1932

Abstract

The health of an organism is orchestrated by a multitude of molecular and biochemical networks responsible for ensuring homeostasis within cells and tissues. However, upon aging, a progressive failure in the maintenance of this homeostatic balance occurs in response to a variety of endogenous and environmental stresses, allowing the accumulation of damage, the physiological decline of individual tissues, and susceptibility to diseases. What are the molecular and cellular signaling events that control the aging process and how can this knowledge help design therapeutic strategies to combat age-associated diseases? Here we provide a comprehensive overview of the evolutionarily conserved biological processes that alter the rate of aging and discuss their link to disease prevention and the extension of healthy life span.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014451
2016-06-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014451.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014451&mimeType=html&fmt=ahah

Literature Cited

  1. Kirkwood TB. 1.  1977. Evolution of ageing. Nature 270:5635301–4 [Google Scholar]
  2. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2.  2013. The hallmarks of aging. Cell 153:61194–217 [Google Scholar]
  3. Riera CE, Dillin A. 3.  2015. Can aging be “drugged”?. Nat. Med. 21:121400–5 [Google Scholar]
  4. Friedman DB, Johnson TE. 4.  1988. Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J. Gerontol. 43:4B102–9 [Google Scholar]
  5. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. 5.  1993. A C. elegans mutant that lives twice as long as wild type. Nature 366:6454461–64 [Google Scholar]
  6. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS. 6.  et al. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:6946277–83 [Google Scholar]
  7. Yuan R, Tsaih S-W, Petkova SB, Marin de Evsikova C, Xing S. 7.  et al. 2009. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:3277–87 [Google Scholar]
  8. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. 8.  1996. Dwarf mice and the ageing process. Nature 384:660433 [Google Scholar]
  9. Sun LY, Spong A, Swindell WR, Fang Y, Hill C. 9.  et al. 2013. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. eLife 2:e01098 [Google Scholar]
  10. Hsieh C-C, DeFord JH, Flurkey K, Harrison DE, Papaconstantinou J. 10.  2002. Implications for the insulin signaling pathway in Snell dwarf mouse longevity: a similarity with the C. elegans longevity paradigm. Mech. Ageing Dev. 123:91229–44 [Google Scholar]
  11. Dominici FP, Hauck S, Argentino DP, Bartke A, Turyn D. 11.  2002. Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J. Endocrinol. 173:181–94 [Google Scholar]
  12. Shah JH, Cerchio GM. 12.  1973. Hypoinsulinemia of hypothyroidism. Arch. Intern. Med. 132:5657–61 [Google Scholar]
  13. Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM. 13.  et al. 2009. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A 64:5522–29 [Google Scholar]
  14. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A. 14.  et al. 2002. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:6919182–87 [Google Scholar]
  15. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M. 15.  et al. 2007. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22:3807–18 [Google Scholar]
  16. Taguchi A, Wartschow LM, White MF. 16.  2007. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:5836369–72 [Google Scholar]
  17. Bluher M. 17.  2003. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:5606572–74 [Google Scholar]
  18. Foukas LC, Bilanges B, Bettedi L, Pearce W, Ali K. 18.  et al. 2013. Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol. Med. 5:4563–71 [Google Scholar]
  19. Ortega-Molina A, Efeyan A, Lopez-Guadamillas E, Muñoz-Martin M, Gómez-López G. 19.  et al. 2012. Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab. 15:3382–94 [Google Scholar]
  20. Nojima A, Yamashita M, Yoshida Y, Shimizu I, Ichimiya H. 20.  et al. 2013. Haploinsufficiency of Akt1 prolongs the lifespan of mice. PlOS ONE 8:7e69178 [Google Scholar]
  21. Liao C-Y, Kennedy BK. 21.  2014. Mouse models and aging: longevity and progeria. Curr. Top. Dev. Biol. 109:249–85 [Google Scholar]
  22. Conover CA, Bale LK. 22.  2007. Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6:5727–29 [Google Scholar]
  23. Zhang Y, Xie Y, Berglund ED, Coate KC, He TT. 23.  et al. 2012. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1e00065
  24. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A. 24.  et al. 2005. Suppression of aging in mice by the hormone Klotho. Science 309:57421829–33 [Google Scholar]
  25. Bartke A. 25.  2008. Growth hormone and aging: a challenging controversy. Clin. Interv. Aging 3:4659–65 [Google Scholar]
  26. Zoncu R, Efeyan A, Sabatini DM. 26.  2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:121–35 [Google Scholar]
