1932

Abstract

Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo–active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035708
2014-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035708.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035708&mimeType=html&fmt=ahah

Literature Cited

  1. Hill R, Needham J. 1.  1970. The Chemistry of Life: Eight Lectures on the History of Biochemistry Cambridge, UK: Cambridge Univ Press.213 [Google Scholar]
  2. Austin CP, Brady LS, Insel TR, Collins FS. 2.  2004. NIH Molecular Libraries Initiative. Science 306:1138–39 [Google Scholar]
  3. Weiss WA, Taylor SS, Shokat KM. 3.  2007. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat. Chem. Biol. 3:739–44 [Google Scholar]
  4. Knight ZA, Shokat KM. 4.  2007. Chemical genetics: where genetics and pharmacology meet. Cell 128:425–30 [Google Scholar]
  5. Schirle M, Bantscheff M, Kuster B. 5.  2012. Mass spectrometry–based proteomics in preclinical drug discovery. Chem. Biol. 19:72–84 [Google Scholar]
  6. Yates JR, Ruse CI, Nakorchevsky A.6.  2009. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11:49–79 [Google Scholar]
  7. Bensimon A, Heck AJR, Aebersold R. 7.  2012. Mass spectrometry–based proteomics and network biology. Annu. Rev. Biochem. 81:379–405 [Google Scholar]
  8. Cox J, Mann M. 8.  2011. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80:273–99 [Google Scholar]
  9. Wagner JA.9.  2008. Strategic approach to fit-for-purpose biomarkers in drug development. Annu. Rev. Pharmacol. Toxicol. 48:631–51 [Google Scholar]
  10. Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M. 10.  2010. Extensive in vivo metabolite–protein interactions revealed by large-scale systematic analyses. Cell 143:639–50 [Google Scholar]
  11. Lee J, Bogyo M. 11.  2013. Target deconvolution techniques in modern phenotypic profiling. Curr. Opin. Chem. Biol. 17:118–26 [Google Scholar]
  12. Sams-Dodd F.12.  2005. Target-based drug discovery: Is something wrong?. Drug Discov. Today 10:139–47 [Google Scholar]
  13. Adibekian A, Martin BR, Wang C, Hsu KL, Bachovchin DA. 13.  et al. 2011. Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. Nat. Chem. Biol. 7:469–78 [Google Scholar]
  14. Bachovchin DA, Ji T, Li W, Simon GM, Blankman JL. 14.  et al. 2010. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc. Natl. Acad. Sci. USA 107:20941–46 [Google Scholar]
  15. Goldstein DM, Gray NS, Zarrinkar PP. 15.  2008. High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discov. 7:391–97 [Google Scholar]
  16. Zheng W, Thorne N, McKew JC. 16.  2013. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18:1067–73 [Google Scholar]
  17. Burdine L, Kodadek T. 17.  2004. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11:593–97 [Google Scholar]
  18. Leslie B, Hergenrother P. 18.  2008. Identification of the cellular targets of bioactive small organic molecules using affinity reagents. Chem. Soc. Rev. 37:1347–60 [Google Scholar]
  19. Ziegler S, Pries V, Hedberg C, Waldmann H. 19.  2013. Target identification for small bioactive molecules: finding the needle in the haystack. Angew. Chem. Int. Ed. Engl. 52:2744–92 [Google Scholar]
  20. Raj L, Ide T, Gurkar AU, Foley M, Schenone M. 20.  et al. 2011. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–34 [Google Scholar]
  21. Chen S, Do JT, Zhang Q, Yao S, Yan F. 21.  et al. 2006. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl. Acad. Sci. USA 103:17266–71 [Google Scholar]
  22. Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ. 22.  et al. 2010. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl. Acad. Sci. USA 107:12617–22 [Google Scholar]
  23. Evans MJ, Saghatelian A, Sorensen EJ, Cravatt BF. 23.  2005. Target discovery in small-molecule cell–based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23:1303–7 [Google Scholar]
  24. Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F. 24.  et al. 2008. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 4:203–13 [Google Scholar]
  25. Hall CI, Reese ML, Weerapana E, Child MA, Bowyer PW. 25.  et al. 2011. Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc. Natl. Acad. Sci. USA 108:10568–73 [Google Scholar]
  26. Tam Dang TH, de la Riva L, Fagan RP, Storck EM, Heal WP. 26.  et al. 2010. Chemical probes of surface layer biogenesis in Clostridium difficile. ACS Chem. Biol. 5:279–85 [Google Scholar]
  27. Washburn MP, Wolters D, Yates JR 3rd. 27.  2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242–47 [Google Scholar]
  28. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. 28.  1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994–99 [Google Scholar]
  29. Mann M.29.  2006. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7:952–58 [Google Scholar]
  30. Petschnigg J, Snider J, Stagljar I. 30.  2011. Interactive proteomics research technologies: recent applications and advances. Curr. Opin. Biotechnol. 22:50–58 [Google Scholar]
