1932

Abstract

The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034142
2015-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034142.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034142&mimeType=html&fmt=ahah

Literature Cited

  1. Ellis RJ. 1.  2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–19 [Google Scholar]
  2. McGuffee SR, Elcock AH. 2.  2010. Diffusion, crowding and protein stability in a dynamic molecular model of the bacterial cytoplasm. PLOS Comput. Biol. 6:e1000694 [Google Scholar]
  3. Levy ED, De S, Teichmann SA. 3.  2012. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. PNAS 109:20461–66 [Google Scholar]
  4. Landry CR, Levy ED, Abd Rabbo D, Tarassov K, Michnick SW. 4.  2013. Extracting insight from noisy cellular networks. Cell 155:983–89 [Google Scholar]
  5. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. 5.  2010. Transient protein–protein interactions: structural, functional, and network properties. Structure 18:1233–43 [Google Scholar]
  6. Tompa P, Davey NE, Gibson TJ, Babu MM. 6.  2014. A million peptide motifs for the molecular biologist. Mol. Cell 55:161–69 [Google Scholar]
  7. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X. 7.  et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–43 [Google Scholar]
  8. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M. 8.  et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–36 [Google Scholar]
  9. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL. 9.  et al. 2012. A census of human soluble protein complexes. Cell 150:1068–81 [Google Scholar]
  10. Bader GD, Hogue CW. 10.  2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4:2 [Google Scholar]
  11. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN. 11.  et al. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–42 [Google Scholar]
  12. Khafizov K, Madrid-Aliste C, Almo SC, Fiser A. 12.  2014. Trends in structural coverage of the protein universe and the impact of the protein structure initiative. PNAS 111:3733–38 [Google Scholar]
  13. Klotz IM, Langebman N, Dahnall D. 13.  1970. Quaternary structure of proteins. Annu. Rev. Biochem. 39:25–62 [Google Scholar]
  14. Goodsell DS, Olson AJ. 14.  2000. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29:105–53 [Google Scholar]
  15. Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA. 15.  2006. 3D complex: a structural classification of protein complexes. PLOS Comput. Biol. 2:e155 [Google Scholar]
  16. Venkatakrishnan AJ, Levy ED, Teichmann SA. 16.  2010. Homomeric protein complexes: evolution and assembly. Biochem. Soc. Trans. 38:879–82 [Google Scholar]
  17. Kleywegt GJ. 17.  1996. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52:842–57 [Google Scholar]
  18. Godoy-Ruiz R, Krejcirikova A, Gallagher DT, Tugarinov V. 18.  2011. Solution NMR evidence for symmetry in functionally or crystallographically asymmetric homodimers. J. Am. Chem. Soc. 133:19578–81 [Google Scholar]
  19. Sobolevsky AI, Rosconi MP, Gouaux E. 19.  2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–56 [Google Scholar]
  20. Perica T, Marsh JA, Sousa FL, Natan E, Colwell LJ. 20.  et al. 2012. The emergence of protein complexes: quaternary structure, dynamics and allostery. Biochem. Soc. Trans. 40:475–91 [Google Scholar]
  21. Marsh JA, Teichmann SA. 21.  2014. Protein flexibility facilitates quaternary structure assembly and evolution. PLOS Biol. 12:e1001870 [Google Scholar]
  22. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM. 22.  et al. 2008. An in vivo map of the yeast protein interactome. Science 320:1465–70 [Google Scholar]
  23. Kühner S, Van Noort V, Betts MJ, Leo-Macias A, Batisse C. 23.  et al. 2009. Proteome organization in a genome-reduced bacterium. Science 326:1235–40 [Google Scholar]
  24. Tama F, Sanejouand YH. 24.  2001. Conformational change of proteins arising from normal mode calculations. Protein Eng. 14:1–6 [Google Scholar]
