1932

Abstract

Autophagy is a conserved intracellular pathway that delivers cytoplasmic contents to lysosomes for degradation via double-membrane autophagosomes. Autophagy substrates include organelles such as mitochondria, aggregate-prone proteins that cause neurodegeneration and various pathogens. Thus, this pathway appears to be relevant to the pathogenesis of diverse diseases, and its modulation may have therapeutic value. Here, we focus on the cell and molecular biology of mammalian autophagy and review the key proteins that regulate the process by discussing their roles and how these may be modulated by posttranslational modifications. We consider the membrane-trafficking events that impact autophagy and the questions relating to the sources of autophagosome membrane(s). Finally, we discuss data from structural studies and some of the insights these have provided.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014556
2016-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014556.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014556&mimeType=html&fmt=ahah

Literature Cited

  1. Rubinsztein DC, Bento CF, Deretic V. 1.  2015. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J. Exp. Med. 212:979–90 [Google Scholar]
  2. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH. 2.  et al. 2015. Autophagy in malignant transformation and cancer progression. EMBO J. 34:856–80 [Google Scholar]
  3. Rubinsztein DC, Codogno P, Levine B. 3.  2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11:709–30 [Google Scholar]
  4. Ohsumi Y. 4.  2014. Historical landmarks of autophagy research. Cell Res. 24:9–23 [Google Scholar]
  5. McAlpine F, Williamson LE, Tooze SA, Chan EY. 5.  2013. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361–73 [Google Scholar]
  6. Itakura E, Mizushima N. 6.  2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–76 [Google Scholar]
  7. Seglen PO, Gordon PB. 7.  1982. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. PNAS 79:1889–92 [Google Scholar]
  8. Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L. 8.  et al. 2014. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10:1013–19 [Google Scholar]
  9. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S. 9.  et al. 2014. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16:1069–79 [Google Scholar]
  10. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. 10.  2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55:238–52 [Google Scholar]
  11. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T. 11.  et al. 1998. A protein conjugation system essential for autophagy. Nature 395:395–98 [Google Scholar]
  12. Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J. 12.  et al. 2013. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20:433–39 [Google Scholar]
  13. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M. 13.  et al. 1999. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147:435–46 [Google Scholar]
  14. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. 14.  2010. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792–802 [Google Scholar]
  15. Orsi A, Razi M, Dooley HC, Robinson D, Weston AE. 15.  et al. 2012. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 23:1860–73 [Google Scholar]
  16. Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG. 16.  et al. 2006. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:3888–900 [Google Scholar]
  17. Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. 17.  2013. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154:1285–99 [Google Scholar]
  18. Popovic D, Dikic I. 18.  2014. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15:392–401 [Google Scholar]
  19. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL. 19.  et al. 2014. PICALM modulates autophagy activity and tau accumulation. Nat. Commun. 5:4998 [Google Scholar]
  20. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. 20.  2011. Autophagosome precursor maturation requires homotypic fusion. Cell 146:303–17 [Google Scholar]
  21. Pfisterer SG, Bakula D, Frickey T, Cezanne A, Brigger D. 21.  et al. 2014. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells. J. Lipid Res. 55:1267–78 [Google Scholar]
  22. Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N. 22.  2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23:896–909 [Google Scholar]
  23. Kim J, Kundu M, Viollet B, Guan KL. 23.  2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 [Google Scholar]
  24. Egan D, Kim J, Shaw RJ, Guan KL. 24.  2011. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–44 [Google Scholar]
  25. Bach M, Larance M, James DE, Ramm G. 25.  2011. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 440:283–91 [Google Scholar]