  31. Stormo GD, Zhao Y. 31.  2010. Determining the specificity of protein–DNA interactions. Nat. Rev. Genet. 11:751–60 [Google Scholar]
  32. Witze ES, Old WM, Resing KA, Ahn NG. 32.  2007. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4:798–806 [Google Scholar]
  33. Zhao Y, Jensen ON. 33.  2009. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9:4632–41 [Google Scholar]
  34. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW. 34.  et al. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–91 [Google Scholar]
  35. Kingsmore SF.35.  2006. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov. 5:310–20 [Google Scholar]
  36. Lindsley JE, Rutter J. 36.  2006. Whence cometh the allosterome?. Proc. Natl. Acad. Sci. USA 103:10533–35 [Google Scholar]
  37. Kobe B, Kemp BE. 37.  1999. Active site-directed protein regulation. Nature 402:373–76 [Google Scholar]
  38. Otlewski J, Jelen F, Zakrzewska M, Oleksy A. 38.  2005. The many faces of protease–protein inhibitor interaction. EMBO J. 24:1303–10 [Google Scholar]
  39. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. 39.  2010. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61 [Google Scholar]
  40. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K. 40.  et al. 2004. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 101:13756–61 [Google Scholar]
  41. Heal WP, Tate EW. 41.  2012. Application of activity-based protein profiling to the study of microbial pathogenesis. Top. Curr. Chem. 324:115–35 [Google Scholar]
  42. Leung D, Hardouin C, Boger DL, Cravatt BF. 42.  2003. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21:687–91 [Google Scholar]
  43. Li W, Blankman JL, Cravatt BF. 43.  2007. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129:9594–95 [Google Scholar]
  44. Adam GC, Burbaum J, Kozarich JW, Patricelli MP, Cravatt BF. 44.  2004. Mapping enzyme active sites in complex proteomes. J. Am. Chem. Soc. 126:1363–68 [Google Scholar]
  45. Zeiler E, List A, Alte F, Gersch M, Wachtel R. 45.  et al. 2013. Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad. Proc. Natl. Acad. Sci. USA 110:11302–7 [Google Scholar]
  46. Bachovchin DA, Brown SJ, Rosen H, Cravatt BF. 46.  2009. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat. Biotechnol. 27:387–94 [Google Scholar]
  47. Chang JW, Moellering RE, Cravatt BF. 47.  2012. An activity-based imaging probe for the integral membrane hydrolase KIAA1363. Angew. Chem. Int. Ed. Engl. 51:966–70 [Google Scholar]
  48. Edgington LE, Berger AB, Blum G, Albrow VE, Paulick MG. 48.  et al. 2009. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat. Med. 15:967–73 [Google Scholar]
  49. Williams SJ, Hekmat O, Withers SG. 49.  2006. Synthesis and testing of mechanism-based protein-profiling probes for retaining endo-glycosidases. ChemBioChem 7:116–24 [Google Scholar]
  50. Vocadlo DJ, Bertozzi CR. 50.  2004. A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Ed. Engl. 43:5338–42 [Google Scholar]
  51. Stubbs K, Scaffidi A, Debowski AW, Mark BL, Stick RV, Vocadlo DJ. 51.  2008. Synthesis and use of mechanism-based protein-profiling probes for retaining β-D-glucosaminidases facilitate identification of Pseudomonas aeruginosa NagZ. J. Am. Chem. Soc. 130:327–35 [Google Scholar]
  52. Chauvigné-Hines LM, Anderson LN, Weaver HM, Brown JN, Koech PK. 52.  et al. 2012. Suite of activity-based probes for cellulose-degrading enzymes. J. Am. Chem. Soc. 134:20521–32 [Google Scholar]
  53. Kato D, Boatright KM, Berger AB, Nazif T, Blum G. 53.  et al. 2005. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1:33–38 [Google Scholar]
  54. Tsuboi K, Bachovchin DA, Speers AE, Spicer TP, Fernandez-Vega V. 54.  et al. 2011. Potent and selective inhibitors of glutathione S-transferase Ω1 that impair cancer drug resistance. J. Am. Chem. Soc. 133:16605–16 [Google Scholar]
  55. Greenbaum DC, Arnold WD, Lu F, Hayrapetian L, Baruch A. 55.  et al. 2002. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol. 9:1085–94 [Google Scholar]
  56. Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M. 56.  et al. 2007. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46:350–58 [Google Scholar]
  57. Tsai C-S, Yen H-Y, Lin M-I, Tsai T-I, Wang S-Y. 57.  et al. 2013. Cell-permeable probe for identification and imaging of sialidases. Proc. Natl. Acad. Sci. USA 110:2466–71 [Google Scholar]
  58. Liu Y, Patricelli MP, Cravatt BF. 58.  1999. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96:14694–99 [Google Scholar]
  59. Patricelli MP, Giang DK, Stamp LM, Burbaum JJ. 59.  2001. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1:1067–71 [Google Scholar]
  60. Blair JA, Rauh D, Kung C, Yun C-H, Fan Q-W. 60.  et al. 2007. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat. Chem. Biol. 3:229–38 [Google Scholar]
  61. Heal WP, Dang TH, Tate EW. 61.  2011. Activity-based probes: discovering new biology and new drug targets. Chem. Soc. Rev. 40:246–57 [Google Scholar]
  62. Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. 62.  2004. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101:10000–5 [Google Scholar]