  25. Tobi D, Bahar I. 25.  2005. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. PNAS 102:18908–13 [Google Scholar]
  26. Dobbins SE, Lesk VI, Sternberg MJE. 26.  2008. Insights into protein flexibility: the relationship between normal modes and conformational change upon protein–protein docking. PNAS 105:10390–95 [Google Scholar]
  27. Bakan A, Bahar I. 27.  2009. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. PNAS 106:14349–54 [Google Scholar]
  28. Marsh JA, Teichmann SA. 28.  2011. Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 19:859–67 [Google Scholar]
  29. Marsh JA, Teichmann SA, Forman-Kay JD. 29.  2012. Probing the diverse landscape of protein flexibility and binding. Curr. Opin. Struct. Biol. 22:643–50 [Google Scholar]
  30. Yu L, Reutzel-Edens SM, Mitchell CA. 30.  2000. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org. Process Res. Dev. 4:396–402 [Google Scholar]
  31. Marsh JA. 31.  2013. Buried and accessible surface area control intrinsic protein flexibility. J. Mol. Biol. 425:3250–63 [Google Scholar]
  32. Levy ED. 32.  2007. PiQSi: protein quaternary structure investigation. Structure 15:1364–67 [Google Scholar]
  33. Stein A, Rueda M, Panjkovich A, Orozco M, Aloy P. 33.  2011. A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks. Structure 19:881–89 [Google Scholar]
  34. Wang L, Zhao F, Li M, Zhang H, Gao Y. 34.  et al. 2011. Conformational changes of rBTI from buckwheat upon binding to trypsin: implications for the role of the P8′ residue in the potato inhibitor I family. PLOS ONE 6:e20950 [Google Scholar]
  35. Bartova I, Koca J, Otyepka M. 35.  2008. Functional flexibility of human cyclin-dependent kinase 2 and its evolutionary conservation. Protein Sci. 17:22–33 [Google Scholar]
  36. Cheng K-Y, Noble MEM, Skamnaki V, Brown NR, Lowe ED. 36.  et al. 2006. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. J. Biol. Chem. 281:23167–79 [Google Scholar]
  37. Wright PE, Dyson HJ. 37.  1999. Intrinsically unstructured proteins: re-assessing the protein structure–function paradigm. J. Mol. Biol. 293:321–31 [Google Scholar]
  38. Dyson HJ, Wright PE. 38.  2002. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12:54–60 [Google Scholar]
  39. Hegyi H, Schad E, Tompa P. 39.  2007. Structural disorder promotes assembly of protein complexes. BMC Struct. Biol. 7:65 [Google Scholar]
  40. Marsh JA, Dancheck B, Ragusa MJ, Allaire M, Forman-Kay JD, Peti W. 40.  2010. Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators. Structure 18:1094–103 [Google Scholar]
  41. Krzeminski M, Marsh JA, Neale C, Choy W-Y, Forman-Kay JD. 41.  2013. Characterization of disordered proteins with ENSEMBLE. Bioinformatics 29:398–99 [Google Scholar]
  42. Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R, Peti W. 42.  2010. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat. Struct. Mol. Biol. 17:459–64 [Google Scholar]
  43. Dill KA, Chan HS. 43.  1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10–19 [Google Scholar]
  44. Hernández H, Robinson CV. 44.  2007. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2:715–26 [Google Scholar]
  45. Ruotolo BT, Benesch JLP, Sandercock AM, Hyung S-J, Robinson CV. 45.  2008. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3:1139–52 [Google Scholar]
  46. Hall Z, Hernández H, Marsh JA, Teichmann SA, Robinson CV. 46.  2013. The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 21:1325–37 [Google Scholar]
  47. Levy ED, Erba EB, Robinson CV, Teichmann SA. 47.  2008. Assembly reflects evolution of protein complexes. Nature 453:1262–65 [Google Scholar]
  48. Hall Z, Politis A, Robinson CV. 48.  2012. Structural modeling of heteromeric protein complexes from disassembly pathways and ion mobility–mass spectrometry. Structure 20:1596–609 [Google Scholar]
  49. Marsh JA, Hernández H, Hall Z, Ahnert S, Perica T. 49.  et al. 2013. Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153:461–70 [Google Scholar]