  26. Peña-Llopis S, Vega-Rubin-de-Celis S, Schwartz JC, Wolff NC, Tran TA. 26.  et al. 2011. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30:3242–58 [Google Scholar]
  27. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F. 27.  et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33 [Google Scholar]
  28. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S. 28.  et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095–108 [Google Scholar]
  29. Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH. 29.  et al. 2013. IGF-1 receptor antagonism inhibits autophagy. Hum. Mol. Genet. 22:4528–44 [Google Scholar]
  30. Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY. 30.  et al. 2014. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat. Commun. 5:3828 [Google Scholar]
  31. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E. 31.  et al. 2015. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat. Commun. 6:8045 [Google Scholar]
  32. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM. 32.  et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468–76 [Google Scholar]
  33. Fimia GM, Stoykova A, Romagnoli A, Giunta L. Bartolomeo S. 33. , Di et al. 2007. Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–25 [Google Scholar]
  34. Maiuri MC. Toumelin G, Criollo A, Rain JC, Gautier F. 34. , Le et al. 2007. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J. 26:2527–39 [Google Scholar]
  35. Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP. 35.  et al. 2012. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol. Cell 47:359–70 [Google Scholar]
  36. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. 36.  2008. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30:678–88 [Google Scholar]
  37. Russell RC, Tian Y, Yuan H, Park HW, Chang YY. 37.  et al. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15:741–50 [Google Scholar]
  38. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G. 38.  et al. 2010. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 191:155–68 [Google Scholar]
  39. Shi CS, Kehrl JH. 39.  2010. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal. 3:ra42 [Google Scholar]
  40. Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V. 40.  et al. 2013. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15:406–16 [Google Scholar]
  41. Xia P, Wang S, Du Y, Zhao Z, Shi L. 41.  et al. 2013. WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J. 32:2685–96 [Google Scholar]
  42. Liu J, Xia H, Kim M, Xu L, Li Y. 42.  et al. 2011. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell 147:223–34 [Google Scholar]
  43. Platta HW, Abrahamsen H, Thoresen SB, Stenmark H. 43.  2012. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1. Biochem. J. 441:399–406 [Google Scholar]
  44. Sun T, Li X, Zhang P, Chen WD, Zhang HL. 44.  et al. 2015. Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun. 6:7215 [Google Scholar]
  45. Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y. 45.  et al. 2013. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. PNAS 110:6841–46 [Google Scholar]
  46. Xu D, Zhang T, Xiao J, Zhu K, Wei R. 46.  et al. 2015. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon. Autophagy 11:617–28 [Google Scholar]
  47. Codogno P, Mehrpour M, Proikas-Cezanne T. 47.  2012. Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nat. Rev. Mol. Cell Biol. 13:7–12 [Google Scholar]
  48. Zhou X, Wang L, Hasegawa H, Amin P, Han BX. 48.  et al. 2010. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. PNAS 107:9424–29 [Google Scholar]
  49. Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof YD. 49.  et al. 2011. Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy 7:1448–61 [Google Scholar]
  50. Vicinanza M, Korolchuk VI, Ashkenazi A, Puri C, Menzies FM. 50.  et al. 2015. PI(5)P regulates autophagosome biogenesis. Mol. Cell 57:219–34 [Google Scholar]
  51. Devereaux K, Dall'armi C, Alcazar-Roman A, Ogasawara Y, Zhou X. 51.  et al. 2013. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLOS ONE 8:e76405 [Google Scholar]
  52. Behrends C, Sowa ME, Gygi SP, Harper JW. 52.  2010. Network organization of the human autophagy system. Nature 466:68–76 [Google Scholar]
  53. Viaud J, Boal F, Tronchere H, Gaits-Iacovoni F, Payrastre B. 53.  2014. Phosphatidylinositol 5-phosphate: a nuclear stress lipid and a tuner of membranes and cytoskeleton dynamics. BioEssays 36:260–72 [Google Scholar]
  54. Juhasz G, Neufeld TP. 54.  2006. Autophagy: a forty-year search for a missing membrane source. PLOS Biol. 4:e36 [Google Scholar]
  55. Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 55.  2015. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11:439–51 [Google Scholar]
  56. Hwang KM, Yang LC, Carrico CK, Schulz RA, Schenkman JB, Sartorelli AC. 56.  1974. Production of membrane whorls in rat liver by some inhibitors of protein synthesis. J. Cell Biol. 62:20–31 [Google Scholar]
