1932

Abstract

Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species—in which individuals have either male or female functions only—are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-043015-111911
2016-04-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/67/1/annurev-arplant-043015-111911.html?itemId=/content/journals/10.1146/annurev-arplant-043015-111911&mimeType=html&fmt=ahah

Literature Cited

  1. Akagi T, Henry IM, Tao R, Comai L. 1.  2014. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:646–50 [Google Scholar]
  2. Al-Saghir M, Baker SA, Pusok R. 2.  2014. Effective method to resolve the chromosome numbers in Pistacia species (Anacardiaceae). Am. J. Plant Sci. 5:2913–16 [Google Scholar]
  3. Alstrom-Rapaport C, Lascoux M, Wang YC, Roberts G, Tuskan GA. 3.  1998. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). J. Hered. 89:44–49 [Google Scholar]
  4. Bachtrog D. 4.  2008. The temporal dynamics of processes underlying Y chromosome degeneration. Genetics 179:1513–25 [Google Scholar]
  5. Bellott D, Hughes JF, Skaletsky H, Brown LG, Pyntikova T. 5.  et al. 2014. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–99 [Google Scholar]
  6. Bennetzen JL. 6.  2000. The many hues of plant heterochromatin. Genome Biol. 1:reviews107.1–4 [Google Scholar]
  7. Bennetzen JL, Wang H. 7.  2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65:505–30 [Google Scholar]
  8. Bergero R, Charlesworth D. 8.  2011. Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr. Biol. 21:1470–74 [Google Scholar]
  9. Bergero R, Forrest A, Kamau E, Charlesworth D. 9.  2007. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–54 [Google Scholar]
  10. Bergero R, Qiu S, Charlesworth D. 10.  2015. Gene loss from a plant sex chromosome system. Curr. Biol. 25:1234–40 [Google Scholar]
  11. Bergero R, Qiu S, Forrest A, Borthwick H, Charlesworth D. 11.  2013. Expansion of the pseudoautosomal region and ongoing recombination suppression in the Silene latifolia sex chromosomes. Genetics 194:673–86 [Google Scholar]
  12. Blavet N, Blavet H, Muyle A, Käfer J, Cegan R. 12.  et al. 2015. Identifying new sex-linked genes through BAC sequencing in the dioecious plant Silene latifolia. BMC Genomics 16:546 [Google Scholar]
  13. Bull JJ. 13.  1983. Evolution of Sex Determining Mechanisms Menlo Park, CA: Benjamin/Cummings
  14. Buzek J, Koutnikova H, Houben A, Riha K, Janousek B. 14.  et al. 1997. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res. 5:57–65 [Google Scholar]
  15. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A. 15.  et al. 2008. Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res. 16:961–76 [Google Scholar]
  16. Charchar FJ, Svartman M, El-Mogharbel N, Ventura M, Kirby P. 16.  et al. 2003. Complex events in the evolution of the human pseudoautosomal region 2 (PAR2). Genome Res. 13:281–86 [Google Scholar]
  17. Charlesworth B. 17.  2009. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:195–205 [Google Scholar]
  18. Charlesworth B, Charlesworth D. 18.  1978. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112:975–97 [Google Scholar]
  19. Charlesworth B, Charlesworth D. 19.  2000. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B 355:1563–72 [Google Scholar]
  20. Charlesworth B, Sniegowski P, Stephan W. 20.  1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–20 [Google Scholar]
  21. Charlesworth D. 21.  1984. Androdioecy and the evolution of dioecy. Biol. J. Linn. Soc. 23:333–48 [Google Scholar]
  22. Charlesworth D. 22.  1985. Distribution of dioecy and self-incompatibility in angiosperms. Evolution: Essays in Honour of John Maynard Smith PJ Greenwood, M Slatkin 237–68 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  23. Charlesworth D. 23.  1993. Save the male. Curr. Biol. 3:155–57 [Google Scholar]
  24. Charlesworth D. 24.  2004. Plant evolution: modern sex chromosomes. Curr. Biol. 14:R271–73 [Google Scholar]