  50. Talkington MWT, Siuzdak G, Williamson JR. 50.  2005. An assembly landscape for the 30S ribosomal subunit. Nature 438:628–32 [Google Scholar]
  51. Brooijmans N, Sharp KA, Kuntz ID. 51.  2002. Stability of macromolecular complexes. Proteins 48:645–53 [Google Scholar]
  52. Marsh JA, Teichmann SA. 52.  2014. Parallel dynamics and evolution: protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. BioEssays 36:209–18 [Google Scholar]
  53. Mittag T, Kay LE, Forman-Kay JD. 53.  2010. Protein dynamics and conformational disorder in molecular recognition. J. Mol. Recognit. 23:105–16 [Google Scholar]
  54. Tompa P, Fuxreiter M. 54.  2008. Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33:2–8 [Google Scholar]
  55. Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH. 55.  et al. 2014. Disordered proteinaceous machines. Chem. Rev. 114:6806–43 [Google Scholar]
  56. Alberts B. 56.  1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–94 [Google Scholar]
  57. Stock D, Leslie AG, Walker JE. 57.  1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–5 [Google Scholar]
  58. Ditzel L, Löwe J, Stock D, Stetter KO, Huber H. 58.  et al. 1998. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–38 [Google Scholar]
  59. Cramer P, Bushnell DA, Kornberg RD. 59.  2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–76 [Google Scholar]
  60. Hahn S. 60.  2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11:394–403 [Google Scholar]
  61. Sprangers R, Velyvis A, Kay LE. 61.  2007. Solution NMR of supramolecular complexes: providing new insights into function. Nat. Methods 4:697–703 [Google Scholar]
  62. Sprangers R, Kay LE. 62.  2007. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–22 [Google Scholar]
  63. Religa TL, Sprangers R, Kay LE. 63.  2010. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102 [Google Scholar]
  64. Latham MP, Sekhar A, Kay LE. 64.  2014. Understanding the mechanism of proteasome 20S core particle gating. PNAS 111:5532–37 [Google Scholar]
  65. Audin MJC, Dorn G, Fromm SA, Reiss K, Schütz S. 65.  et al. 2013. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew. Chem. Int. Ed. Engl. 52:8312–16 [Google Scholar]
  66. Nourse A, Mittag T. 66.  2014. The cytoplasmic domain of the T-cell receptor ζ subunit does not form disordered dimers. J. Mol. Biol. 426:62–70 [Google Scholar]
  67. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR. 67.  et al. 2008. Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. PNAS 105:5762–67 [Google Scholar]
  68. Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H. 68.  et al. 2010. Structure/function implications in a dynamic complex of the intrinsically disordered SIC1 with the CDC4 subunit of an SCF ubiquitin ligase. Structure 18:494–506 [Google Scholar]
  69. Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-Zahrani A. 69.  et al. 2013. Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra- and intermolecular interactions. PNAS 110:e4427–36 [Google Scholar]
  70. Baker JMR, Hudson RP, Kanelis V, Choy W-Y, Thibodeau PH. 70.  et al. 2007. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 14:738–45 [Google Scholar]
  71. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC. 71.  2000. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275–84 [Google Scholar]
  72. Jaffe EK. 72.  2005. Morpheeins—a new structural paradigm for allosteric regulation. Trends Biochem. Sci. 30:490–97 [Google Scholar]
  73. Dey S, Pal A, Chakrabarti P, Janin J. 73.  2010. The subunit interfaces of weakly associated homodimeric proteins. J. Mol. Biol. 398:146–60 [Google Scholar]
  74. Haley DA, Horwitz J, Stewart PL. 74.  1998. The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277:27–35 [Google Scholar]
  75. Aquilina JA, Benesch JLP, Bateman OA, Slingsby C, Robinson CV. 75.  2003. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. PNAS 100:10611–16 [Google Scholar]
