1932

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO in photosynthesis by catalyzing the carboxylation of the 5-carbon sugar ribulose-1,5-bisphosphate (RuBP). Rubisco is a remarkably inefficient enzyme, fixing only 2–10 CO molecules per second. Efforts to increase crop yields by bioengineering Rubisco remain unsuccessful, owing in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. The large subunit of Rubisco requires the chaperonin system for folding, and recent studies have shown that assembly of hexadecameric Rubisco is mediated by specific assembly chaperones. Moreover, Rubisco function can be inhibited by a range of sugar-phosphate ligands, including RuBP. Metabolic repair depends on remodeling of Rubisco by the ATP-dependent Rubisco activase and hydrolysis of inhibitory sugar phosphates by specific phosphatases. Here, we review our present understanding of the structure and function of these auxiliary factors and their utilization in efforts to engineer more catalytically efficient Rubisco enzymes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-111633
2017-04-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/68/1/annurev-arplant-043015-111633.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111633&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. 1.  2011. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci 16:645–55 [Google Scholar]
  2. Andersson I.2.  2008. Catalysis and regulation in Rubisco. J. Exp. Bot. 59:1555–68 [Google Scholar]
  3. Andersson I, Backlund A. 3.  2008. Structure and function of Rubisco. Plant Physiol. Biochem. 46:275–91 [Google Scholar]
  4. Andralojc PJ, Madgwick PJ, Tao Y, Keys A, Ward JL. 4.  et al. 2012. 2-Carboxy-d-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation. Biochem. J. 442:733–42 [Google Scholar]
  5. Andrews TJ.5.  1988. Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J. Biol. Chem. 263:12213–19 [Google Scholar]
  6. Andrews TJ, Ballment B. 6.  1983. The function of the small subunits of ribulose bisphosphate carboxylase-oxygenase. J. Biol. Chem. 258:7514–18 [Google Scholar]
  7. Badger MR, Bek EJ. 7.  2008. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J. Exp. Bot. 59:1525–41 [Google Scholar]
  8. Bai C, Guo P, Zhao Q, Lv Z, Zhang S. 8.  et al. 2015. Protomer roles in chloroplast chaperonin assembly and function. Mol. Plant 8:1478–92 [Google Scholar]
  9. Barraclough R, Ellis RJ. 9.  1980. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608:18–31 [Google Scholar]
  10. Bershtein S, Mu W, Serohijos AWR, Zhou J, Shakhnovich EI. 10.  2013. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 49:133–44 [Google Scholar]
  11. Bertsch U, Soll J, Seetharam R, Viitanen PV. 11.  1992. Identification, characterization, and DNA sequence of a functional double GroES-like chaperonin from chloroplasts of higher plants. PNAS 89:8696–700 [Google Scholar]
  12. Blayney MJ, Whitney SM, Beck JL. 12.  2011. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. J. Am. Soc. Mass Spectrom. 22:1588–601 [Google Scholar]
  13. Bloom AJ.13.  2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123:117–28 [Google Scholar]
  14. Bogumil D, Dagan T. 14.  2012. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51:9941–53 [Google Scholar]
  15. Bracher A, Hauser T, Liu CM, Hartl FU, Hayer-Hartl M. 15.  2015. Structural analysis of the Rubisco-assembly chaperone RbcX-II from Chlamydomonas reinhardtii. PLOS ONE 10:e0135448 [Google Scholar]
  16. Bracher A, Sharma A, Starling-Windhof A, Hartl FU, Hayer-Hartl M. 16.  2015. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nat. Plants 1:14002Reports the discovery of the conserved repair enzyme XuBPase for the inhibitory by-product of the Rubisco reaction, XuBP. [Google Scholar]
  17. Bracher A, Starling-Windhof A, Hartl FU, Hayer-Hartl M. 17.  2011. Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nat. Struct. Mol. Biol. 18:875–80 [Google Scholar]
  18. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A. 18.  et al. 1994. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371:578–86 [Google Scholar]
  19. Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M. 19.  2001. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107:223–33 [Google Scholar]
  20. Brutnell TP, Sawers RJ, Mant A, Langdale JA. 20.  1999. Bundle Sheath Defective2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11:849–64 [Google Scholar]