  25. Cherif E, Zehdi A, Castello K, Chabrillange N, Abdoulkader S. 25.  et al. 2012. Male-specific DNA markers provide genetic evidence of an XY chromosome system, a recombination arrest and allow the tracing of paternal lineages in date palm. New Phytol. 197:409–15 [Google Scholar]
  26. Chibalina M, Filatov D. 26.  2011. Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr. Biol. 21:1475–79 [Google Scholar]
  27. Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A. 27.  et al. 2014. Origins and functional evolution of Y chromosomes across mammals. Nature 508:488–93 [Google Scholar]
  28. Costich DE, Meagher TR, Yurkow EJ. 28.  1991. A rapid means of sex identification in Silene latifolia by use of flow cytometry. Plant Mol. Biol. Rep. 9:359–70 [Google Scholar]
  29. Crossman A, Charlesworth D. 29.  2013. Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–40 [Google Scholar]
  30. Culley TM, Weller SG, Sakai AK, Rankin AE. 30.  1999. Inbreeding depression and selfing rates in a self-compatible, hermaphroditic species, Schiedea membranaceae (Caryophyllaceae). Am. J. Bot. 86:980–87 [Google Scholar]
  31. Dai X, Hu Q, Cai Q, Feng K, Ye N. 31.  et al. 2014. The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res. 24:1274–77 [Google Scholar]
  32. Darwin CR. 32.  1877. The Different Forms of Flowers on Plants of the Same Species London: John Murray
  33. Davey JW, Hohenloher PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 33.  2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499–510 [Google Scholar]
  34. Divashuk M, Alexandrov O, Kroupin P, Karlov G. 34.  2011. Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet. Genome Res. 134:213–19 [Google Scholar]
  35. Divashuk M, Alexandrov O, Razumova O, Kirov I, Karlov G. 35.  2014. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLOS ONE 9:e85118 [Google Scholar]
  36. Dorken ME, Barrett SCG. 36.  2004. Sex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae). Proc. R. Soc. Lond. B 271:213–19 [Google Scholar]
  37. Dorken ME, Pannell J. 37.  2009. Hermaphroditic sex allocation evolves when mating opportunities change. Curr. Biol. 19:514–17 [Google Scholar]
  38. Eckhart VM. 38.  1992. Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hydrophyllaceae). Evolution 46:1313–28 [Google Scholar]
  39. Fechter I, Hausmann L, Daum M, Soerensen T, Viehover P. 39.  et al. 2012. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol. Genet. Genomics 287:247–59 [Google Scholar]
  40. Fraser L, Tsang G, Datson P, Silva ND, Harvey CF. 40.  et al. 2009. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 10:102 [Google Scholar]
  41. Fujita N, Torii C, Ishii K, Aonuma W, Shimizu Y. 41.  et al. 2011. Narrowing down the mapping of plant sex-determination regions using new Y chromosome-specific markers and heavy-ion beam irradiation-induced Y deletion mutants in Silene latifolia. G3 2:271–78 [Google Scholar]
  42. Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y. 42.  2015. Evidence for a common origin of homomorphic and heteromorphic sex chromosomes in distinct Spinacia species. G3 5:1663–73 [Google Scholar]
  43. Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. 43.  2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32:1296–309 [Google Scholar]
  44. Geraldes A, Pang J, Thiessen N, Cezard T, Moore R. 44.  et al. 2015. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol. Ecol. 24:3243–56 [Google Scholar]
  45. Glawe GA, de Jong TJ. 45.  2009. Complex sex determination in the stinging nettle Urtica dioica. Evol. Ecol. 23:635–49 [Google Scholar]
  46. Grabowska-Joachimiak A, Joachimiak A. 46.  2002. C-banded karyotypes of two Silene species with heteromorphic sex chromosomes. Genome 45:243–52 [Google Scholar]
  47. Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak A. 47.  2015. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res. 23:187–97 [Google Scholar]
  48. Grabowska-Joachimiak A, Mosiolek M, Lech A, Góralski G. 48.  2011. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicus Siebold & Zucc. Cytogenet. Genome Res. 132:203–11 [Google Scholar]
  49. Gschwend AR, Yu Q, Tong EJ, Zeng F, Han J. 49.  et al. 2012. Rapid divergence and expansion of the X chromosome in papaya. PNAS 109:13716–21 [Google Scholar]