  76. Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E. 76.  et al. 2010. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. PNAS 107:2007–12 [Google Scholar]
  77. Perica T, Chothia C, Teichmann SA. 77.  2012. Evolution of oligomeric state through geometric coupling of protein interfaces. PNAS 109:8127–32 [Google Scholar]
  78. Kim WK, Henschel A, Winter C, Schroeder M. 78.  2006. The many faces of protein–protein interactions: a compendium of interface geometry. PLOS Comput. Biol. 2:e124 [Google Scholar]
  79. Dayhoff JE, Shoemaker BA, Bryant SH, Panchenko AR. 79.  2010. Evolution of protein binding modes in homooligomers. J. Mol. Biol. 395:860–70 [Google Scholar]
  80. Malay AD, Allen KN, Tolan DR. 80.  2005. Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. J. Mol. Biol. 347:135–44 [Google Scholar]
  81. Nishi H, Ota M. 81.  2010. Amino acid substitutions at protein–protein interfaces that modulate the oligomeric state. Proteins 78:1563–74 [Google Scholar]
  82. Bennett MJ, Schlunegger MP, Eisenberg D. 82.  1995. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci. 4:2455–68 [Google Scholar]
  83. Huang Y, Cao H, Liu Z. 83.  2012. Three-dimensional domain swapping in the protein structure space. Proteins 80:1610–19 [Google Scholar]
  84. Mackinnon SS, Malevanets A, Wodak SJ. 84.  2013. Intertwined associations in structures of homooligomeric proteins. Structure 21:638–49 [Google Scholar]
  85. Akiva E, Itzhaki Z, Margalit H. 85.  2008. Built-in loops allow versatility in domain–domain interactions: lessons from self-interacting domains. PNAS 105:13292–97 [Google Scholar]
  86. Hashimoto K, Panchenko AR. 86.  2010. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. PNAS 107:20352–57 [Google Scholar]
  87. Hashimoto K, Madej T, Bryant SH, Panchenko AR. 87.  2010. Functional states of homooligomers: insights from the evolution of glycosyltransferases. J. Mol. Biol. 399:196–206 [Google Scholar]
  88. Nishi H, Koike R, Ota M. 88.  2011. Cover and spacer insertions: small nonhydrophobic accessories that assist protein oligomerization. Proteins 79:2372–79 [Google Scholar]
  89. Archibald JM, Logsdon JM Jr, Doolittle WF. 89.  1999. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9:1053–56 [Google Scholar]
  90. Archibald JM, Logsdon JM Jr, Doolittle WF. 90.  2000. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol. Biol. Evol. 17:1456–66 [Google Scholar]
  91. Ispolatov I, Yuryev A, Mazo I, Maslov S. 91.  2005. Binding properties and evolution of homodimers in protein–protein interaction networks. Nucleic Acids Res. 33:3629–35 [Google Scholar]
  92. Pereira-Leal JB, Levy ED, Kamp C, Teichmann SA. 92.  2007. Evolution of protein complexes by duplication of homomeric interactions. Genome Biol. 8:R51 [Google Scholar]
  93. Reid AJ, Ranea JA, Orengo CA. 93.  2010. Comparative evolutionary analysis of protein complexes in E. coli and yeast. BMC Genomics 11:79 [Google Scholar]
  94. Gabaldón T, Rainey D, Huynen MA. 94.  2005. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 348:857–70 [Google Scholar]
  95. Van der Sluis EO, Driessen AJM. 95.  2006. Stepwise evolution of the sec machinery in Proteobacteria. Trends Microbiol. 14:105–8 [Google Scholar]
  96. Friedrich T. 96.  2001. Complex I: a chimaera of a redox and conformation-driven proton pump?. J. Bioenerg. Biomembr. 33:169–77 [Google Scholar]
  97. Mathiesen C, Hägerhäll C. 97.  2003. The “antiporter module” of respiratory chain complex I includes the MRPC/NUOK subunit—a revision of the modular evolution scheme. FEBS Lett. 549:7–13 [Google Scholar]
  98. Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP. 98.  et al. 2001. Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs.”. Genome Res. 11:2120–26 [Google Scholar]
  99. Aloy P, Ceulemans H, Stark A, Russell RB. 99.  2003. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332:989–98 [Google Scholar]
