1932

Abstract

Although it has faded by a factor of ∼107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (∼200μm) continuum from ∼0.5 M of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti.

The optical light of the supernova debris is now dominated by illumination of the debris by X-rays resulting from the impact of the outer supernova envelope with an equatorial ring (ER) of gas that was expelled some 20,000 years before the supernova explosion. X-ray and optical observations trace a complex system of shocks resulting from this impact, whereas radio observations trace synchrotron radiation from relativistic electrons accelerated by these shocks. The luminosity of the remnant is dominated by an NIR (∼20μm) continuum from dust grains in the ER heated by collisions with ions in the X-ray emitting gas.

With the Atacama Large Millimeter Array (ALMA), we can observe the interior debris at millimeter/submillimeter wavelengths, which are not absorbed by the interior dust. The ALMA observations reveal bright emission lines from rotational transitions of CO and SiO lines that provide a new window into the interior structure of the supernova debris. Optical, NIR, and ALMA observations all indicate strongly asymmetric ejecta.

Intensive searches have failed to yield any evidence for the compact object expected to reside at the center of the remnant. The current upper limit to the luminosity of such an object is a few tens of solar luminosities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-082615-105405
2016-09-19
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/astro/54/1/annurev-astro-082615-105405.html?itemId=/content/journals/10.1146/annurev-astro-082615-105405&mimeType=html&fmt=ahah