  63. Salisbury CM, Cravatt BF. 63.  2007. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl. Acad. Sci. USA 104:1171–76 [Google Scholar]
  64. Sieber SA, Niessen S, Hoover HS, Cravatt BF. 64.  2006. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2:274–81 [Google Scholar]
  65. Salisbury CM, Cravatt BF. 65.  2008. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc. 130:2184–94 [Google Scholar]
  66. Ranjitkar P, Perera B, Swaney D, Swaney DL, Hari S. 66.  et al. 2012. Affinity-based probes based on type II kinase inhibitors. J. Am. Chem. Soc. 134:19017–25 [Google Scholar]
  67. Shi H, Zhang C-J, Chen GY, Yao SQ. 67.  2012. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 134:3001–14 [Google Scholar]
  68. Li Z, Hao P, Li L, Tan CYJ, Cheng X. 68.  et al. 2013. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. Engl. 52:8551–56 [Google Scholar]
  69. Cisar JS, Cravatt BF. 69.  2012. Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J. Am. Chem. Soc. 134:10385–88 [Google Scholar]
  70. George Cisar EA, Nguyen N, Rosen H. 70.  2013. A GTP affinity probe for proteomics highlights flexibility in purine nucleotide selectivity. J. Am. Chem. Soc. 135:4676–79 [Google Scholar]
  71. Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF. 71.  2013. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10:259–64 [Google Scholar]
  72. Kidd D, Liu Y, Cravatt BF. 72.  2001. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40:4005–15 [Google Scholar]
  73. Kumar S, Zhou B, Liang F, Wang W-Q, Huang Z, Zhang Z-Y. 73.  2004. Activity-based probes for protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 101:7943–48 [Google Scholar]
  74. Patricelli MP, Nomanbhoy TK, Wu J, Brown H, Zhou D. 74.  et al. 2011. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18:699–710 [Google Scholar]
  75. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. 75.  2001. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20:5187–96 [Google Scholar]
  76. Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA. 76.  et al. 2011. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18:1401–12 [Google Scholar]
  77. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD. 77.  et al. 2002. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9:1149–59 [Google Scholar]
  78. Wright AT, Song JD, Cravatt BF. 78.  2009. A suite of activity-based probes for human cytochrome P450 enzymes. J. Am. Chem. Soc. 131:10692–700 [Google Scholar]
  79. Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R. 79.  2012. Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew. Chem. Int. Ed. Engl. 51:7035–40 [Google Scholar]
  80. Rotili D, Altun M, Kawamura A, Wolf A, Fischer R. 80.  et al. 2011. A photoreactive small-molecule probe for 2-oxoglutarate oxygenases. Chem. Biol. 18:642–54 [Google Scholar]
  81. Böttcher T, Sieber S. 81.  2008. β-Lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew. Chem. Int. Ed. Engl. 47:4600–3 [Google Scholar]
  82. Adam GC, Sorensen E, Cravatt BF. 82.  2002. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20:805–9 [Google Scholar]
  83. Speers AE, Adam GC, Cravatt BF. 83.  2003. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125:4686–87 [Google Scholar]
  84. Speers AE, Cravatt BF. 84.  2004. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11:535–46 [Google Scholar]
  85. Adibekian A, Martin BR, Chang JW, Hsu KL, Tsuboi K. 85.  et al. 2012. Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J. Am. Chem. Soc. 134:10345–48 [Google Scholar]
  86. Chang JW, Cognetta AB III, Niphakis MJ, Cravatt BF. 86.  2013. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem. Biol. 8:1590–99 [Google Scholar]
  87. Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ. 87.  et al. 2009. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 16:411–20 [Google Scholar]
  88. Rostovtsev VV, Green LG, Fokin VV, Sharpless BK. 88.  2002. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41:2596–99 [Google Scholar]
  89. Blum G, Mullins SR, Keren K, Fonović M, Jedeszko C. 89.  et al. 2005. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol. 1:203–9 [Google Scholar]
  90. Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E. 90.  et al. 2004. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–53 [Google Scholar]
  91. Edgington LE, Verdoes M, Bogyo M. 91.  2011. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr. Opin. Chem. Biol. 15:798–805 [Google Scholar]
  92. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. 92.  2007. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3:668–77 [Google Scholar]
  93. Blum G, Weimer RM, Edgington LE, Adams W, Bogyo M. 93.  2009. Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS ONE 4:e6374 [Google Scholar]
  94. Lee J, Bogyo M. 94.  2010. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol. 5:233–43 [Google Scholar]
  95. Verdoes M, Oresic Bender K, Segal E, van der Linden WA, Syed S. 95.  et al. 2013. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135:14726–30 [Google Scholar]