  27. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M. 27.  et al. 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:60761638–43 [Google Scholar]
  28. Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J. 28.  et al. 2010. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11:135–46 [Google Scholar]
  29. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM. 29.  et al. 2009. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–95 [Google Scholar]
  30. Kaeberlein M, Powers RW, Steffen KK, Westman EA, Hu D. 30.  et al. 2005. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:57511193–96 [Google Scholar]
  31. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. 31.  2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14:10885–90 [Google Scholar]
  32. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. 32.  2003. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:6967620 [Google Scholar]
  33. Fang Y, Westbrook R, Hill C, Boparai RK, Arum O. 33.  et al. 2013. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell Metab. 17:3456–62 [Google Scholar]
  34. Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C. 34.  2007. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:195–110 [Google Scholar]
  35. Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ. 35.  et al. 2009. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:5949140–44 [Google Scholar]
  36. Holz MK, Ballif BA, Gygi SP, Blenis J. 36.  2005. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123:4569–80 [Google Scholar]
  37. Demontis F, Perrimon N. 37.  2010. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:5813–25 [Google Scholar]
  38. Tsai S, Sitzmann JM, Dastidar SG, Rodriguez AA, Vu SL. 38.  et al. 2015. Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J. Clin. Invest. 125:82952–64 [Google Scholar]
  39. Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A. 39.  et al. 2001. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 7:101128–32 [Google Scholar]
  40. Ohanna M, Sobering AK, Lapointe T, Lorenzo L, Praud C. 40.  et al. 2005. Atrophy of S6K1/− skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat. Cell Biol. 7:3286–94 [Google Scholar]
  41. Pyo J-O, Yoo S-M, Ahn H-H, Nah J, Hong S-H. 41.  et al. 2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4:2300 [Google Scholar]
  42. Mizushima N, Levine B. 42.  2010. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12:9823–30 [Google Scholar]
  43. Inoki K, Zhu T, Guan K-L. 43.  2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:5577–90 [Google Scholar]
  44. Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. 44.  2004. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18:243004–9 [Google Scholar]
  45. Mair W, Morantte I, Rodrigues APC, Manning G, Montminy M. 45.  et al. 2011. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:7334404–8 [Google Scholar]
  46. Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A. 46.  et al. 2003. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111:191–98 [Google Scholar]
  47. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A. 47.  et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:2214–26 [Google Scholar]
  48. Mihaylova MM, Shaw RJ. 48.  2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13:91016–23 [Google Scholar]
  49. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. 49.  2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. PNAS 104:2912017–22 [Google Scholar]
  50. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 50.  1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:6829–39 [Google Scholar]
  51. Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. 51.  2009. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. PNAS 106:4820405–10 [Google Scholar]
  52. Altarejos JY, Montminy M. 52.  2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12:3141–51 [Google Scholar]
  53. Riera CE, Huising MO, Follett P, Leblanc M, Halloran J. 53.  et al. 2014. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157:51023–36 [Google Scholar]
  54. Mair W, Dillin A. 54.  2008. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77:727–54 [Google Scholar]
  55. Fontana L, Partridge L, Longo VD. 55.  2010. Dietary restriction, growth factors and aging: from yeast to humans. Science 328:5976321–26 [Google Scholar]
  56. Miller BF, Robinson MM, Reuland DJ, Drake JC, Peelor FF. 56.  et al. 2013. Calorie restriction does not increase short-term or long-term protein synthesis. J. Gerontol. A 68:5530–38 [Google Scholar]
  57. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ. 57.  et al. 2012. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab. 16:6777–88 [Google Scholar]
  58. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. 58.  2008. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLOS Genet. 4:2e24 [Google Scholar]