Literature Cited

  1. Abramowski A, Aharonian F, Ait Benkhali F. et al. 2015. Science 347:406–12
  2. Arcavi I, Gal-Yam A, Cenko SB. et al. 2012. Ap. J. Lett. 756:L30
  3. Arnett WD, Bahcall JN, Kirshner RP, Woosley SE. 1989. Annu. Rev. Astron. Astrophys. 27:629–700
  4. Axelrod TS. 1980. Late time optical spectra from the Ni-56 model for type 1 supernovae PhD thesis, Univ. Calif., Santa Cruz
  5. Ball L, Crawford DF, Hunstead RW, Klamer I, McIntyre VJ. 2001. Ap. J. 549:599–607
  6. Berezhko EG, Ksenofontov LT, Völk HJ. 2011. Ap. J. 732:58
  7. Berezhko EG, Ksenofontov LT, Völk HJ. 2015. Ap. J. 810:63
  8. Blinnikov S, Lundqvist P, Bartunov O, Nomoto K, Iwamoto K. 2000. Ap. J. 532:1132–49
  9. Blondin JM, Borkowski KJ, Reynolds SP. 2001. Ap. J. 557:782–91
  10. Boggs SE, Harrison FA, Miyasaka H. et al. 2015. Science 348:670–71
  11. Borkowski KJ, Blondin JM, McCray R. 1997. Ap. J. Lett. 476:L31–34
  12. Bouchet P, Danziger J. 2014. Supernova Environmental Impacts, Proc. IAU Symp. 296 A Ray, RA McCray 99–14 Cambridge, UK: Cambridge Univ. Press
  13. Bouchet P, Dwek E, Danziger J. et al. 2006. Ap. J. 650:212–27
  14. Brandner W, Chu YH, Eisenhauer F, Grebel EK, Points SD. 1997. Ap. J. Lett. 489:L153–56
  15. Burrows A. 2013. Rev. Mod. Phys. 85:245–61
  16. Burrows DN, Michael E, Hwang U. et al. 2000. Ap. J. Lett. 543:L149–52
  17. Chevalier RA, Dwarkadas VV. 1995. Ap. J. Lett. 452:L45–48
  18. Chita SM, Langer N, van Marle AJ, García-Segura G, Heger A. 2008. Astron. Astrophys. 488:L37–41
  19. Chugai NN, Chevalier RA, Kirshner RP, Challis PM. 1997. Ap. J. 483:925–40
  20. Couch SM, Chatzopoulos E, Arnett WD, Timmes FX. 2015. Ap. J. Lett. 808:L21
  21. Crotts APS, Heathcote SR. 2000. Ap. J. 528:426–35
  22. Culhane M, McCray R. 1995. Ap. J. 455:335–41
  23. de Kool M, Li H, McCray R. 1998. Ap. J. 503:857–76
  24. De Luca A. 2008. 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More C Bassa, Z Wang, A Cumming, VM Kaspi AIP Conf. Ser. 983311–19 Melville, NY: AIP
  25. Dessart L, Hillier DJ. 2010. MNRAS 405:2141–60
  26. Dewey D, Zhekov SA, McCray R, Canizares CR. 2008. Ap. J. Lett. 676:L131–34
  27. Dwarkadas VV. 2013. MNRAS 434:3368–77
  28. Dwek E, Arendt RG. 2015. Ap. J. 10:75–85
  29. Dwek E, Arendt RG, Bouchet P. et al. 2008. Ap. J. 676:1029–39
  30. Dwek E, Arendt RG, Bouchet P. et al. 2010. Ap. J. 722:425–34
  31. Ensman L, Burrows A. 1992. Ap. J. 393:742–55
  32. Fischera J, Tuffs RJ, Völk HJ. 2002a. Astron. Astrophys. 386:517–30
  33. Fischera J, Tuffs RJ, Völk HJ. 2002b. Astron. Astrophys. 395:189–200
  34. France K, McCray R, Fransson C. et al. 2015. Ap. J. Lett. 801:L16
  35. France K, McCray R, Heng K. et al. 2010. Science 329:1624–27
  36. France K, McCray R, Penton SV. et al. 2011. Ap. J. 743:186
  37. Frank KA, Dwek E, McCray R, Park S, Zhekov SA, Burrows DN. 2016. Ap. J. In press
  38. Fransson C, Cassatella A, Gilmozzi R. et al. 1989. Ap. J. 336:429–41
  39. Fransson C, Kozma C. 1993. Ap. J. Lett. 408:L25–28
  40. Fransson C, Kozma C. 2002. New Astron. Rev. 46:487–92
  41. Fransson C, Larsson J, Migotto K. et al. 2015. Ap. J. Lett. 806:L19
  42. Fransson C, Larsson J, Spyromilio J. et al. 2013. Ap. J. 768:88–110
  43. Fransson C, Larsson J, Spyromilio J, Leibundgut B, McCray R, Jerkstrand A. 2016. Ap. J. Lett. 821L5
  44. Gaensler BM, Slane P. 2006. Annu. Rev. Astron. Astrophys. 44:17–47
  45. González-Gaitán S, Tominaga N, Molina J. et al. 2015. MNRAS 451:2212–29
  46. Gould A, Uza O. 1998. Ap. J. 494:118–24
  47. Graves GJM, Challis PM, Chevalier RA. et al. 2005. Ap. J. 629:944–59
  48. Grebenev SA, Lutovinov AA, Tsygankov SS, Winkler C. 2012. Nature 490:373–75
  49. Gröningsson P, Fransson C, Leibundgut B. et al. 2008. Astron. Astrophys. 492:481–91
  50. Gröningsson P, Fransson C, Lundqvist P. et al. 2006. Astron. Astrophys. 456:581–89
