Climatic warming disrupts recurrent alpine insect outbreaks. PNAS 107:20576–81 [Google Scholar]
  70. Johnson DW, Curtis PS. 70.  2001. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manag. 140:227–38 [Google Scholar]
  71. Kasischke ES, Amiro BD, Barger NN, French NHF, Goetz SJ. 71.  et al. 2013. Impacts of disturbance on the terrestrial carbon budget of North America. J. Geophys. Res. 118:303–16 [Google Scholar]
  72. Kaufmann MR. 72.  1976. Stomatal response of Engelmann spruce to humidity, light, and water stress. Plant Physiol. 43:902–6 [Google Scholar]
  73. Keane RM, Crawley MJ. 73.  2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70 [Google Scholar]
  74. Klemola T, Tanhuanpää M, Korpimäki E, Ruohomäki K. 74.  2002. Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos 99:83–94 [Google Scholar]
  75. Klepzig KD, Six DL. 75.  2004. Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205 [Google Scholar]
  76. Klooster WS, Herms DA, Knight KS, Herms CP, McCullough DG. 76.  et al. 2013. Ash (Fraxinus spp.) mortality, regeneration, and seed bank dynamics in mixed hardwood forests following invasion by emerald ash borer (Agrilus planipennis). Biol. Invasions 16:859–73 [Google Scholar]
  77. Kramer PJ, Kozlowski TT. 77.  1979. Physiology of Woody Plants New York: Academic
  78. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET. 78.  et al. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–90 [Google Scholar]
  79. Liebhold AM, Halverson JA, Elmes GA. 79.  1992. Gypsy-moth invasion in North America: a quantitative analysis. J. Biogeogr. 19:513–20 [Google Scholar]
  80. Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O. 80.  et al. 2009. Storms can cause Europe-wide reduction in forest carbon sink. Glob. Change Biol. 15:346–55 [Google Scholar]
  81. Litton CM, Raich JW, Ryan MG. 81.  2007. Carbon allocation in forest ecosystems. Glob. Change Biol. 13:2089–109 [Google Scholar]
  82. Logan JA, Regniere J, Powell JA. 82.  2003. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 1:130–37 [Google Scholar]
  83. Long P, Ainsworth EA, Leakey ADB, Noosberger J, Ort DR. 83.  2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–21 [Google Scholar]
  84. Loo JA. 84.  2009. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol. Invasions 11:81–96 [Google Scholar]
  85. Lovett GM, Arthur MA, Weathers KC, Griffin JM. 85.  2013. Effects of introduced insects and diseases on forest ecosystems in the Catskill Mountains of New York. Ann. N.Y. Acad. Sci. 1298:66–77 [Google Scholar]
  86. Luo Y. 86.  2007. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38:683–712 [Google Scholar]
  87. Lynn BH, Healy R, Druyan LM. 87.  2007. An analysis of the potential for extreme temperature change based on observations and model simulations. J. Clim. 20:1539–54 [Google Scholar]
  88. Mack R, Simberloff D, Lonsdale W, Evans H, Clout M, Bazzaz FA. 88.  2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689–710 [Google Scholar]
  89. MacLean DA. 89.  1984. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forests. For. Chron. 60:273–79 [Google Scholar]
  90. MacLean DA, Ostaff DP. 90.  1989. Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Can. J. For. Res. 19:1087–95 [Google Scholar]
  91. McEwan RW, Pederson N, Cooper A, Taylor J, Watts R, Hruska A. 91.  2014. Fire and gap dynamics over 300 years in an old-growth temperate forest. Appl. Veg. Sci. 17:312–22 [Google Scholar]
  92. McGugan BM. 92.  1954. Needle-mining habits and larval instars of the spruce budworm. Can. Entomol. 86:439–54 [Google Scholar]
  93. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S. 93.  et al. 2013. Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim. Change 120:965–75 [Google Scholar]
  94. Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL. 94.  1993. Global climate change and terrestrial net primary production. Nature 363:234–40 [Google Scholar]
  95. Meyer WB, Turner BL. 95.  1992. Human-population growth and global land-use cover change. Annu. Rev. Ecol. Syst. 23:39–61 [Google Scholar]
  96. Michaelz ST, Cheng D, Kerkhoff AJ, Enquist BJ. 96.  2014. Convergence of terrestrial plant production across global climate gradients. Nature 512:39–43 [Google Scholar]
  97. Migliavacca M, Meroni M, Manca G, Matteucci G, Montagnani L. 97.  et al. 2009. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agric. For. Meteorol. 149:1460–76 [Google Scholar]
  98. Moore DJP, Trahan NA, Wilkes P, Quaife T, Stephens BB. 98.  et al. 2013. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol. Lett. 16:731–37 [Google Scholar]