  57. Ishikawa T, Furuno K, Kato K. 57.  1983. Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment. Exp. Cell Res. 144:15–24 [Google Scholar]
  58. Locke M, Sykes AK. 58.  1975. The role of the Golgi complex in the isolation and digestion of organelles. Tissue Cell 7:143–58 [Google Scholar]
  59. Yamamoto A, Masaki R, Tashiro Y. 59.  1990. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J. Histochem. Cytochem. 38:573–80 [Google Scholar]
  60. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. 60.  2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:1433–37 [Google Scholar]
  61. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL. 61.  et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685–701 [Google Scholar]
  62. Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N. 62.  2014. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127:4089–102 [Google Scholar]
  63. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R. 63.  et al. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–67 [Google Scholar]
  64. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A. 64.  et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–93 [Google Scholar]
  65. Maxfield FR, McGraw TE. 65.  2004. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5:121–32 [Google Scholar]
  66. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. 66.  2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:747–57 [Google Scholar]
  67. Bejarano E, Yuste A, Patel B, Stout RF. Spray DC, Cuervo AM. 67.  Jr, 2014. Connexins modulate autophagosome biogenesis. Nat. Cell Biol. 16:401–14 [Google Scholar]
  68. Moreau K, Ravikumar B, Puri C, Rubinsztein DC. 68.  2012. Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J. Cell Biol. 196:483–96 [Google Scholar]
  69. Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP. 69.  et al. 2012. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. PNAS 109:2003–8 [Google Scholar]
  70. Zeng X, Overmeyer JH, Maltese WA. 70.  2006. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell Sci. 119:259–70 [Google Scholar]
  71. Ravikumar B, Imarisio S, Sarkar S, O'Kane CJ, Rubinsztein DC. 71.  2008. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121:1649–60 [Google Scholar]
  72. Dou Z, Pan JA, Dbouk HA, Ballou LM, DeLeon JL. 72.  et al. 2013. Class IA PI3K p110β subunit promotes autophagy through Rab5 small GTPase in response to growth factor limitation. Mol. Cell 50:29–42 [Google Scholar]
  73. Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. 73.  2012. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol. 197:659–75 [Google Scholar]
  74. Knaevelsrud H, Carlsson SR, Simonsen A. 74.  2013. SNX18 tubulates recycling endosomes for autophagosome biogenesis. Autophagy 9:1639–41 [Google Scholar]
  75. Ge L, Melville D, Zhang M, Schekman R. 75.  2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2:e00947 [Google Scholar]
  76. Ge L, Zhang M, Schekman R. 76.  2014. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 3:e04135 [Google Scholar]
  77. Tan D, Cai Y, Wang J, Zhang J, Menon S. 77.  et al. 2013. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. PNAS 110:19432–37 [Google Scholar]
  78. Stolz A, Ernst A, Dikic I. 78.  2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol 16:495–501 [Google Scholar]
  79. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C. 79.  et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14 [Google Scholar]
  80. Nair U, Yen WL, Mari M, Cao Y, Xie Z. 80.  et al. 2012. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy 8:780–93 [Google Scholar]
  81. Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ. 81.  et al. 2012. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–92 [Google Scholar]
  82. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. 82.  2009. Multiple roles of the cytoskeleton in autophagy. Biol. Rev. Camb. Philos. Soc. 84:431–48 [Google Scholar]
  83. Hunt SD, Stephens DJ. 83.  2011. The role of motor proteins in endosomal sorting. Biochem. Soc. Trans. 39:1179–84 [Google Scholar]
  84. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z. 84.  2006. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J. Biol. Chem. 281:36303–16 [Google Scholar]
  85. Jahreiss L, Menzies FM, Rubinsztein DC. 85.  2008. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574–87 [Google Scholar]
  86. Maday S, Wallace KE, Holzbaur EL. 86.  2012. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196:407–17 [Google Scholar]
  87. Cheng XT, Zhou B, Lin MY, Cai Q, Sheng ZH. 87.  2015. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209:377–86 [Google Scholar]
  88. Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C. 88.  et al. 2005. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37:771–76 [Google Scholar]