  51. Haas MR, Erickson EF, Lord SD. et al. 1990. Ap. J. 360:257–66
  52. Hammer NJ, Janka HT, Müller E. 2010. Ap. J. 714:1371–85
  53. Hanuschik RW, Thimm GJ. 1990. Astron. Astrophys. 231:77–84
  54. Hashimoto M, Nomoto K, Shigeyama T. 1989. Astron. Astrophys. 210:L5–8
  55. Hasinger G, Aschenbach B, Truemper J. 1996. Astron. Astrophys. 312:L9–12
  56. Helder EA, Broos PS, Dewey D. et al. 2013. Ap. J. 764:11
  57. Heng K, McCray R, Zhekov SA. et al. 2006. Ap. J. 644:959–70
  58. Herant M, Benz W. 1991. Ap. J. Lett. 370:L81–84
  59. Herant M, Benz W, Colgate S. 1992. Ap. J. 395:642–53
  60. Herant M, Benz W, Hix WR, Fryer CL, Colgate SA. 1994. Ap. J. 435:339–61
  61. Indebetouw R, Matsuura M, Dwek E. et al. 2014. Ap. J. Lett. 782:L2
  62. Jäger C, Dorschner J, Mutschke H, Posch T, Henning T. 2003. Astron. Astrophys. 408:193–204
  63. Janka HT. 2012. Annu. Rev. Nucl. Part. Sci. 62:407–51
  64. Janka HT, Hanke F, Hüdepohl L. et al. 2012. Prog. Theor. Exp. Phys. 2012:01A309
  65. Jerkstrand A, Fransson C, Kozma C. 2011. Astron. Astrophys. 530:A45
  66. Jones FC, Ellison DC. 1991. Space Sci. Rev. 58:259–346
  67. Kamenetzky J, McCray R, Indebetouw R. et al. 2013. Ap. J. Lett. 773:L34
  68. Kirk JG, Duffy P, Gallant YA. 1996. Astron. Astrophys. 314:1010–16
  69. Kjær K, Leibundgut B, Fransson C, Jerkstrand A, Spyromilio J. 2010. Astron. Astrophys. 517:A51
  70. Kleiser IKW, Poznanski D, Kasen D. et al. 2011. MNRAS 415:372–82
  71. Kozma C, Fransson C. 1992. Ap. J. 390:602–21
  72. Kozma C, Fransson C. 1998a. Ap. J. 496:946–66
  73. Kozma C, Fransson C. 1998b. Ap. J. 497:431–57
  74. Lakićević M, van Loon JT, Stanke T, De Breuck C, Patat F. 2012a. Astron. Astrophys. 541:L1
  75. Lakićević M, Zanardo G, van Loon JT. et al. 2012b. Astron. Astrophys 541:L2
  76. Lamers HJGLM, Nota A, Panagia N, Smith LJ, Langer N. 2001. Ap. J. 551:764–80
  77. Larsson J, Fransson C, Kjaer K. et al. 2013. Ap. J. 768:89
  78. Larsson J, Fransson C, Östlin G. 2011. Nature 474:484–86
  79. Lawrence SS, Sugerman BE, Bouchet P. et al. 2000. Ap. J. Lett. 537:L123–26
  80. Li H, McCray R. 1993. Ap. J. 405:730–37
  81. Li H, McCray R. 1996. Ap. J. 456:370–83
  82. Li H, McCray R, Sunyaev RA. 1993. Ap. J. 419:824–36
  83. Li W, Leaman J, Chornock R. et al. 2011. MNRAS 412:1441–72
  84. Liu W, Dalgarno A. 1994. Ap. J. 428:769–76
  85. Liu W, Dalgarno A. 1995. Ap. J. 454:472–79
  86. Liu W, Dalgarno A, Lepp S. 1992. Ap. J. 396:679–85
  87. Lundqvist P, Fransson C. 1991. Ap. J. 380:575–92
  88. Lundqvist P, Fransson C. 1996. Ap. J. 464:924–42
  89. Lundqvist P, Sollerman J, Kozma C. et al. 1999. Astron. Astrophys. 347:500–7
  90. Luo D, McCray R, Slavin J. 1994. Ap. J. 430:264–76
  91. Mathis JS, Rumpl W, Nordsieck KH. 1977. Ap. J. 217:425–33
  92. Manchester RN, Gaensler BM, Wheaton VC. et al. 2002. Publ. Astron. Soc. Aust. 19:207–21
  93. Matsuura M, Dwek E, Barlow MJ. et al. 2015. Ap. J. 800:50
  94. Matsuura M, Dwek E, Meixner M. et al. 2011. Science 333:1258–61
  95. Mattila S, Lundqvist P, Gröningsson P. et al. 2010. Ap. J. 717:1140–56
  96. McCray R. 1993. Annu. Rev. Astron. Astrophys. 31:175–216
  97. McCray R. 2007. Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters S Immler, K Weiler, R McCray AIP Conf. Ser. 9373–14 Melville, NY: AIP
  98. Michael E, McCray R, Chevalier R. et al. 2003. Ap. J. 593:809–30
  99. Michael E, McCray R, Pun CSJ. et al. 1998. Ap. J. Lett. 509:L117–20
  100. Michael E, Zhekov S, McCray R. et al. 2002. Ap. J. 574:166–78
  101. Morris T, Podsiadlowski P. 2007. Science 315:1103–5
  102. Morris T, Podsiadlowski P. 2009. MNRAS 399:515–38
  103. Ng CY, Gaensler BM, Staveley-Smith L. et al. 2008. Ap. J. 684:481–97
  104. Ng CY, Zanardo G, Potter TM. et al. 2013. Ap. J. 777:131
  105. Nisenson P, Papaliolios C, Karovska M, Noyes R. 1987. Ap. J. Lett. 320:L15–18