  96. Verdoes M, Florea BI, Menendez-Benito V, Maynard CJ, Witte MD. 96.  et al. 2006. A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem. Biol. 13:1217–26 [Google Scholar]
  97. Kocaoglu O, Calvo RA, Sham LT, Cozy LM, Lanning BR. 97.  et al. 2012. Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. ACS Chem. Biol. 7:1746–53 [Google Scholar]
  98. Matthews PM, Rabiner EA, Passchier J, Gunn RN. 98.  2012. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73:175–86 [Google Scholar]
  99. Skaddan MB, Zhang LS, Johnson D, Zhu A, Zasadny KR. 99.  et al. 2012. The synthesis and in vivo evaluation of [18F]PF-9811: a novel PET ligand for imaging brain fatty acid amide hydrolase (FAAH). Nucl. Med. Biol. 39:1058–67 [Google Scholar]
  100. Wilson AA, Garcia A, Parkes J, Houle S, Tong J, Vasdev N. 100.  2011. [11C]CURB: evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography. Nucl. Med. Biol. 38:247–53 [Google Scholar]
  101. Ren G, Blum G, Verdoes M, Liu H, Syed S. 101.  et al. 2011. Non-invasive imaging of cysteine cathepsin activity in solid tumors using a 64Cu-labeled activity-based probe. PLoS ONE 6:e28029 [Google Scholar]
  102. Moellering RE, Cravatt BF. 102.  2012. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19:11–22 [Google Scholar]
  103. Berkers CR, Verdoes M, Lichtman E, Fiebiger E, Kessler BM. 103.  et al. 2005. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods 2:357–62 [Google Scholar]
  104. Bachovchin DA, Mohr JT, Speers AE, Wang C, Berlin JM. 104.  et al. 2011. Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc. Natl. Acad. Sci. USA 108:6811–16 [Google Scholar]
  105. Long JZ, Nomura DK, Cravatt BF. 105.  2009. Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem. Biol. 16:744–53 [Google Scholar]
  106. Ong S-E.106.  2012. The expanding field of SILAC. Anal. Bioanal. Chem. 404:967–76 [Google Scholar]
  107. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG. 107.  et al. 2012. An insight into iTRAQ: Where do we stand now?. Anal. Bioanal. Chem. 404:1011–27 [Google Scholar]
  108. Wolf EV, Zeißler A, Vosyka O, Zeiler E, Sieber S, Verhelst SHL. 108.  2013. A new class of rhomboid protease inhibitors discovered by activity-based fluorescence polarization. PLoS ONE 8e72307
  109. Lone AM, Bachovchin DA, Westwood DB, Speers AE, Spicer TP. 109.  et al. 2011. A substrate-free activity-based protein profiling screen for the discovery of selective PREPL inhibitors. J. Am. Chem. Soc. 133:11665–74 [Google Scholar]
  110. Dillon MB, Bachovchin DA, Brown SJ, Finn MG, Rosen H. 110.  et al. 2012. Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem. Biol. 7:1198–204 [Google Scholar]
  111. Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP. 111.  et al. 2010. A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem. Commun. 46:7175–77 [Google Scholar]
  112. Long JZ, Cravatt BF. 112.  2011. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111:6022–63 [Google Scholar]
  113. Bachovchin DA, Cravatt BF. 113.  2012. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat. Rev. Drug Discov. 11:52–68 [Google Scholar]
  114. Bonventre JV, Huang Z, Taheri MR, O'Leary E, Li E. 114.  et al. 1997. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–25 [Google Scholar]
  115. Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG. 115.  et al. 2011. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334:809–13 [Google Scholar]
  116. Lane RM, Potkin SG, Enz A. 116.  2006. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9:101–24 [Google Scholar]
  117. Merkel M, Eckel RH, Goldberg IJ. 117.  2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43:1997–2006 [Google Scholar]
  118. Davie EW, Ratnoff OD. 118.  1964. Waterfall sequence for intrinsic blood clotting. Science 145:1310–12 [Google Scholar]
  119. White MJ, Savaryn JP, Bretl DJ, He H, Penoske RM. 119.  et al. 2011. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS ONE 6:e18175 [Google Scholar]
  120. Dodson G, Wlodawer A. 120.  1998. Catalytic triads and their relatives. Trends Biochem. Sci. 23:347–52 [Google Scholar]
  121. Kraut J.121.  1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46:331–58 [Google Scholar]
  122. Simon GM, Cravatt BF. 122.  2010. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285:11051–55 [Google Scholar]
  123. Nomura DK, Dix MM, Cravatt BF. 123.  2010. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10:630–38 [Google Scholar]
  124. Blankman JL, Cravatt BF. 124.  2013. Chemical probes of endocannabinoid metabolism. Pharmacol. Rev. 65:849–71 [Google Scholar]
  125. Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK. 125.  et al. 2001. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98:9371–76 [Google Scholar]
  126. Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A. 126.  et al. 2003. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9:76–81 [Google Scholar]