  21. Carmo-Silva AE, Salvucci ME. 21.  2013. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol 161:1645–55 [Google Scholar]
  22. Chari A, Fischer U. 22.  2010. Cellular strategies for the assembly of molecular machines. Trends Biochem. Sci. 35:676–83 [Google Scholar]
  23. Dalby PA.23.  2011. Strategy and success for the directed evolution of enzymes. Curr. Opin. Struct. Biol. 21:473–80 [Google Scholar]
  24. Doron L, Segal N, Gibori H, Shapira M. 24.  2014. The BSD2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. Plant J. 80:345–55 [Google Scholar]
  25. Durao P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M. 25.  2015. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat. Chem. Biol. 11:148–55 [Google Scholar]
  26. Ellis RJ.26.  1979. The most abundant protein in the world. Trends Biochem. Sci. 4:241–44 [Google Scholar]
  27. Ellis RJ.27.  2013. Assembly chaperones: a perspective. Philos. Trans. R. Soc. Lond. B 368:20110398 [Google Scholar]
  28. Emlyn-Jones D, Woodger FJ, Price GD, Whitney SM. 28.  2006. RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol 47:1630–40 [Google Scholar]
  29. Esau BD, Snyder GW, Jr Portis AR. 29.  1996. Differential effects of N- and C-terminal deletions on the two activities of Rubisco activase. Arch. Biochem. Biophys. 326:100–5 [Google Scholar]
  30. Espie GS, Kimber MS. 30.  2011. Carboxysomes: cyanobacterial Rubisco comes in small packages. Photosynth. Res. 109:7–20 [Google Scholar]
  31. Evans JR.31.  2013. Improving photosynthesis. Plant Physiol 162:1780–93 [Google Scholar]
  32. Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G. 32.  et al. 2008. A carboxysomal carbon-concentrating mechanism in the cyanelles of the ‘coelacanth’ of the algal world, Cyanophora paradoxa?. Physiol. Plant 133:27–32 [Google Scholar]
  33. Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB. 33.  2014. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J 80:862–69 [Google Scholar]
  34. Feiz L, Williams-Carrier R, Wostrikoff K, Belcher S, Barkan A, Stern DB. 34.  2012. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24:3435–46Reports the discovery of Raf1 and other Rubisco accumulation factors. [Google Scholar]
  35. Feller U, Anders I, Mae T. 35.  2008. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot. 59:1615–24 [Google Scholar]
  36. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 36.  1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  37. Gibson JL, Tabita FR. 37.  1997. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. J. Bacteriol. 179:663–69 [Google Scholar]
  38. Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH. 38.  1989. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342:884–89 [Google Scholar]
  39. Goloubinoff P, Gatenby AA, Lorimer GH. 39.  1989. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47 [Google Scholar]
  40. Greene DN, Whitney SM, Matsumura I. 40.  2007. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem. J. 404:517–24 [Google Scholar]
  41. Guo P, Jiang S, Bai C, Zhang W, Zhao Q, Liu C. 41.  2015. Asymmetric functional interaction between chaperonin and its plastidic cofactors. FEBS J 282:3959–70 [Google Scholar]
  42. Hansen S, Vollan VB, Hough E, Andersen K. 42.  1999. The crystal structure of rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β-barrel formed by β-strands from four subunits. J. Mol. Biol. 288:609–21 [Google Scholar]
  43. Hasse D, Larsson AM, Andersson I. 43.  2015. Structure of Arabidopsis thaliana Rubisco activase. Acta Crystallogr. D 71:800–8 [Google Scholar]
  44. Hauser T, Bhat JY, Milicic G, Wendler P, Hartl FU. 44.  et al. 2015. Structure and mechanism of the Rubisco-assembly chaperone Raf1. Nat. Struct. Mol. Biol. 22:720–28Provides a comprehensive structural and functional characterization of the Rubisco assembly chaperone Raf1. [Google Scholar]
  45. Hauser T, Popilka L, Hartl FU, Hayer-Hartl M. 45.  2015. Role of auxiliary proteins in Rubisco biogenesis and function. Nat. Plants 1:15065 [Google Scholar]
  46. Hayer-Hartl M, Bracher A, Hartl FU. 46.  2016. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41:62–76 [Google Scholar]
  47. Henderson JN, Kuriata AM, Fromme R, Salvucci ME, Wachter RM. 47.  2011. Atomic resolution X-ray structure of the substrate recognition domain of higher plant ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase. J. Biol. Chem. 286:35683–88 [Google Scholar]