  59. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. 59.  2007. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:7144550–55 [Google Scholar]
  60. Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cochemé HM. 60.  et al. 2013. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:1228–39 [Google Scholar]
  61. Grandison RC, Piper MDW, Partridge L. 61.  2009. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:72761061–64 [Google Scholar]
  62. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC. 62.  et al. 2015. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:1–2132–44 [Google Scholar]
  63. Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD. 63.  2011. Increased transsulfuration mediates longevity and dietary restriction in Drosophila. PNAS 108:4016831–36 [Google Scholar]
  64. Bratic A, Larsson NG. 64.  2013. The role of mitochondria in aging. J. Clin. Invest. 123:3951–57 [Google Scholar]
  65. Rubinsztein DC, Mariño G, Kroemer G. 65.  2011. Autophagy and aging. Cell 146:5682–95 [Google Scholar]
  66. Youle RJ, Narendra DP. 66.  2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:19–14 [Google Scholar]
  67. Cheng Z, Ristow M. 67.  2013. Mitochondria and metabolic homeostasis. Antioxid. Redox Signal. 19:3240–42 [Google Scholar]
  68. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B. 68.  et al. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:5682390–92 [Google Scholar]
  69. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 69.  2005. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:7029113–18 [Google Scholar]
  70. Haigis MC, Guarente LP. 70.  2006. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20:212913–21 [Google Scholar]
  71. Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M. 71.  et al. 2011. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14:5623–34 [Google Scholar]
  72. Sahin E, Colla S, Liesa M, Moslehi J, Müller FL. 72.  et al. 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:7334359–65 [Google Scholar]
  73. Holt IJ, Harding AE, Morgan-Hughes JA. 73.  1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:6158717–19 [Google Scholar]
  74. Larsson N-G. 74.  2010. Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79:683–706 [Google Scholar]
  75. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT. 75.  et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:6990417–23 [Google Scholar]
  76. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K. 76.  et al. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:5733481–84 [Google Scholar]
  77. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E. 77.  et al. 2005. Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. PNAS 102:4917687–92 [Google Scholar]
  78. Elson JL, Samuels DC, Turnbull DM, Chinnery PF. 78.  2001. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68:3802–6 [Google Scholar]
  79. Ross JM, Stewart JB, Hagström E, Brené S, Mourier A. 79.  et al. 2013. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501:7467412–15 [Google Scholar]
  80. Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA. 80.  et al. 2009. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab. 10:2131–38 [Google Scholar]
  81. Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD. 81.  2008. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7:4312–20 [Google Scholar]
  82. Johnson SC, Yanos ME, Kayser E-B, Quintana A, Sangesland M. 82.  et al. 2013. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342:61651524–28 [Google Scholar]
  83. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H. 83.  et al. 2002. Rates of behavior and aging specified by mitochondrial function during development. Science 298:56022398–401 [Google Scholar]
  84. Copeland JM, Cho J, Lo T. Hur JH, Bahadorani S. 84.  Jr, et al. 2009. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19:191591–98 [Google Scholar]
  85. Durieux J, Wolff S, Dillin A. 85.  2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:179–91 [Google Scholar]
  86. Owusu-Ansah E, Song W, Perrimon N. 86.  2013. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:3699–712 [Google Scholar]
  87. Schulz AM, Haynes CM. 87.  2015. UPR(mt)-mediated cytoprotection and organismal aging. Biochim. Biophys. Acta 1847:111448–56 [Google Scholar]
  88. Tatsuta T, Langer T. 88.  2008. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:2306–14 [Google Scholar]
  89. Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M. 89.  et al. 1998. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:6973–83 [Google Scholar]
  90. Tatsuta T, Model K, Langer T. 90.  2005. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell 16:1248–59 [Google Scholar]
  91. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B. 91.  et al. 2008. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22:4476–88 [Google Scholar]