  127. Li GL, Winter H, Arends R, Jay GW, Le V. 127.  et al. 2012. Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. Br. J. Clin. Pharmacol. 73:706–16 [Google Scholar]
  128. Ahn K, Smith SE, Liimatta MB, Beidler D, Sadagopan N. 128.  et al. 2011. Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and noninflammatory pain. J. Pharmacol. Exp. Ther. 338:114–24 [Google Scholar]
  129. Otrubova K, Ezzili C, Boger DL. 129.  2011. The discovery and development of inhibitors of fatty acid amide hydrolase (FAAH). Bioorg. Med. Chem. Lett. 21:4674–85 [Google Scholar]
  130. King AR, Duranti A, Tontini A, Rivara S, Rosengarth A. 130.  et al. 2007. URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. Chem. Biol. 14:1357–65 [Google Scholar]
  131. Saario SM, Salo OM, Nevalainen T, Poso A, Laitinen JT. 131.  et al. 2005. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem. Biol. 12:649–56 [Google Scholar]
  132. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D. 132.  et al. 2005. An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–12 [Google Scholar]
  133. Vandevoorde S, Jonsson KO, Labar G, Persson E, Lambert DM, Fowler CJ. 133.  2007. Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro. Br. J. Clin. Pharmacol. 150:186–91 [Google Scholar]
  134. Blankman JL, Simon GM, Cravatt BF. 134.  2007. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14:1347–56 [Google Scholar]
  135. Chang JW, Niphakis MJ, Lum KM, Cognetta AB III, Wang C. 135.  et al. 2012. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem. Biol. 19:579–88 [Google Scholar]
  136. Niphakis MJ, Cognetta AB III, Chang JW, Buczynski MW, Parsons LH. 136.  et al. 2013. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem. Neurosci. 4:1322–32 [Google Scholar]
  137. Aaltonen N, Savinainen JR, Ribas CR, Rönkkö J, Kuusisto A. 137.  et al. 2013. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase. Chem. Biol. 20:379–90 [Google Scholar]
  138. Kinsey SG, Long JZ, Cravatt BF, Lichtman AH. 138.  2010. Fatty acid amide hydrolase and monoacylglycerol lipase inhibitors produce anti-allodynic effects in mice through distinct cannabinoid receptor mechanisms. J. Pain 11:1420–28 [Google Scholar]
  139. Khasabova IA, Chandiramani A, Harding-Rose C, Simone DA, Seybold VS. 139.  2011. Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain. Pharmacol. Res. 64:60–67 [Google Scholar]
  140. Ignatowska-Jankowska BM, Ghosh S, Crowe MS, Kinsey SG, Niphakis MJ. 140.  et al. 2014. In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br. J. Pharmacol. 1711392–407
  141. Busquets-Garcia A, Puighermanal E, Pastor A, de la Torre R, Maldonado R, Ozaita A. 141.  2011. Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. Biol. Psychiatry 70:479–86 [Google Scholar]
  142. Kinsey SG, O'Neal S, Long JZ, Cravatt BF, Lichtman AH. 142.  2011. Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay. Pharmacol. Biochem. Behav. 98:21–27 [Google Scholar]
  143. Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B. 143.  et al. 2010. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat. Neurosci. 13:1113–19 [Google Scholar]
  144. Chanda PK, Gao Y, Mark L, Btesh J, Strassle BW. 144.  et al. 2010. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol. Pharmacol. 78:996–1003 [Google Scholar]
  145. Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M. 145.  et al. 2011. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J. Biol. Chem. 286:17467–77 [Google Scholar]
  146. Lanoir J, Hilaire G, Seif I. 146.  2006. Reduced density of functional 5-HT1A receptors in the brain, medulla and spinal cord of monoamine oxidase A knockout mouse neonates. J. Comp. Neurol. 495:607–23 [Google Scholar]
  147. Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE. 147.  et al. 2013. Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1–mediated antinociceptive and gastroprotective effects. J. Pharmacol. Exp. Ther. 345:492–501 [Google Scholar]
  148. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG. 148.  et al. 2003. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163:463–68 [Google Scholar]
  149. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C. 149.  et al. 2010. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30:2017–24 [Google Scholar]
  150. Hoover HS, Blankman JL, Niessen S, Cravatt BF. 150.  2008. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg. Med. Chem. Lett. 18:5838–41 [Google Scholar]
  151. Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C. 151.  et al. 2012. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer's disease. Cell Rep. 1:617–23 [Google Scholar]
  152. Hermanson DJ, Hartley ND, Gamble-George J, Brown N, Shonesy BC. 152.  et al. 2013. Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat. Neurosci. 16:1291–98 [Google Scholar]
  153. Berger AB, Witte MD, Denault J-B, Sadaghiani AM, Sexton KM. 153.  et al. 2006. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23:509–21 [Google Scholar]