  89. Cardoso CM, Groth-Pedersen L, Hoyer-Hansen M, Kirkegaard T, Corcelle E. 89.  et al. 2009. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLOS ONE 4:e4424 [Google Scholar]
  90. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA. 90.  et al. 2011. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13:453–60 [Google Scholar]
  91. Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. 91.  2011. Principles of unconventional myosin function and targeting. Annu. Rev. Cell Dev. Biol. 27:133–55 [Google Scholar]
  92. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E. 92.  et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969–80 [Google Scholar]
  93. Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. 93.  2012. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14:1024–35 [Google Scholar]
  94. Stenmark H. 94.  2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513–25 [Google Scholar]
  95. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L. 95.  et al. 2001. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11:1680–85 [Google Scholar]
  96. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T. 96.  et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:253–69 [Google Scholar]
  97. Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K. 97.  2013. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim. Biophys. Acta 1833:503–10 [Google Scholar]
  98. Huotari J, Helenius A. 98.  2011. Endosome maturation. EMBO J. 30:3481–500 [Google Scholar]
  99. Ganley IG, Wong PM, Gammoh N, Jiang X. 99.  2011. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42:731–43 [Google Scholar]
  100. Mauvezin C, Nagy P, Juhasz G, Neufeld TP. 100.  2015. Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 6:7007 [Google Scholar]
  101. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. 101.  2010. Identification of the switch in early-to-late endosome transition. Cell 141:497–508 [Google Scholar]
  102. Liang C, Lee JS, Inn KS, Gack MU, Li Q. 102.  et al. 2008. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol. 10:776–87 [Google Scholar]
  103. Sun Q, Westphal W, Wong KN, Tan I, Zhong Q. 103.  2010. Rubicon controls endosome maturation as a Rab7 effector. PNAS 107:19338–43 [Google Scholar]
  104. Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T, Yoshimori T. 104.  2010. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain. Mol. Biol. Cell 21:4162–72 [Google Scholar]
  105. Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J. 105.  et al. 2015. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. PNAS 112:7015–20 [Google Scholar]
  106. Brocker C, Engelbrecht-Vandre S, Ungermann C. 106.  2010. Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20:R943–52 [Google Scholar]
  107. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H. 107.  et al. 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39–54 [Google Scholar]
  108. Wartosch L, Gunesdogan U, Graham SC, Paul Luzio J. 108.  2015. Recruitment of VPS33A to HOPS by VPS16 is required for lysosome fusion with endosomes and autophagosomes. Traffic 16:727–42 [Google Scholar]
  109. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M. 109.  et al. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376–89 [Google Scholar]
  110. Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. 110.  2012. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45:629–41 [Google Scholar]
  111. Kim JH, Hong SB, Lee JK, Han S, Roh KH. 111.  et al. 2015. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11:75–87 [Google Scholar]
  112. Jahn R, Scheller RH. 112.  2006. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:631–43 [Google Scholar]
  113. Pryor PR, Mullock BM, Bright NA, Lindsay MR, Gray SR. 113.  et al. 2004. Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events. EMBO Rep. 5:590–95 [Google Scholar]
  114. Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. 114.  2010. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell 21:1001–10 [Google Scholar]
  115. Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL. 115.  et al. 2010. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29:3607–20 [Google Scholar]
  116. Fader CM, Sanchez DG, Mestre MB, Colombo MI. 116.  2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793:1901–16 [Google Scholar]
  117. Renna M, Schaffner C, Winslow AR, Menzies FM, Peden AA. 117.  et al. 2011. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:469–82 [Google Scholar]
  118. Itakura E, Kishi-Itakura C, Mizushima N. 118.  2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–69 [Google Scholar]
  119. Takats S, Nagy P, Varga A, Pircs K, Karpati M. 119.  et al. 2013. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201:531–39 [Google Scholar]
  120. Diao J, Liu R, Rong Y, Zhao M, Zhang J. 120.  et al. 2015. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563–66 [Google Scholar]