  50. Hobza R, Lengerova M, Svoboda J, Kejnovsky E, Vyskot B. 50.  2006. An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–82 [Google Scholar]
  51. Hollister JD, Gaut BS. 51.  2009. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19:1419–28 [Google Scholar]
  52. Hou J, Ye N, Zhang D, Chen Y, Fang L. 52.  et al. 2015. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus. Sci. Rep. 5:09076 [Google Scholar]
  53. Hough J, Hollister JD, Wang W, Barrett SCH, Otto SP. 53.  2014. Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. PNAS 111:7713–18 [Google Scholar]
  54. Hough J, Immler S, Barrett SCH, Otto SP. 54.  2013. Evolutionarily stable sex ratios and mutation load. Evolution 67:1915–25 [Google Scholar]
  55. Howell EC, Armstrong S, Filatov D. 55.  2009. Evolution of neo-sex chromosomes in Silene diclinis. Genetics 182:1109–15 [Google Scholar]
  56. Iovene M, Yu Q, Ming R, Jiang J. 56.  2015. Evidence for emergence of sex-determining gene(s) in a centromeric region in Vasconcellea parviflora. Genetics 199:413–21 [Google Scholar]
  57. Jaillon O, Aury J, Noel B, Policriti A, Clepe C. 57.  et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–67 [Google Scholar]
  58. Jamilena M, Mariotti B, Manzano S. 58.  2008. Plant sex chromosomes: molecular structure and function. Cytogenet. Genome Res. 120:255–64 [Google Scholar]
  59. Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E. 59.  2015. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16:98 [Google Scholar]
  60. Kimura M, Ohta T. 60.  1971. Theoretical Topics in Population Genetics Princeton, NJ: Princeton Univ. Press
  61. Kohn JR. 61.  1988. Why be female?. Nature 335:431–33 [Google Scholar]
  62. Kohn JR. 62.  1989. Sex ratio, seed production, biomass allocation, and the cost of male function in Cucurbita foetidissima HBK (Cucurbitaceae). Evolution 43:1424–34 [Google Scholar]
  63. Lahn BT, Page DC. 63.  1999. Four evolutionary strata on the human X chromosome. Science 286:964–67 [Google Scholar]
  64. Laporte V, Charlesworth B. 64.  2002. Effective population size and population subdivision in demographically structured populations. Genetics 162:501–19 [Google Scholar]
  65. Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B. 65.  2004. Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor. Appl. Genet. 108:1193–99 [Google Scholar]
  66. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M. 66.  et al. 2004. A primitive Y chromosome in papaya marks the beginning of sex chromosome evolution. Nature 427:348–52 [Google Scholar]
  67. Lloyd DG. 67.  1975. The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–39 [Google Scholar]
  68. Lloyd DG. 68.  1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms. Theor. Pop. Biol. 9:299–316 [Google Scholar]
  69. Lloyd DG. 69.  1980. The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 34:123–34 [Google Scholar]
  70. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R. 70.  et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–38 [Google Scholar]
  71. Matsunaga S, Kawano S, Michimoto H, Higashiyama T, Nakao S. 71.  et al. 1999. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y sex chromosome DNA in a dioecious plant, Silene latifolia. Plant Cell Physiol. 40:60–68 [Google Scholar]
  72. McDaniel SF, Neubig KM, Payton AC, Quatrano RS, Cove DJ. 72.  2013. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus. Evolution 67:2811–22 [Google Scholar]
  73. Michalovova M, Kubat Z, Hobza R, Vyskot B, Kejnovsky E. 73.  2015. Fully automated pipeline for detection of sex linked genes using RNA-Seq data. BMC Bioinform. 16:78 [Google Scholar]
  74. Ming R, Bendahmane A, Renner S. 74.  2011. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62:485–514 [Google Scholar]
  75. Mrackova M, Nicolas M, Hobza R, Negrutiu I, Monéger F. 75.  et al. 2008. Independent origin of sex chromosomes in two species of the genus Silene. Genetics 179:1129–33 [Google Scholar]