  154. Greenbaum DC, Baruch A, Grainger M, Bozdech Z, Medzihradszky KF. 154.  et al. 2002. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298:2002–6 [Google Scholar]
  155. Verdoes M, Edgington LE, Scheeren FA, Leyva M, Blum G. 155.  et al. 2012. A nonpeptidic cathepsin S activity-based probe for noninvasive optical imaging of tumor-associated macrophages. Chem. Biol. 19:619–28 [Google Scholar]
  156. Hang HC, Loureiro J, Spooner E, van der Velden AW, Kim Y-M. 156.  et al. 2006. Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells. ACS Chem. Biol. 1:713–23 [Google Scholar]
  157. Paulick MG, Bogyo M. 157.  2011. Development of activity-based probes for cathepsin X. ACS Chem. Biol. 6:563–72 [Google Scholar]
  158. Watzke A, Kosec G, Kindermann M, Jeske V, Nestler H-P. 158.  et al. 2008. Selective activity-based probes for cysteine cathepsins. Angew. Chem. Int. Ed. Engl. 47:406–9 [Google Scholar]
  159. Edgington LE, Verdoes M, Ortega A, Withana NP, Lee J. 159.  et al. 2013. Functional imaging of legumain in cancer using a new quenched activity-based probe. J. Am. Chem. Soc. 135:174–82 [Google Scholar]
  160. Rosenthal PJ.160.  2011. Falcipains and other cysteine proteases of malaria parasites. Adv. Exp. Med. Biol. 712:30–48 [Google Scholar]
  161. Pink R, Hudson A, Mouriès M-A, Bendig M. 161.  2005. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 4:727–40 [Google Scholar]
  162. Klemba M, Goldberg DE. 162.  2002. Biological roles of proteases in parasitic protozoa. Annu. Rev. Biochem. 71:275–305 [Google Scholar]
  163. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. 163.  2000. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7:569–81 [Google Scholar]
  164. Zhang J, Yang PL, Gray NS. 164.  2009. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9:28–39 [Google Scholar]
  165. Mary JS, Diane EG. 165.  2009. Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease. Drug Dev. Res. 70:125–44 [Google Scholar]
  166. Davis M, Hunt JP, Herrgard S, Ciceri P, Wodicka LM. 166.  et al. 2011. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29:1046–51 [Google Scholar]
  167. Fabian MA, Biggs WH III, Treiber DK, Atteridge CE, Azimioara MD. 167.  et al. 2005. A small molecule–kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23:329–36 [Google Scholar]
  168. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M. 168.  et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25:1035–44 [Google Scholar]
  169. Ong S-E, Schenone M, Margolin AA, Li X, Do K. 169.  et al. 2009. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl. Acad. Sci. USA 106:4617–22 [Google Scholar]
  170. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O. 170.  et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4:313–21 [Google Scholar]
  171. Yang Q, Deng X, Lu B, Cameron M, Fearns C. 171.  et al. 2010. Pharmacological inhibition of BMK1 suppresses tumor growth through promyelocytic leukemia protein. Cancer Cell 18:258–67 [Google Scholar]
  172. Deng X, Dzamko N, Prescott A, Davies P, Liu Q. 172.  et al. 2011. Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat. Chem. Biol. 7:203–5 [Google Scholar]
  173. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ. 173.  et al. 2013. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20:146–59 [Google Scholar]
  174. Barf T, Kaptein A. 174.  2012. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55:6243–62 [Google Scholar]
  175. Singh J, Petter RC, Baillie TA, Whitty A. 175.  2011. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10:307–17 [Google Scholar]
  176. Anjum R, Blenis J. 176.  2008. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9:747–58 [Google Scholar]
  177. Cohen MS, Hadjivassiliou H, Taunton J. 177.  2007. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol. 3:156–60 [Google Scholar]
  178. Cohen MS, Zhang C, Shokat KM, Taunton J. 178.  2005. Structural bioinformatics–based design of selective, irreversible kinase inhibitors. Science 308:1318–21 [Google Scholar]
  179. Doehn U, Hauge C, Frank SR, Jensen CJ, Duda K. 179.  et al. 2009. RSK is a principal effector of the RAS–ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol. Cell 35:511–22 [Google Scholar]
  180. Jin L, Li D, Lee JS, Elf S, Alesi GN. 180.  et al. 2013. p90 RSK2 mediates antianoikis signals by both transcription-dependent and -independent mechanisms. Mol. Cell. Biol. 33:2574–85 [Google Scholar]
  181. Manhas N, Shi Y, Taunton J, Sun D. 181.  2010. p90 activation contributes to cerebral ischemic damage via phosphorylation of Na+/H+ exchanger isoform 1. J. Neurochem. 114:1476–86 [Google Scholar]
  182. Hetzer C, Bisgrove D, Cohen MS, Pedal A, Kaehlcke K. 182.  et al. 2007. Recruitment and activation of RSK2 by HIV-1 Tat. PLoS ONE 2:e151 [Google Scholar]
  183. Kang S, Dong S, Gu TL, Guo A, Cohen MS. 183.  et al. 2007. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell 12:201–14 [Google Scholar]
  184. Leung D, Hardouin C, Boger DL, Cravatt BF. 184.  2003. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21:687–91 [Google Scholar]