  99. Murdock TQ, Taylor SW, Flower A, Mehlenbacher A, Montenegro A. 99.  et al. 2013. Pest outbreak distribution and forest management impacts in a changing climate in British Columbia. Environ. Sci. Policy 26:75–89 [Google Scholar]
  100. Negron JF. 100.  1998. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado front range. For. Ecol. Manag. 107:71–85 [Google Scholar]
  101. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC. 101.  et al. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–63 [Google Scholar]
  102. Nowak RS, Ellsworth DS, Smith SD. 102.  2004. Functional responses of plants to elevated atmospheric CO2: Do photosynthetic and productivity data from FACE experiments support early predictions?. New Phytol. 162:253–80 [Google Scholar]
  103. Ohgushi T, Sawada H. 103.  1997. A shift toward early reproduction in an introduced herbivorous ladybird. Ecol. Entomol. 22:90–96 [Google Scholar]
  104. Ohsaki N, Sato Y. 104.  1994. Food plant choice of Pieris butterflies as a trade-off between parasitoid avoidance and quality of plants. Ecology 75:59–68 [Google Scholar]
  105. Ostaff DP, MacLean DA. 105.  1995. Patterns of balsam fir foliar production and growth in relation to defoliation by spruce budworm. Can. J. For. Res. 25:1128–36 [Google Scholar]
  106. Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE. 106.  et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–93 [Google Scholar]
  107. Pan YD, Birdsey RA, Phillips OL, Jackson RB. 107.  2013. The structure, distribution, and biomass of the world's forests. Annu. Rev. Ecol. Evol. Syst. 44:593–622 [Google Scholar]
  108. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD. 108.  et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–83 [Google Scholar]
  109. Parmesan C, Yohe G. 109.  2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42 [Google Scholar]
  110. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ. 110.  et al. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. PNAS 104:18925–30 [Google Scholar]
  111. Pickett STA, McDonnell MJ. 111.  1987. Seed bank dynamics in temperate deciduous forest. Ecology of Soil Seed Banks MA Leck, VT Parker, RL Simpson 123–47 New York: Academic [Google Scholar]
  112. Pickett STA, McDonnell MJ. 112.  1989. Changing perspectives in community dynamics: a theory of successional forces. Trends Ecol. Evol. 4:241–45 [Google Scholar]
  113. Pickett STA, White PS. 113.  1985. The Ecology of Natural Disturbance and Patch Dynamics New York: Academic
  114. Prasad AM, Iverson LR, Peters MP, Bossenbroek JM, Matthews SN. 114.  et al. 2010. Modeling the invasive emerald ash borer risk of spread using a spatially explicit cellular model. Landsc. Ecol. 25:353–69 [Google Scholar]
  115. Raffa KF, Aukema BH, Erbilgin N, Klepzig KD, Wallin KF. 115.  2005. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Adv. Phytochem. 39:79–118 [Google Scholar]
  116. Ratte H. 116.  1985. Temperature and insect development. Environmental Physiology and Biochemistry of Insects K Hoffman 33–65 Berlin: Springer-Verlag [Google Scholar]
  117. Rebek EJ, Herms DA, Smitley DR. 117.  2008. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.). Environ. Entomol. 37:242–46 [Google Scholar]
  118. Reich PB. 118.  2011. Taking stock of forest carbon. Nat. Clim. Change 1:346–47 [Google Scholar]
  119. Robinson EA, Ryan GD, Newman JA. 119.  2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 194:321–36 [Google Scholar]
  120. Roland J, Embree DG. 120.  1995. Biological control of the winter moth. Annu. Rev. Entomol. 40:475–92 [Google Scholar]
  121. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 121.  2003. Fingerprints of global warming on wild animals and plants. Nature 421:57–60 [Google Scholar]
  122. Rossiter M, Schultz JC, Baldwin IT. 122.  1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267–77 [Google Scholar]
  123. Ruddiman WF. 123.  2003. The Anthropogenic greenhouse era began thousands of years ago. Clim. Change 61:261–93 [Google Scholar]
  124. Runkle JR. 124.  1982. Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology 63:1533–46 [Google Scholar]
  125. Schultz JC, Baldwin IT. 125.  1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217:149–51 [Google Scholar]
  126. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. 126.  2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4:806–11 [Google Scholar]
  127. Seiter S, Kingsolver J. 127.  2013. Environmental determinants of population divergence in life-history traits for an invasive species: climate, seasonality, and natural enemies. J. Evol. Biol. 26:1634–45 [Google Scholar]