  100. Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y. 100.  et al. 2004. Annotation transfer between genomes: protein–protein interologs and protein–DNA regulogs. Genome Res. 14:1107–18 [Google Scholar]
  101. Beltrao P, Serrano L. 101.  2007. Specificity and evolvability in eukaryotic protein interaction networks. PLOS Comput. Biol. 3:e25 [Google Scholar]
  102. Lewis ACF, Jones NS, Porter MA, Deane CM. 102.  2012. What evidence is there for the homology of protein–protein interactions?. PLOS Comput. Biol. 8:e1002645 [Google Scholar]
  103. Andreani J, Guerois R. 103.  2014. Evolution of protein interactions: from interactomes to interfaces. Arch. Biochem. Biophys. 554:65–75 [Google Scholar]
  104. Van Dam TJP, Snel B. 104.  2008. Protein complex evolution does not involve extensive network rewiring. PLOS Comput. Biol. 4:e1000132 [Google Scholar]
  105. Björklund AK, Ekman D, Light S, Frey-Skött J, Elofsson A. 105.  2005. Domain rearrangements in protein evolution. J. Mol. Biol. 353:911–23 [Google Scholar]
  106. Pasek S, Risler J-L, Brézellec P. 106.  2006. Gene fusion/fission is a major contributor to evolution of multi-domain bacterial proteins. Bioinformatics 22:1418–23 [Google Scholar]
  107. Buljan M, Frankish A, Bateman A. 107.  2010. Quantifying the mechanisms of domain gain in animal proteins. Genome Biol. 11:R74 [Google Scholar]
  108. Marsh JA, Teichmann SA. 108.  2010. How do proteins gain new domains?. Genome Biol. 11:126 [Google Scholar]
  109. Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. 109.  1999. Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–53 [Google Scholar]
  110. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. 110.  1999. Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90 [Google Scholar]
  111. Kummerfeld SK, Teichmann SA. 111.  2005. Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet. 21:25–30 [Google Scholar]
  112. Fong JH, Geer LY, Panchenko AR, Bryant SH. 112.  2007. Modeling the evolution of protein domain architectures using maximum parsimony. J. Mol. Biol. 366:307–15 [Google Scholar]
  113. Dobson RCJ, Valegård K, Gerrard JA. 113.  2004. The crystal structure of three site-directed mutants of Escherichia coli dihydrodipicolinate synthase: further evidence for a catalytic triad. J. Mol. Biol. 338:329–39 [Google Scholar]
  114. Navia MA, Fitzgerald PMD, McKeever BM, Leu C-T, Heimbach JC. 114.  et al. 1989. Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615–20 [Google Scholar]
  115. Heldin C-H. 115.  1995. Dimerization of cell surface receptors in signal transduction. Cell 80:213–23 [Google Scholar]
  116. Cunningham BC, Ultsch M, Vos AD, Mulkerrin MG, Clauser KR, Wells JA. 116.  1991. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254:821–25 [Google Scholar]
  117. Gunasekaran K, Ma B, Nussinov R. 117.  2004. Is allostery an intrinsic property of all dynamic proteins?. Proteins 57:433–43 [Google Scholar]
  118. Monod J, Wyman J, Changeux J-P. 118.  1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118 [Google Scholar]
  119. Koshland DE, Némethy G, Filmer D. 119.  1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–85 [Google Scholar]
  120. Crick FHC, Watson JD. 120.  1956. Structure of small viruses. Nature 177:473–75 [Google Scholar]
  121. Bershtein S, Mu W, Wu W, Shakhnovich EI. 121.  2012. Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations. PNAS 109:4857–62 [Google Scholar]
  122. Yang J-R, Liao B-Y, Zhuang S-M, Zhang J. 122.  2012. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. PNAS 109:e831–40 [Google Scholar]
  123. Lynch M. 123.  2013. Evolutionary diversification of the multimeric states of proteins. PNAS 110:e2821–28 [Google Scholar]
  124. Lynch M. 124.  2012. The evolution of multimeric protein assemblages. Mol. Biol. Evol. 29:1353–66 [Google Scholar]
  125. Lukatsky DB, Shakhnovich BE, Mintseris J, Shakhnovich EI. 125.  2007. Structural similarity enhances interaction propensity of proteins. J. Mol. Biol. 365:1596–606 [Google Scholar]