  185. Jessani N, Liu Y, Humphrey M, Cravatt BF. 185.  2002. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 99:10335–40 [Google Scholar]
  186. Jessani N, Niessen S, Wei BQ, Nicolau M, Humphrey M. 186.  et al. 2005. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2:691–97 [Google Scholar]
  187. Chiang KP, Niessen S, Saghatelian A, Cravatt BF. 187.  2006. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. Chem. Biol. 13:1041–50 [Google Scholar]
  188. Blank ML, Smith ZL, Cress EA, Snyder F. 188.  1990. Characterization of the enzymatic hydrolysis of acetate from alkylacetylglycerols in the de novo pathway of PAF biosynthesis. Biochim. Biophys. Acta 1042:153–58 [Google Scholar]
  189. Roos DS, Choppin PW. 189.  1984. Tumorigenicity of cell lines with altered lipid composition. Proc. Natl. Acad. Sci. USA 81:7622–26 [Google Scholar]
  190. Chang JW, Nomura DK, Cravatt BF. 190.  2011. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. Chem. Biol. 18:476–84 [Google Scholar]
  191. Holly SP, Chang JW, Li W, Niessen S, Phillips RM. 191.  et al. 2013. Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation. Chem. Biol. 20:1125–34 [Google Scholar]
  192. Niphakis MJ, Johnson DS, Ballard TE, Stiff C, Cravatt BF. 192.  2012. O-Hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem. Neurosci. 3:418–26 [Google Scholar]
  193. Dhillon S.193.  2011. Rivastigmine transdermal patch: a review of its use in the management of dementia of the Alzheimer's type. Drugs 71:1209–31 [Google Scholar]
  194. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG. 194.  et al. 2009. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5:37–44 [Google Scholar]
  195. Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH. 195.  et al. 2010. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13:951–57 [Google Scholar]
  196. Tchantchou F, Zhang Y. 196.  2013. Selective inhibition of α/β-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. J. Neurotraum. 30:565–79 [Google Scholar]
  197. Zuhl AM, Mohr JT, Bachovchin DA, Niessen S, Hsu K-L. 197.  et al. 2012. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition. J. Am. Chem. Soc. 134:5068–71 [Google Scholar]
  198. Hsu K-L, Tsuboi K, Adibekian A, Pugh H, Masuda K, Cravatt BF. 198.  2012. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 8:999–1007 [Google Scholar]
  199. Gersch M, Kreuzer J, Sieber SA. 199.  2012. Electrophilic natural products and their biological targets. Nat. Prod. Rep. 29:659–82 [Google Scholar]
  200. Drahl C, Cravatt BF, Sorensen EJ. 200.  2005. Protein-reactive natural products. Angew. Chem. Int. Ed. Engl. 44:5788–809 [Google Scholar]
  201. Böttcher T, Sieber SA. 201.  2012. β-Lactams and β-lactones as activity-based probes in chemical biology. MedChemComm 3:408–17 [Google Scholar]
  202. Nelson RH, Miles JM. 202.  2005. The use of orlistat in the treatment of obesity, dyslipidaemia and type 2 diabetes. Expert Opin. Pharmacother. 6:2483–91 [Google Scholar]
  203. Hadváry P, Sidler W, Meister W, Vetter W, Wolfer H. 203.  1991. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem. 266:2021–27 [Google Scholar]
  204. Yang P-Y, Liu K, Ngai MH, Lear MJ, Wenk MR, Yao SQ. 204.  2010. Activity-based proteome profiling of potential cellular targets of orlistat—an FDA-approved drug with anti-tumor activities. J. Am. Chem. Soc. 132:656–66 [Google Scholar]
  205. Ngai MH, Yang P-Y, Liu K, Shen Y, Wenk MR. 205.  et al. 2010. Click-based synthesis and proteomic profiling of lipstatin analogues. Chem. Commun. 46:8335–37 [Google Scholar]
  206. Böttcher T, Sieber SA. 206.  2008. β-Lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew. Chem. Int. Ed. Engl. 47:4600–3 [Google Scholar]
  207. Böttcher T, Sieber SA. 207.  2008. β-Lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus. J. Am. Chem. Soc. 130:14400–1 [Google Scholar]
  208. Frees D, Qazi SN, Hill PJ, Ingmer H. 208.  2003. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48:1565–78 [Google Scholar]
  209. Böttcher T, Sieber SA. 209.  2009. Structurally refined β-lactones as potent inhibitors of devastating bacterial virulence factors. ChemBioChem 10:663–66 [Google Scholar]
  210. Zeiler E, Korotkov VS, Lorenz-Baath K, Böttcher T, Sieber SA. 210.  2012. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Bioorg. Med. Chem. 20:583–91 [Google Scholar]
  211. Geiger SR, Böttcher T, Sieber SA, Cramer P. 211.  2011. A conformational switch underlies ClpP protease function. Angew. Chem. Int. Ed. Engl. 50:5749–52 [Google Scholar]
  212. Gersch M, Gut F, Korotkov VS, Lehmann J, Böttcher T. 212.  et al. 2013. The mechanism of caseinolytic protease (ClpP) inhibition. Angew. Chem. Int. Ed. Engl. 52:3009–14 [Google Scholar]
  213. Padwal RS, Majumdar SR. 213.  2007. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369:71–77 [Google Scholar]
  214. Chen D-H, Naydenov A, Blankman JL, Mefford HH, Davis M. 214.  et al. 2013. Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum. Mutat. 34:1672–78 [Google Scholar]