  48. Hsin J, Chandler DE, Gumbart J, Harrison CB, Sener M. 48.  et al. 2010. Self-assembly of photosynthetic membranes. ChemPhysChem 11:1154–59 [Google Scholar]
  49. Huson DH, Scornavacca C. 49.  2012. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 61:1061–67 [Google Scholar]
  50. Jarvis P, Kessler F. 50.  2014. Mechanisms of chloroplast protein import in plants. Plastid Biology S Theg, F-A Wollman 241–70 Adv. Plant Biol . Vol. 5 New York: Springer [Google Scholar]
  51. Jordan DB, Chollet R. 51.  1983. Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J. Biol. Chem. 258:13752–58 [Google Scholar]
  52. Joshi J, Mueller-Cajar O, Tsai YC, Hartl FU, Hayer-Hartl M. 52.  2015. Role of small subunit in mediating assembly of red-type form I Rubisco. J. Biol. Chem. 290:1066–74 [Google Scholar]
  53. Kane HJ, Wilkin JM, Jr. Portis AR, Andrews TJ. 53.  1998. Potent inhibition of ribulose-bisphosphate carboxylase by an oxidized impurity in ribulose-1,5-bisphosphate. Plant Physiol 117:1059–69 [Google Scholar]
  54. Keown JR, Pearce FG. 54.  2014. Characterization of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability. Biochem. J. 464:413–23 [Google Scholar]
  55. Kerfeld CA, Erbilgin O. 55.  2015. Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 23:22–34 [Google Scholar]
  56. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 56.  2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82:323–55 [Google Scholar]
  57. Kirschbaum MUF.57.  2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–24 [Google Scholar]
  58. Knight S, Andersson I, Branden CI. 58.  1990. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. Subunit interactions and active site. J. Mol. Biol. 215:113–60 [Google Scholar]
  59. Kolesinski P, Belusiak I, Czarnocki-Cieciura M, Szczepaniak A. 59.  2014. Rubisco accumulation factor 1 from Thermosynechococcus elongatus participates in the final stages of ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro. FEBS J. 281:3920–32 [Google Scholar]
  60. Kolesinski P, Golik P, Grudnik P, Piechota J, Markiewicz M. 60.  et al. 2013. Insights into eukaryotic Rubisco assembly—crystal structures of RbcX chaperones from Arabidopsis thaliana. Biochim. Biophys. Acta 1830:2899–906 [Google Scholar]
  61. Kolesinski P, Piechota J, Szczepaniak A. 61.  2011. Initial characteristics of RbcX proteins from Arabidopsis thaliana. Plant Mol. Biol. 77:447–59 [Google Scholar]
  62. Koonin EV, Tatusov RL. 62.  1994. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J. Mol. Biol. 244:125–32 [Google Scholar]
  63. Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M. 63.  2001. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J. Biol. Chem. 276:29688–94 [Google Scholar]
  64. Kuriata AM, Chakraborty M, Henderson JN, Hazra S, Serban AJ. 64.  et al. 2014. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations. Biochemistry 53:7232–46 [Google Scholar]
  65. Larimer FW, Soper TS. 65.  1993. Overproduction of Anabaena 7120 ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126:85–92 [Google Scholar]
  66. Li LA, Tabita FR. 66.  1997. Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. J. Bacteriol. 179:3793–96 [Google Scholar]
  67. Li LA, Zianni MR, Tabita FR. 67.  1999. Inactivation of the monocistronic rca gene in Anabaena variabilis suggests a physiological ribulose bisphosphate carboxylase oxygenase activase-like function in heterocystous cyanobacteria. Plant Mol. Biol. 40:467–78 [Google Scholar]
  68. Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR. 68.  2014. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–50Reports the transfer of cyanobacterial carbon fixation machinery into crop plants. [Google Scholar]
  69. Linster CL, Van Schaftingen E, Hanson AD. 69.  2013. Metabolite damage and its repair or pre-emption. Nat. Chem. Biol. 9:72–80 [Google Scholar]
  70. Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S. 70.  et al. 2010. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202Provides the first report of in vitro reconstitution of a form I Rubisco using the GroEL-GroES chaperonin and the assembly chaperone RbcX. [Google Scholar]
  71. Long SP, Marshall-Colon A, Zhu X-G. 71.  2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66 [Google Scholar]
  72. Lopez T, Dalton K, Frydman J. 72.  2015. The mechanism and function of Group II chaperonins. J. Mol. Biol. 427:2919–30 [Google Scholar]