  106. Nota A, Pasquali A, Clampin M. et al. 1996. Ap. J. 473:946–62
  107. O'Dell CR, Handron KD. 1996. Astron. J. 111:1630–779
  108. Orlando S, Miceli M, Pumo ML, Bocchino F. 2015. Ap. J. 810:168–84
  109. Panagia N, Gilmozzi R, Macchetto F, Adorf HM, Kirshner RP. 1991. Ap. J. Lett. 380:L23–26
  110. Papaliolios C, Karovska M, Koechlin L. et al. 1989. Nature 338:565–66
  111. Pastorello A, Pumo ML, Navasardyan H. et al. 2012. Astron. Astrophys. 537:A141
  112. Pinto PA, Woosley SE, Ensman LM. 1988. Ap. J. Lett. 331:L101–4
  113. Potter TM, Staveley-Smith L, Reville B. et al. 2014. Ap. J. 794:174
  114. Pun CSJ, Michael E, Zhekov SA. et al. 2002. Ap. J. 572:906–31
  115. Racusin JL, Park S, Zhekov S. et al. 2009. Ap. J. 703:1752–59
  116. Sana H, de Mink SE, de Koter A. et al. 2013. 370 Years of Astronomy in Utrecht G Pugliese, A de Koter, M Wijburg ASP Conf. Ser. 470141–45 San Francisco: ASP
  117. Sapir N, Halbertal D. 2014. Ap. J. 796:145
  118. Sapir N, Katz B, Waxman E. 2013. Ap. J. 774:79
  119. Sarangi A, Cherchneff I. 2015. Astron. Astrophys. 575:A95
  120. Seitenzahl IR, Taubenberger S, Sim SA. 2009. MNRAS 400:531–35
  121. Sinnott B, Welch DL, Rest A, Sutherland PG, Bergmann M. 2013. Ap. J. 767:45
  122. Smartt SJ, Lennon DJ, Kudritzki RP. et al. 2002. Astron. Astrophys. 391:979–91
  123. Smith N. 2007. Astron. J. 133:1034–40
  124. Smith N, Arnett WD, Bally J, Ginsburg A, Filippenko AV. 2013. MNRAS 429:1324–41
  125. Smith N, Zhekov SA, Heng K. et al. 2005. Ap. J. Lett. 635:L41–44
  126. Soker N. 1998. Ap. J. 496:833–41
  127. Sonneborn G, Fransson C, Lundqvist P. et al. 1997. Ap. J. 477:848–64
  128. Sonneborn G, Pun CSJ, Kimble RA. et al. 1998. Ap. J. Lett. 492:L139–42
  129. Spyromilio J, Meikle WPS, Allen DA. 1990. MNRAS 242:669–73
  130. Staveley-Smith L, Potter TM, Zanardo G, Gaensler BM, Ng CY. 2014. Supernova Environmental Impacts, Proc. IAU Symp. 296 A Ray, RA McCray 915–22 Cambridge, UK: Cambridge Univ. Press
  131. Sturm R, Haberl F, Aschenbach B, Hasinger G. 2010. Astron. Astrophys. 515:A5
  132. Sukhbold T, Ertl T, Woosley SE, Brown JM, Janka HT. 2016. Ap. J. 82138
  133. Sugerman BEK, Crotts APS, Kunkel WE, Heathcote SR, Lawrence SS. 2005. Ap. J. Suppl. 159:60–99
  134. Taddia F, Sollerman J, Razza A. et al. 2013. Astron. Astrophys. 558:A143
  135. Taddia F, Stritzinger MD, Sollerman J. et al. 2012. Astron. Astrophys. 537:A140
  136. Tanaka T, Washimi H. 2002. Science 296:321–22
  137. Turtle AJ, Campbell-Wilson D, Manchester RN, Staveley-Smith L, Kesteven MJ. 1990. IAU Circ. 5086:2
  138. Tziamtzis A, Lundqvist P, Gröningsson P, Nasoudi-Shoar S. 2011. Astron. Astrophys. 527:A35
  139. Utrobin V, Wongwathanarat A, Janka HT, Müller E. 2015. Astron. Astrophys. 581:40–58
  140. Utrobin VP, Chugai NN. 2005. Astron. Astrophys. 441:271–81
  141. Wang L, Wheeler JC, Höflich P. et al. 2002. Ap. J. 579:671–77
  142. Wesson R, Barlow MJ, Matsuura M, Ercolano B. 2015. MNRAS 446:2089–101
  143. Wongwathanarat A, Müller E, Janka HT. 2015. Astron. Astrophys. 577:A48
  144. Wooden DH, Rank DM, Bregman JD. et al. 1993. Ap. J. Suppl. 88:477–507
  145. Woosley SE. 1988. Ap. J. 330:218–53
  146. Woosley SE, Hartmann D, Pinto PA. 1989. Ap. J. 346:395–404
  147. Xu Y, McCray R. 1991. Ap. J. 375:190–201
  148. Zanardo G, Staveley-Smith L, Ball L. et al. 2010. Ap. J. 710:1515–29
  149. Zanardo G, Staveley-Smith L, Indebetouw R. et al. 2014. Ap. J. 796:82
  150. Zhekov SA, McCray R, Borkowski KJ, Burrows DN, Park S. 2005. Ap. J. Lett. 628:L127–30
  151. Zhekov SA, McCray R, Borkowski KJ, Burrows DN, Park S. 2006. Ap. J. 645:293–302
/content/journals/10.1146/annurev-astro-082615-105405
Loading
/content/journals/10.1146/annurev-astro-082615-105405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error