  128. Serbesoff-King K. 128.  2003. Melaleuca in Florida: a literature review on the taxonomy, distribution, biology, ecology, economic importance and control measures. J. Aquat. Plant Manag. 41:98–112 [Google Scholar]
  129. Seymour RS, White AS, deMaynadier PG. 129.  2002. Natural disturbance regimes in northeastern North America—evaluating silvicultural systems using natural scales and frequencies. For. Ecol. Manag. 155:357–67 [Google Scholar]
  130. Siegert NW, McCullough DG, Liebhold AM, Telewski FW. 130.  2014. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 20:847–58 [Google Scholar]
  131. Smith WB, Miles PD, Perry CH, Pugh SA. 131.  2009. Forest resources of the United States, 2007 Gen. Tech. Rep. WO-78, US Dep. Agric., For. Serv., Wash. Off., Washington, DC
  132. Stuart-Haëntjens EJ, Curtis PS, Fahey RT, Vogel CS, Gough CM. 132.  2014. Net primary production exhibits a threshold response to increasing disturbance severity in a temperate deciduous forest. Ecology. In review
  133. Sun YC, Jing BB, Ge F. 133.  2009. Response of amino acid changes in Aphis gossypii (Glover) to elevated CO2 levels. J. Appl. Entomol. 133:189–97 [Google Scholar]
  134. Swetnam TW, Lynch AM. 134.  1989. A tree-ring reconstruction of western spruce budworm history in the southern Rocky Mountains. For. Sci. 35:962–86 [Google Scholar]
  135. Turchin P, Wood SN, Ellner SP, Kendall BE, Murdoch WW. 135.  et al. 2003. Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology 84:1207–14 [Google Scholar]
  136. Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL. 136.  et al. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4:27–31 [Google Scholar]
  137. Turner MG, Collins SL, Lugo AL, Magnuson JJ, Rupp TS, Swanson FJ. 137.  2003. Disturbance dynamics and ecological response: the contribution of long-term ecological research. Bioscience 53:46–56 [Google Scholar]
  138. Van Gorsel E, Berni JAJ, Briggs P, Cabello-Leblic A, Chasmer L. 138.  et al. 2013. Primary and secondary effects of climate variability on net ecosystem carbon exchange in an evergreen eucalyptus forest. Agric. For. Meteorol. 182–83:248–56 [Google Scholar]
  139. Vanderwel MC, Coomes DA, Purves DW. 139.  2013. Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern United States. Glob. Change Biol. 19:1504–17 [Google Scholar]
  140. Virtanen T, Neuvonen S. 140.  1999. Performance of moth larvae on birch in relation to altitude, climate, host quality and parasitoids. Oecologia 120:92–101 [Google Scholar]
  141. Volney WJA, Fleming RA. 141.  2000. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 82:283–94 [Google Scholar]
  142. Wagle P, Xiao X, Torn MS, Cook DR, Matamala R. 142.  et al. 2014. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought. Remote Sens. Environ. 152:1–14 [Google Scholar]
  143. Waring RH, Running SW. 143.  2010. Forest Ecosystems: Analysis at Multiple Scales New York: Academic, 3rd ed..
  144. Watt MS, Kriticos DJ, Alcaraz S, Brown AV, Leriche A. 144.  2009. The hosts and potential geographic range of Dothistroma needle blight. For. Ecol. Manag. 257:1505–19 [Google Scholar]
  145. Weed AS, Ayres MP, Hicke JA. 145.  2013. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83:441–70 [Google Scholar]
  146. Wetzel B, Kulman HM, Witter JA. 146.  1973. Effects of cold temperatures on hatching of the forest tent caterpillar, Malacosoma disstria. Can. Entomol. 105:1145–49 [Google Scholar]
  147. Wiedinmyer C, Neff JC. 147.  2007. Estimates of CO2 from fires in the United States: implications for carbon management. Carbon Balance Manag. 2:10 [Google Scholar]
  148. Williams DW, Liebhold AM. 148.  1997. Latitudinal shifts in spruce budworm (Lepidoptera: Tortricidae) outbreaks and spruce-fir forest distributions with climate change. Acta Phytopathol. Entomol. Hung. 32:203–15 [Google Scholar]
  149. Williams DW, Liebhold AM. 149.  2002. Mate change and the outbreak ranges of two North American bark beetles. Agric. For. Entomol. 4:87–99 [Google Scholar]
  150. Wood D, Yanai R, Allen D, Wilmot S. 150.  2009. Sugar maple decline after defoliation by forest tent caterpillar. J. For. 107:29–37 [Google Scholar]
  151. Yamamoto S. 151.  2000. Forest gap dynamics and tree regeneration. J. For. Res. 5:223–29 [Google Scholar]
  152. Zhang F, Chen JM, Pan Y, Birdsey RA, Shen S. 152.  et al. 2012. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. J. Geophys. Res. 117:G02021 [Google Scholar]
  153. Zhao M, Running SW. 153.  2011. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–43 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043014-115540
Loading
/content/journals/10.1146/annurev-arplant-043014-115540
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error