  126. André I, Strauss CEM, Kaplan DB, Bradley P, Baker D. 126.  2008. Emergence of symmetry in homooligomeric biological assemblies. PNAS 105:16148–52 [Google Scholar]
  127. Durbin SD, Feher G. 127.  1996. Protein crystallization. Annu. Rev. Phys. Chem. 47:171–204 [Google Scholar]
  128. Knowles TPJ, Vendruscolo M, Dobson CM. 128.  2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15:384–96 [Google Scholar]
  129. Ruano-Rubio V, Fares MA. 129.  2007. Testing the neutral fixation of hetero-oligomerism in the archaeal chaperonin CCT. Mol. Biol. Evol. 24:1384–96 [Google Scholar]
  130. Doolittle WF. 130.  2012. Evolutionary biology: a ratchet for protein complexity. Nature 481:270–71 [Google Scholar]
  131. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. 131.  2012. Evolution of increased complexity in a molecular machine. Nature 481:360–64 [Google Scholar]
  132. Lynch M. 132.  2007. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS 104:Suppl. 18597–604 [Google Scholar]
  133. Fernández A, Lynch M. 133.  2011. Non-adaptive origins of interactome complexity. Nature 474:502–5 [Google Scholar]
  134. Alber F, Förster F, Korkin D, Topf M, Sali A. 134.  2008. Integrating diverse data for structure determination of macromolecular assemblies. Annu. Rev. Biochem. 77:443–77 [Google Scholar]
  135. Robinson CV, Sali A, Baumeister W. 135.  2007. The molecular sociology of the cell. Nature 450:973–82 [Google Scholar]
  136. Mukherjee S, Zhang Y. 136.  2011. Protein–protein complex structure predictions by multimeric threading and template recombination. Structure 19:955–66 [Google Scholar]
  137. Stein A, Mosca R, Aloy P. 137.  2011. Three-dimensional modeling of protein interactions and complexes is going 'omics. Curr. Opin. Struct. Biol. 21:200–8 [Google Scholar]
  138. Kundrotas PJ, Zhu Z, Janin J, Vakser IA. 138.  2012. Templates are available to model nearly all complexes of structurally characterized proteins. PNAS 109:9438–41 [Google Scholar]
  139. Mosca R, Céol A, Aloy P. 139.  2013. Interactome3D: adding structural details to protein networks. Nat. Methods 10:47–53 [Google Scholar]
  140. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ. 140.  2005. Prediction of multimolecular assemblies by multiple docking. J. Mol. Biol. 349:435–47 [Google Scholar]
  141. Esquivel-Rodríguez J, Yang YD, Kihara D. 141.  2012. Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins 80:1818–33 [Google Scholar]
  142. Rappsilber J. 142.  2011. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 173:530–40 [Google Scholar]
  143. Lučić V, Rigort A, Baumeister W. 143.  2013. Cryo–electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:407–19 [Google Scholar]
  144. Duncan CDS, Mata J. 144.  2011. Widespread cotranslational formation of protein complexes. PLOS Genet. 7:e1002398 [Google Scholar]
  145. David A, Razali R, Wass MN, Sternberg MJE. 145.  2012. Protein–protein interaction sites are hot spots for disease-associated nonsynonymous SNPs. Hum. Mutat. 33:359–63 [Google Scholar]
  146. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, Yu H. 146.  2012. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol. 30:159–64 [Google Scholar]
  147. Lai Y-T, King NP, Yeates TO. 147.  2012. Principles for designing ordered protein assemblies. Trends Cell Biol. 22:653–61 [Google Scholar]
  148. Jubb H, Higueruelo AP, Winter A, Blundell TL. 148.  2012. Structural biology and drug discovery for protein–protein interactions. Trends Pharmacol. Sci. 33:241–48 [Google Scholar]
  149. Kim B, Eggel A, Tarchevskaya SS, Vogel M, Prinz H, Jardetzky TS. 149.  2012. Accelerated disassembly of IgE–receptor complexes by a disruptive macromolecular inhibitor. Nature 491:613–17 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034142
Loading
/content/journals/10.1146/annurev-biochem-060614-034142
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error