  73. Maisnier-Patin S, Roth JR, Fredriksson A, Nystrom T, Berg OG, Andersson DI. 73.  2005. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat. Genet. 37:1376–79 [Google Scholar]
  74. Maurino VG, Peterhansel C. 74.  2010. Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13:249–56 [Google Scholar]
  75. Morita K, Hatanaka T, Misoo S, Fukayama H. 75.  2014. Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiol 164:69–79 [Google Scholar]
  76. Moroney JV, Jungnick N, Dimario RJ, Longstreth DJ. 76.  2013. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions. Photosynth. Res. 117:121–31 [Google Scholar]
  77. Mueller-Cajar O, Stotz M, Bracher A. 77.  2014. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynth. Res. 119:191–201 [Google Scholar]
  78. Mueller-Cajar O, Stotz M, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. 78.  2011. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479:194–99Provides the first structural and biochemical evidence of the presence of Rubisco activase in photosynthetic organisms other than plants. [Google Scholar]
  79. Mueller-Cajar O, Whitney SM. 79.  2008. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynth. Res. 98:667–75 [Google Scholar]
  80. Mueller-Cajar O, Whitney SM. 80.  2008. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem. J. 414:205–14 [Google Scholar]
  81. Naponelli V, Noiriel A, Ziemak MJ, Beverley SM, Lye LF. 81.  et al. 2008. Phylogenomic and functional analysis of pterin-4a-carbinolamine dehydratase family (COG2154) proteins in plants and microorganisms. Plant Physiol 146:1515–27 [Google Scholar]
  82. Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER. 82.  2007. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5:311–35 [Google Scholar]
  83. Nishio K, Hirohashi T, Nakai M. 83.  1999. Chloroplast chaperonins: evidence for heterogeneous assembly of α and β Cpn60 polypeptides into a chaperonin oligomer. Biochem. Biophys. Res. Commun. 266:584–87 [Google Scholar]
  84. Notredame C, Higgins DG, Heringa J. 84.  2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302:205–17 [Google Scholar]
  85. Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ. 85.  2016. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. Plant J 85:148–60 [Google Scholar]
  86. Onizuka T, Endo S, Akiyama H, Kanai S, Hirano M. 86.  et al. 2004. The rbcX gene product promotes the production and assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. Plant Cell Physiol. 45:1390–95 [Google Scholar]
  87. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE. 87.  et al. 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. PNAS 112:8529–36 [Google Scholar]
  88. Ostermann J, Horwich AL, Neupert W, Hartl FU. 88.  1989. Protein folding in mitochondria requires complex formation with Hsp60 and ATP hydrolysis. Nature 341:125–30 [Google Scholar]
  89. Paila YD, Richardson LG, Schnell DJ. 89.  2015. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J. Mol. Biol. 427:1038–60 [Google Scholar]
  90. Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE. 90.  et al. 2013. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64:717–30 [Google Scholar]
  91. Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ. 91.  2008. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59:1569–80 [Google Scholar]
  92. Pearce FG.92.  2006. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399:525–34 [Google Scholar]
  93. Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T. 93.  2011. A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLOS Biol 9:e1001040 [Google Scholar]
  94. Peterhansel C, Blume C, Offermann S. 94.  2013. Photorespiratory bypasses: How can they work?. J. Exp. Bot. 64:709–15 [Google Scholar]
  95. Peterhansel C, Offermann S. 95.  2012. Re-engineering of carbon fixation in plants—challenges for plant biotechnology to improve yields in a high-CO2 world. Curr. Opin. Biotechnol. 23:204–8 [Google Scholar]
  96. Jr Portis AR. 96.  2003. Rubisco activase—Rubisco's catalytic chaperone. Photosynth. Res. 75:11–27 [Google Scholar]
  97. Jr Portis AR, Li CS, Wang DF, Salvucci ME.97.  2008. Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot. 59:1597–604 [Google Scholar]
  98. Jr Portis AR, Salvucci ME.98.  2002. The discovery of Rubisco activase—yet another story of serendipity. Photosynth. Res. 73:257–64 [Google Scholar]
  99. Povolotskaya IS, Kondrashov FA. 99.  2010. Sequence space and the ongoing expansion of the protein universe. Nature 465:922–26 [Google Scholar]