  76. Muyle A, Zemp N, Deschamps C, Mousset S, Widmer A, Marais G. 76.  2012. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLOS Biol. 10:e1001308 [Google Scholar]
  77. Navajas-Pérez R, de la Herrán R, López González G, Jamilena M, Lozano R. 77.  et al. 2005. The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol. Biol. Evol. 22:1929–39 [Google Scholar]
  78. Obbard DJ, Harris SA, Buggs RJA, Pannell JR. 78.  2006. Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution 60:1801–15 [Google Scholar]
  79. Ohnishi O. 79.  1985. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations. Jpn. J. Genet. 60:391–404 [Google Scholar]
  80. Pakull B, Groppe K, Mecucci F, Gaudet M, Sabatti M, Fladung M. 80.  2011. Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula × Populus tremuloides cross. Can. J. For. Res. 41:245–53 [Google Scholar]
  81. Pala I, Naurin S, Stervander M, Hasselquist D, Bensch S, Hansson B. 81.  2012. Evidence of a neo-sex chromosome in birds. Heredity 108:264–72 [Google Scholar]
  82. Pannell JR, Dorken ME, Pujol B, Berjano R. 82.  2008. Gender variation and transitions between sexual systems in Mercurialis annua (Euphorbiaceae). Int. J. Plant Sci. 169:129–39 [Google Scholar]
  83. Papadopulos AST, Chester M, Ridout K, Filatov DA. 82a.  2015. Rapid Y degeneration and dosage compensation in plant sex chromosomes. PNAS 112:13021–26 [Google Scholar]
  84. Parker JS. 83.  1990. Sex-chromosome and sex differentiation in flowering plants. Chromosomes Today 10:187–98 [Google Scholar]
  85. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. 84.  2012. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLOS ONE 7:e37135 [Google Scholar]
  86. Picq S, Santoni S, Lacombe T, Latreille M, Weber A. 85.  et al. 2014. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol. 14:229 [Google Scholar]
  87. Policansky D. 86.  1982. Sex change in plants and animals. Annu. Rev. Ecol. Syst. 13:471–96 [Google Scholar]
  88. Pucholt P, Ronnberg-Wastljung A-C, Berlin S. 87.  2015. Single locus sex determination and female heterogamety in the basket willow (Salix viminalis L.). Heredity 114:575–83 [Google Scholar]
  89. Rejón CR, Jamilena M, Ramos MG, Parker JS, Rejón MR. 88.  1994. Cytogenetic and molecular analysis of the multiple sex-chromosome system of Rumex acetosa. Heredity 72:209–15 [Google Scholar]
  90. Renner S. 89.  2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101:1588–96 [Google Scholar]
  91. Rieseberg LH, Hanson MA, Philbrick CT. 90.  1992. Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR amplified chloroplast DNA. Syst. Bot. 17:324–36 [Google Scholar]
  92. Sakai AK, Weller SG, Chen ML, Chou SY, Tasanont C. 91.  1997. Evolution of gynodioecy and maintenance of females: the role of inbreeding depression, outcrossing rates, and resource allocation in Schiedea adamantis (Caryophyllaceae). Evolution 51:724–36 [Google Scholar]
  93. Sakai AK, Weller SG, Culley TM, Campbell DR, Dunbar-Wallis AK, Andres A. 92.  2008. Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant, Schiedea salicaria. J. Evol. Biol. 21:1–17 [Google Scholar]
  94. Sayres M, Makova K. 93.  2013. Gene survival and death on the human Y chromosome. Mol. Biol. Evol. 30:781–87 [Google Scholar]
  95. Scotti I, Delph LF. 94.  2006. Selective trade-offs and sex-chromosome evolution in Silene latifolia. Evolution 60:1793–800 [Google Scholar]
  96. Seger J, Eckhart VM. 95.  1996. Evolution of sexual systems and sex allocation in annual plants when growth and reproduction overlap. Proc. R. Soc. Lond. B 263:833–41 [Google Scholar]
  97. Semerikov V, Lagercrantz U, Tsarouhas V, Ronnberg-Wastljung A, Alstrom-Rapaport C, Lascoux M. 96.  2003. Genetic mapping of sex-linked markers in Salix viminalis L. Heredity 91:293–99 [Google Scholar]
  98. Shannon R, Holsinger K. 97.  2007. The genetics of sex determination in stinging nettle (Urtica dioica). Sex. Plant Reprod. 20:35–43 [Google Scholar]
  99. Shibata F, Hizume M, Kuroki Y. 98.  2000. Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res. 8:229–36 [Google Scholar]