  92. Merkwirth C, Martinelli P, Korwitz A, Morbin M, Bronneke HS. 92.  et al. 2012. Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration. PLOS Genet 8:11e1003021 [Google Scholar]
  93. Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N. 93.  et al. 2013. Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12:61050–61 [Google Scholar]
  94. Artal-Sanz M, Tavernarakis N. 94.  2009. Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 461:7265793–97 [Google Scholar]
  95. Pellegrino MW, Nargund AM, Haynes CM. 95.  2013. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta. 1833:2410–16 [Google Scholar]
  96. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E. 96.  et al. 2013. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:7450451–57 [Google Scholar]
  97. Harman D. 97.  1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:3298–300 [Google Scholar]
  98. Harman D. 98.  1972. The biologic clock: the mitochondria?. J. Am. Geriatr. Soc. 20:4145–47 [Google Scholar]
  99. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM. 99.  et al. 2001. Does oxidative damage to DNA increase with age?. PNAS 98:1810469–74 [Google Scholar]
  100. Gan W, Nie B, Shi F, Xu XM, Qian JC. 100.  et al. 2012. Age-dependent increases in the oxidative damage of DNA, RNA, and their metabolites in normal and senescence-accelerated mice analyzed by LC-MS/MS: urinary 8-oxoguanosine as a novel biomarker of aging. Free Radic. Biol. Med. 52:91700–7 [Google Scholar]
  101. Swain U, Subba Rao K. 101.  2011. Study of DNA damage via the comet assay and base excision repair activities in rat brain neurons and astrocytes during aging. Mech. Ageing Dev. 132:8–9374–81 [Google Scholar]
  102. Vijg J, Suh Y. 102.  2013. Genome instability and aging. Annu. Rev. Physiol. 75:645–68 [Google Scholar]
  103. Miller RA. 103.  2004. “Accelerated aging”: A primrose path to insight?. Aging Cell 3:247–51 [Google Scholar]
  104. Gems D, Doonan R. 104.  2009. Antioxidant defense and aging in C. elegans: Is the oxidative damage theory of aging wrong?. Cell Cycle 8:111681–87 [Google Scholar]
  105. Hekimi S, Lapointe J, Wen Y. 105.  2011. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 21:10569–76 [Google Scholar]
  106. Salmon AB, Richardson A, Perez VI. 106.  2010. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging?. Free Radic. Biol. Med. 48:5642–55 [Google Scholar]
  107. Hamilton RT, Walsh ME, Van Remmen H. 107.  2012. Mouse models of oxidative stress indicate a role for modulating healthy aging. J. Clin. Exp. Pathol. Suppl. 4:005 [Google Scholar]
  108. Van Raamsdonk JM, Hekimi S. 108.  2009. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLOS Genet. 5:2e1000361 [Google Scholar]
  109. Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA. 109.  et al. 2007. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A 62:9932–42 [Google Scholar]
  110. Perez VI, Lew CM, Cortez LA, Webb CR, Rodriguez M. 110.  et al. 2008. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress. Free Radic. Biol. Med. 44:5882–92 [Google Scholar]
  111. Cunningham GM, Roman MG, Flores LC, Hubbard GB, Salmon AB. 111.  et al. 2015. The paradoxical role of thioredoxin on oxidative stress and aging. Arch. Biochem. Biophys. 576:32–38 [Google Scholar]
  112. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. 112.  2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6:4280–93 [Google Scholar]
  113. Andziak B, O'Connor TP, Qi W, DeWaal EM, Pierce A. 113.  et al. 2006. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:6463–71 [Google Scholar]
  114. Keaney M, Gems D. 114.  2003. No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Radic. Biol. Med. 34:2277–82 [Google Scholar]
  115. Sun J, Folk D, Bradley TJ, Tower J. 115.  2002. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:2661–72 [Google Scholar]
  116. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE. 116.  et al. 2005. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:57301909–11 [Google Scholar]
  117. Blackburn EH. 117.  2005. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579:4859–62 [Google Scholar]
  118. Hayflick L, Moorhead PS. 118.  1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25:585–621 [Google Scholar]
  119. Harley CB, Futcher AB, Greider CW. 119.  1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:6274458–60 [Google Scholar]
  120. Sahin E, DePinho RA. 120.  2012. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol. 13:6397–404 [Google Scholar]
  121. Flores I, Cayuela ML, Blasco MA. 121.  2005. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:57381253–56 [Google Scholar]
  122. Boonekamp JJ, Simons MJ, Hemerik L, Verhulst S. 122.  2013. Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell 12:2330–32 [Google Scholar]