  100. Price GD, Evans JR, von Caemmerer S, Yu JW, Badger MR. 100.  1995. Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase-activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose-bisphosphate regeneration in transgenic tobacco plants. Planta 195:369–78 [Google Scholar]
  101. Price GD, Pengelly JJL, Forster B, Du J, Whitney SM. 101.  et al. 2013. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J. Exp. Bot. 64:753–68 [Google Scholar]
  102. Rae BD, Long BM, Whitehead LF, Forster B, Badger MR, Price GD. 102.  2013. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation. J. Mol. Microbiol. Biotechnol. 23:300–7 [Google Scholar]
  103. Raines CA.103.  2011. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42 [Google Scholar]
  104. Roth R, Hall LN, Brutnell TP, Langdale JA. 104.  1996. bundle sheath defective2, a mutation that disrupts the coordinated development of bundle sheath and mesophyll cells in the maize leaf. Plant Cell 8:915–27 [Google Scholar]
  105. Roy H, Bloom M, Milos P, Monroe M. 105.  1982. Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J. Cell Biol. 94:20–27 [Google Scholar]
  106. Saibil HR, Fenton WA, Clare DK, Horwich AL. 106.  2013. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425:1476–87 [Google Scholar]
  107. Saschenbrecker S, Bracher A, Rao KV, Rao BV, Hartl FU, Hayer-Hartl M. 107.  2007. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129:1189–200Provides the first structural and mechanistic analysis of a Rubisco assembly chaperone. [Google Scholar]
  108. Schroda M.108.  2004. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth. Res. 82:221–40 [Google Scholar]
  109. Sharwood RE, Ghannoum O, Whitney SM. 109.  2016. Prospects for improving CO2 fixation in crops through understanding Rubisco biogenesis and catalytic diversity. Curr. Opin. Plant Biol. 31:135–42 [Google Scholar]
  110. Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM. 110.  2016. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J. Exp. Bot. 67:3137–48 [Google Scholar]
  111. Snider J, Houry WA. 111.  2008. AAA+ proteins: diversity in function, similarity in structure. Biochem. Soc. Trans. 36:72–77 [Google Scholar]
  112. Spreitzer RJ.112.  2003. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414:141–49 [Google Scholar]
  113. Stern DB, Hanson MR, Barkan A. 113.  2004. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci 9:293–301 [Google Scholar]
  114. Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU. 114.  et al. 2011. Structure of green-type Rubisco activase from tobacco. Nat. Struct. Mol. Biol. 18:1366–70First paper to resolve the crystal structure and report refined mechanistic information of a plant Rca. [Google Scholar]
  115. Suh SW, Cascio D, Chapman MS, Eisenberg D. 115.  1987. A crystal form of ribulose-1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum in the activated state. J. Mol. Biol. 197:363–65 [Google Scholar]
  116. Sutter M, Roberts EW, Gonzalez RC, Bates C, Dawoud S. 116.  et al. 2015. Structural characterization of a newly identified component of α-carboxysomes: the AAA+ domain protein CsoCbbQ. Sci. Rep. 5:16243 [Google Scholar]
  117. Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY. 117.  2009. Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9:38 [Google Scholar]
  118. Szabo A, Korszun R, Hartl FU, Flanagan J. 118.  1996. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J 15:408–17 [Google Scholar]
  119. Tabita FR.119.  1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth. Res. 60:1–28 [Google Scholar]
  120. Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. 120.  2008. Phylogenetic and evolutionary relationships of Rubisco and the Rubisco-like proteins and the functional lessons provided by diverse molecular forms. Philos. Trans. R. Soc. Lond. B 363:2629–40 [Google Scholar]
  121. Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. 121.  2008. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59:1515–24 [Google Scholar]
  122. Tanaka S, Sawaya MR, Kerfeld CA, Yeates TO. 122.  2007. Structure of the Rubisco chaperone RbcX from Synechocystis sp. PCC6803. Acta Crystallogr. D 63:1109–12 [Google Scholar]
  123. Tarnawski M, Krzywda S, Bialek W, Jaskolski M, Szczepaniak A. 123.  2011. Structure of the Rubisco chaperone RbcX from the thermophilic cyanobacterium Thermosynechococcus elongatus. Acta Crystallogr. F 67:851–57 [Google Scholar]