  100. Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C. 99.  et al. 2013. Evolution of sex determination systems with heterogametic males and females in Silene. Evolution 67:12 [Google Scholar]
  101. Smeds L, Warmuth V, Bolivar P, Uebbing S, Burri R. 100.  et al. 2015. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 6:7330 [Google Scholar]
  102. Sousa A, Fuchs J, Renner SS. 101.  2012. Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of Cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet. Genome Res. 139:107–18 [Google Scholar]
  103. Spigler RB, Lewers KS, Ashman T-L. 102.  2011. Genetic architecture of sexual dimorphism in a subdioecious plant with a proto-sex chromosome. Evolution 65:1114–26 [Google Scholar]
  104. Spigler RB, Lewers KS, Main D, Ashman T-L. 103.  2008. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–17 [Google Scholar]
  105. Steflova P, Tokan V, Vogel I, Lexa M, Macas J. 104.  et al. 2013. Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol. Evol. 5:769–82 [Google Scholar]
  106. Tanurdzic M, Banks JA. 105.  2004. Sex-determining mechanisms in land plants. Plant Cell 16:S61–71 [Google Scholar]
  107. Telgmann-Rauber A, Jamsari A, Kinney MS, Pires JC, Jung C. 106.  2007. Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Mol. Genet. Genomics 278:221–34 [Google Scholar]
  108. Tennessen J, Govindarajulu R, Liston A, Ashman T. 107.  2013. Targeted sequence capture provides insight into genome structure and genetics of male sterility in a gynodioecious diploid strawberry, Fragaria vesca ssp. bracteata (Rosaceae). G3 3:1341–51 [Google Scholar]
  109. Torices R, Méndez M, Gómez J. 108.  2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. New Phytol. 190:234–48 [Google Scholar]
  110. Tuskan G, Yin T, DiFazio S, Faivre-Rampant P, Gaudet M. 109.  et al. 2012. The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Genet. Genomes 8:559–71 [Google Scholar]
  111. Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K. 110.  et al. 2015. Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol. Genet. Genomics 290:661–70 [Google Scholar]
  112. VanBuren R, Zeng F, Chen C, Zhang J, Wai C. 111.  et al. 2015. Origin and domestication of papaya Yh chromosome. Genome Res. 25:524–33 [Google Scholar]
  113. Wang J, Na J, Yu Q, Gschwend AR, Han J. 112.  et al. 2012. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. PNAS 109:13710–15 [Google Scholar]
  114. Waters PD, Duffy B, Frost CJ, Delbridge ML, Graves JAM. 113.  2001. The human Y chromosome derives largely from a single autosomal region added to the sex chromosomes 80–130 million years ago. Cytogenet. Cell Genet. 92:74–79 [Google Scholar]
  115. Weller SG, Sakai AK. 114.  1991. The genetic basis of male sterility in Schiedea (Caryophyllaceae), an endemic Hawaiian genus. Heredity 67:265–73 [Google Scholar]
  116. Westergaard M. 115.  1958. The mechanism of sex determination in dioecious plants. Adv. Genet. 9:217–81 [Google Scholar]
  117. Wilby AS, Parker JS. 116.  1986. Continuous variation in Y-chromosome structure of Rumex acetosa. Heredity 57:247–54 [Google Scholar]
  118. Willis JH. 117.  1999. The contribution of male sterility mutations to inbreeding depression in Mimulus guttatus. Heredity 83:337–46 [Google Scholar]
  119. Wu M, Moore PH. 118.  2015. The evolutionary tempo of sex chromosome degradation in Carica papaya. J. Mol. Evol. 80:265–77 [Google Scholar]
  120. Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S. 119.  et al. 2007. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. PNAS 104:6472–77 [Google Scholar]
  121. Zhou Q, Zhang J, Bachtrog D, An N, Huang Q. 120.  et al. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1332 [Google Scholar]
  122. Zimmerman JK. 121.  1991. Ecological correlates of labile sex expression in the orchid Catasetum viridiflavum. Ecology 72:597–608 [Google Scholar]
/content/journals/10.1146/annurev-arplant-043015-111911
Loading
/content/journals/10.1146/annurev-arplant-043015-111911
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error