  123. Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA. 123.  2012. The rate of increase of short telomeres predicts longevity in mammals. Cell Rep. 2:4732–37 [Google Scholar]
  124. Hemann MT, Strong MA, Hao LY, Greider CW. 124.  2001. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:167–77 [Google Scholar]
  125. Lundblad V, Szostak JW. 125.  1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:4633–43 [Google Scholar]
  126. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM. 126.  et al. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:125–34 [Google Scholar]
  127. Armanios M, Chen J-L, Chang Y-PC, Brodsky RA, Hawkins A. 127.  et al. 2005. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. PNAS 102:4415960–64 [Google Scholar]
  128. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M. 128.  et al. 2010. Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. PNAS 107:Suppl. 11710–17 [Google Scholar]
  129. Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S. 129.  et al. 2011. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:7328102–6 [Google Scholar]
  130. Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S. 130.  et al. 2002. Constitutive telomerase expression promotes mammary carcinomas in aging mice. PNAS 99:128191–96 [Google Scholar]
  131. Tomas-Loba A, Flores I, Fernandez-Marcos PJ, Cayuela ML, Maraver A. 131.  et al. 2008. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135:4609–22 [Google Scholar]
  132. Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E. 132.  et al. 2012. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4:8691–704 [Google Scholar]
  133. Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. 133.  2011. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10:4604–21 [Google Scholar]
  134. Benayoun BA, Pollina EA, Brunet A. 134.  2015. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16:10593–610 [Google Scholar]
  135. Fraga MF, Esteller M. 135.  2007. Epigenetics and aging: the targets and the marks. Trends Genet. 23:8413–18 [Google Scholar]
  136. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS. 136.  et al. 2010. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466:7304383–87 [Google Scholar]
  137. Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ. 137.  2010. Polycomb repressive complex 2 and trithorax modulate Drosophila longevity and stress resistance. PNAS 107:1169–74 [Google Scholar]
  138. Maures TJ, Greer EL, Hauswirth AG, Brunet A. 138.  2011. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10:6980–90 [Google Scholar]
  139. Jin C, Li J, Green CD, Yu X, Tang X. 139.  et al. 2011. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14:2161–72 [Google Scholar]
  140. Schroeder EA, Raimundo N, Shadel GS. 140.  2013. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17:6954–64 [Google Scholar]
  141. Labbadia J, Morimoto RI. 141.  2015. Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell 59:4639–50 [Google Scholar]
  142. Guarente L. 142.  2011. Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76:81–90 [Google Scholar]
  143. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M. 143.  et al. 2011. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:7365482–85 [Google Scholar]
  144. Viswanathan M, Guarente L. 144.  2011. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477:7365E1–2 [Google Scholar]
  145. Houtkooper RH, Pirinen E, Auwerx J. 145.  2012. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13:4225–38 [Google Scholar]
  146. Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B. 146.  et al. 2010. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1:3 [Google Scholar]
  147. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR. 147.  et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:2315–29 [Google Scholar]
  148. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G. 148.  et al. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:7388218–21 [Google Scholar]
  149. Someya S, Yu W, Hallows WC, Xu J, Vann JM. 149.  et al. 2010. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:5802–12 [Google Scholar]
  150. Mohrin M, Shin J, Liu Y, Brown K, Luo H. 150.  et al. 2015. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:62281374–77 [Google Scholar]
  151. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. 151.  2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91 [Google Scholar]
  152. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. 152.  2006. Opposing activities protect against age-onset proteotoxicity. Science 313:57931604–10 [Google Scholar]
  153. Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D. 153.  et al. 2009. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:61157–69 [Google Scholar]
  154. Freude S, Hettich MM, Schumann C, Stöhr O, Koch L. 154.  et al. 2009. Neuronal IGF-1 resistance reduces Aβ accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J. 23:103315–24 [Google Scholar]