  124. Tcherkez G.124.  2016. The mechanism of Rubisco-catalysed oxygenation. Plant Cell Environ 39:983–97 [Google Scholar]
  125. Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. 125.  2015. Fairy “tails”: flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front. Mol. Biosci. 2:23 [Google Scholar]
  126. Tokuriki N, Tawfik DS. 126.  2009. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–71 [Google Scholar]
  127. Tokuriki N, Tawfik DS. 127.  2009. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19:596–604 [Google Scholar]
  128. Trösch R, Mühlhaus T, Schroda M, Willmund F. 128.  2015. ATP-dependent molecular chaperones in plastids—more complex than expected. Biochim. Biophys. Acta 1847:872–88 [Google Scholar]
  129. Tsai YC, Lapina MC, Bhushan S, Mueller-Cajar O. 129.  2015. Identification and characterization of multiple Rubisco activases in chemoautotrophic bacteria. Nat. Commun. 6:8883Unveils new oligomeric structural diversity and substrate specificity of bacterial Rca for both form I and form II Rubiscos. [Google Scholar]
  130. Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. 130.  2012. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287:20471–81 [Google Scholar]
  131. van de Loo FJ, Salvucci ME. 131.  1996. Activation of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) involves Rubisco activase Trp16. Biochemistry 35:8143–48 [Google Scholar]
  132. Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. 132.  2013. The complexity of chloroplast chaperonins. Trends Plant Sci 18:688–94 [Google Scholar]
  133. Wachter RM, Henderson JN. 133.  2015. Rubisco rescue. Nat. Plants 1:14010 [Google Scholar]
  134. Wachter RM, Salvucci ME, Carmo-Silva AE, Barta C, Genkov T, Spreitzer RJ. 134.  2013. Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco-Rubisco activase interaction. Photosynth. Res. 117:557–66 [Google Scholar]
  135. Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR. 135.  2016. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol. 67:107–29 [Google Scholar]
  136. Wang Y, Stessman DJ, Spalding MH. 136.  2015. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82:429–48 [Google Scholar]
  137. Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. 137.  2014. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. J. Biol. Chem. 289:7973–81 [Google Scholar]
  138. Whitney SM, Baldet P, Hudson GS, Andrews TJ. 138.  2001. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26:535–47 [Google Scholar]
  139. Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV. 139.  2015. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. PNAS 112:3564–69Highlights the importance of the Rubisco assembly machinery for successful expression of foreign Rubisco in plants. [Google Scholar]
  140. Whitney SM, Houtz RL, Alonso H. 140.  2011. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35 [Google Scholar]
  141. Whitney SM, Sharwood RE. 141.  2008. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J. Exp. Bot. 59:1909–21 [Google Scholar]
  142. Williams TA, Fares MA. 142.  2010. The effect of chaperonin buffering on protein evolution. Genome Biol. Evol. 2:609–19 [Google Scholar]
  143. Wilson RH, Alonso H, Whitney SM. 143.  2016. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Sci. Rep. 6:22284 [Google Scholar]
  144. Wilson RH, Whitney SM. 144.  2015. Getting it together for CO2 fixation. Nat. Plants 1:15147 [Google Scholar]
  145. Wong KS, Houry WA. 145.  2012. Novel structural and functional insights into the MoxR family of AAA+ ATPases. J. Struct. Biol. 179:211–21 [Google Scholar]
  146. Wyganowski KT, Kaltenbach M, Tokuriki N. 146.  2013. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425:3403–14 [Google Scholar]
  147. Xu ZH, Horwich AL, Sigler PB. 147.  1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–49 [Google Scholar]
  148. Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP. 148.  2009. High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204 [Google Scholar]
  149. Zhang S, Zhou H, Yu F, Bai C, Zhao Q. 149.  et al. 2016. Structural insight into the cooperation of chloroplast chaperonin subunits. BMC Biol 14:29 [Google Scholar]
  150. Zhou HX, Rivas G, Minton AP. 150.  2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-111633
Loading
/content/journals/10.1146/annurev-arplant-043015-111633
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error