  215. Blankman JL, Long JZ, Trauger SA, Siuzdak G, Cravatt BF. 215.  2013. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc. Natl. Acad. Sci. USA 110:1500–5 [Google Scholar]
  216. van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M. 216.  et al. 2002. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277:48122–29 [Google Scholar]
  217. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M. 217.  et al. 2012. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9:1021–29 [Google Scholar]
  218. Miduturu CV, Deng X, Kwiatkowski N, Yang W, Brault L. 218.  et al. 2011. High-throughput kinase profiling: a more efficient approach toward the discovery of new kinase inhibitors. Chem. Biol. 18:868–79 [Google Scholar]
  219. Deng X, Yang Q, Kwiatkowski N, Sim T, McDermott U. 219.  et al. 2011. Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a potent and selective inhibitor of big MAP kinase 1. ACS Med. Chem. Lett. 2:195–200 [Google Scholar]
  220. Yang Q, Lee J-D. 220.  2011. Targeting the BMK1 MAP kinase pathway in cancer therapy. Clin. Cancer Res. 17:3527–32 [Google Scholar]
  221. Hayashi M, Lee J-D. 221.  2004. Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J. Mol. Med. 82:800–8 [Google Scholar]
  222. Yang Q, Liao L, Deng X, Chen R, Gray NS. 222.  et al. 2013. BMK1 is involved in the regulation of p53 through disrupting the PML–MDM2 interaction. Oncogene 32:3156–64 [Google Scholar]
  223. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M. 223.  et al. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–7 [Google Scholar]
  224. Cookson MR.224.  2010. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat. Rev. Neurosci. 11:791–97 [Google Scholar]
  225. Choi HG, Zhang J, Deng X, Hatcher JM, Patricelli MP. 225.  et al. 2012. Brain penetrant LRRK2 inhibitor. ACS Med. Chem. Lett. 3:658–62 [Google Scholar]
  226. Simon GM, Niphakis MJ, Cravatt BF. 226.  2013. Determining target engagement in living systems. Nat. Chem. Biol. 9:200–5 [Google Scholar]
  227. Rosenthal PJ.227.  2004. Cysteine proteases of malaria parasites. Int. J. Parasitol. 34:1489–99 [Google Scholar]
  228. Wickham ME, Culvenor JG, Cowman AF. 228.  2003. Selective inhibition of a two-step egress of malaria parasites from the host erythrocyte. J. Biol. Chem. 278:37658–63 [Google Scholar]
  229. Thompson SA, Andrews PR, Hanzlik RP. 229.  1986. Carboxyl-modified amino acids and peptides as protease inhibitors. J. Med. Chem. 29:104–11 [Google Scholar]
  230. Palmer JT, Rasnick D, Klaus JL, Bromme D. 230.  1995. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38:3193–96 [Google Scholar]
  231. Weerapana E, Speers AE, Cravatt BF. 231.  2007. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2:1414–25 [Google Scholar]
  232. Kelly C, LaMont J. 232.  2008. Clostridium difficile—more difficult than ever. N. Engl. J. Med. 359:1932–40 [Google Scholar]
  233. Engel M, Mazurek S, Eigenbrodt E, Welter C. 233.  2004. Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J. Biol. Chem. 279:35803–12 [Google Scholar]
  234. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P. 234.  et al. 2005. Glycolytic enzymes can modulate cellular life span. Cancer Res. 65:177–85 [Google Scholar]
  235. Evans MJ, Morris GM, Wu J, Olson AJ, Sorensen EJ, Cravatt BF. 235.  2007. Mechanistic and structural requirements for active site labeling of phosphoglycerate mutase by spiroepoxides. Mol. Biosyst. 3:495–506 [Google Scholar]
  236. Hitosugi T, Zhou L, Elf S, Fan J, Kang H-B. 236.  et al. 2012. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 22:585–600 [Google Scholar]
  237. Singh A, Thornton ER, Westheimer FH. 237.  1962. The photolysis of diazoacetylchymotrypsin. J. Biol. Chem. 237:3006–8 [Google Scholar]
  238. Geurink PP, Prely LM, van der Marel GA, Bischoff R, Overkleeft HS. 238.  2012. Photoaffinity labeling in activity-based protein profiling. Top. Curr. Chem. 324:85–113 [Google Scholar]
  239. Sumranjit J, Chung SJ. 239.  2013. Recent advances in target characterization and identification by photoaffinity probes. Molecules 18:10425–51 [Google Scholar]
  240. Lapinsky DJ.240.  2012. Tandem photoaffinity labeling–bioorthogonal conjugation in medicinal chemistry. Bioorg. Med. Chem. 20:6237–47 [Google Scholar]
  241. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA. 241.  et al. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87 [Google Scholar]
  242. West GM, Tang L, Fitzgerald MC. 242.  2008. Thermodynamic analysis of protein stability and ligand binding using a chemical modification– and mass spectrometry–based strategy. Anal. Chem. 80:4175–85 [Google Scholar]
  243. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M. 243.  et al. 2009. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 106:21984–89 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035708
Loading
/content/journals/10.1146/annurev-biochem-060713-035708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error