  155. Killick R, Scales G, Leroy K, Causevic M, Hooper C. 155.  et al. 2009. Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem. Biophys. Res. Commun. 386:1257–62 [Google Scholar]
  156. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D. 156.  et al. 2008. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133:2292–302 [Google Scholar]
  157. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC. 157.  et al. 2009. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:1149–60 [Google Scholar]
  158. Hsu A-L, Murphy CT, Kenyon C. 158.  2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:56221142–45 [Google Scholar]
  159. Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ. 159.  et al. 2014. HSF-1-mediated cytoskeletal integrity determines thermotolerance and lifespan. Science 346:6207360–63 [Google Scholar]
  160. Ben-Zvi A, Miller EA, Morimoto RI. 160.  2009. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. PNAS 106:3514914–19 [Google Scholar]
  161. Taylor RC, Dillin A. 161.  2013. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153:71435–47 [Google Scholar]
  162. Vilchez D, Saez I, Dillin A. 162.  2014. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5:5659 [Google Scholar]
  163. Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C. 163.  et al. 2012. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:7415263–68 [Google Scholar]
  164. Vilchez D, Boyer L, Morantte I, Lutz M, Merkwirth C. 164.  et al. 2012. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:7415304–8 [Google Scholar]
  165. Min J-N, Whaley RA, Sharpless NE, Lockyer P, Portbury AL, Patterson C. 165.  2008. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell. Biol. 28:124018–25 [Google Scholar]
  166. Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A. 166.  et al. 2007. AGEMAP: a gene expression database for aging in mice. PLOS Genet. 3:11e201 [Google Scholar]
  167. Taylor RC, Berendzen KM, Dillin A. 167.  2014. Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat. Rev. Mol. Cell Biol. 15:3211–17 [Google Scholar]
  168. Douglas PM, Baird NA, Simic MS, Uhlein S, McCormick MA. 168.  et al. 2015. Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep. 12:71196–1204 [Google Scholar]
  169. Alcedo J, Kenyon C. 169.  2004. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 41:145–55 [Google Scholar]
  170. Apfeld J, Kenyon C. 170.  1999. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:6763804–9 [Google Scholar]
  171. Libert S, Zwiener J, Chu X, VanVoorhies W, Roman G, Pletcher SD. 171.  2007. Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:58151133–37 [Google Scholar]
  172. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. 172.  2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:7027760–64 [Google Scholar]
  173. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI. 173.  et al. 2014. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20:6659–63 [Google Scholar]
  174. Bruunsgaard H, Skinhøj P, Pedersen AN, Schroll M, Pedersen BK. 174.  2000. Ageing, tumour necrosis factor-alpha (TNF-α) and atherosclerosis. Clin. Exp. Immunol. 121:2255–60 [Google Scholar]
  175. Salvioli S, Monti D, Lanzarini C, Conte M, Pirazzini C. 175.  et al. 2013. Immune system, cell senescence, aging and longevity—inflamm-aging reappraised. Curr. Pharm. Des. 19:91675–79 [Google Scholar]
  176. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K. 176.  et al. 2008. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7:5641–50 [Google Scholar]
  177. Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP. 177.  et al. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6:122853–68 [Google Scholar]
  178. Riera CE, Dillin A. 178.  2015. Tipping the metabolic scales towards increased longevity in mammals. Nat. Cell Biol. 17:3196–203 [Google Scholar]
  179. Lumeng CN, Saltiel AR. 179.  2011. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121:62111–17 [Google Scholar]
  180. Youm Y-H, Grant RW, McCabe LR, Albarado DC, Nguyen KY. 180.  et al. 2013. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18:4519–32 [Google Scholar]
  181. Adler AS, Sinha S, Kawahara TLA, Zhang JY, Segal E, Chang HY. 181.  2007. Motif module map reveals enforcement of aging by continual NF-κB activity. Genes Dev. 21:243244–57 [Google Scholar]
  182. Zhang G, Li J, Purkayastha S, Tang Y, Zhang H. 182.  et al. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:7448211–16 [Google Scholar]
  183. Reeve A, Simcox E, Turnbull D. 183.  2014. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?. Ageing Res. Rev. 14:19–30 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014451
Loading
/content/journals/10.1146/annurev-biochem-060815-014451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error