  121. Razi M, Chan EY, Tooze SA. 121.  2009. Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185:305–21 [Google Scholar]
  122. Rusten TE, Stenmark H. 122.  2009. How do ESCRT proteins control autophagy?. J. Cell Sci. 122:2179–83 [Google Scholar]
  123. Lazarus MB, Novotny CJ, Shokat KM. 123.  2015. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 10:257–61 [Google Scholar]
  124. Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y. 124.  et al. 2014. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21:513–21 [Google Scholar]
  125. Ragusa MJ, Stanley RE, Hurley JH. 125.  2012. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501–12 [Google Scholar]
  126. Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U. 126.  et al. 2013. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. PNAS 110:E2875–84 [Google Scholar]
  127. Kofinger J, Ragusa MJ, Lee IH, Hummer G, Hurley JH. 127.  2015. Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure 23:809–18 [Google Scholar]
  128. Stanley RE, Ragusa MJ, Hurley JH. 128.  2014. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol. 24:73–81 [Google Scholar]
  129. Jao CC, Ragusa MJ, Stanley RE, Hurley JH. 129.  2013. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. PNAS 110:5486–91 [Google Scholar]
  130. Suzuki H, Kaizuka T, Mizushima N, Noda NN. 130.  2015. Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol. 22:572–80 [Google Scholar]
  131. Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y. 131.  et al. 2015. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. PNAS 112:3350–55 [Google Scholar]
  132. Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT. 132.  et al. 2010. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 327:1638–42 [Google Scholar]
  133. Hurley JH, Schulman BA. 133.  2014. Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300–11 [Google Scholar]
  134. Feng W, Huang S, Wu H, Zhang M. 134.  2007. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J. Mol. Biol. 372:223–35 [Google Scholar]
  135. Oberstein A, Jeffrey PD, Shi Y. 135.  2007. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J. Biol. Chem. 282:13123–32 [Google Scholar]
  136. Li X, He L, Che KH, Funderburk SF, Pan L. 136.  et al. 2012. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat. Commun. 3:662 [Google Scholar]
  137. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R. 137.  et al. 2013. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154:1269–84 [Google Scholar]
  138. Huang W, Choi W, Hu W, Mi N, Guo Q. 138.  et al. 2012. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res. 22:473–89 [Google Scholar]
  139. Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. 139.  2012. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287:16256–66 [Google Scholar]
  140. Baskaran S, Carlson LA, Stjepanovic G, Young LN, Kim do J. 140.  et al. 2014. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. eLife 3e05115
  141. Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E. 141.  et al. 2015. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365 [Google Scholar]
  142. Baskaran S, Ragusa MJ, Boura E, Hurley JH. 142.  2012. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell 47:339–48 [Google Scholar]
  143. Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A. 143.  et al. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. PNAS 109:E2042–49 [Google Scholar]
  144. Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R. 144.  et al. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:31681–90 [Google Scholar]
  145. Noda NN, Inagaki F. 145.  2015. Mechanisms of autophagy. Annu. Rev. Biophys. 44:101–22 [Google Scholar]
  146. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL. 146.  et al. 2012. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19:1242–49 [Google Scholar]
  147. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H. 147.  et al. 2012. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19:1250–56 [Google Scholar]
  148. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H. 148.  et al. 2012. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244–54 [Google Scholar]
  149. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y. 149.  et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298–302 [Google Scholar]
  150. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 150.  2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19:2092–100 [Google Scholar]
  151. Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. 151.  2007. Structure of Atg5·Atg16, a complex essential for autophagy. J. Biol. Chem. 282:6763–72 [Google Scholar]
  152. Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F. 152.  2010. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285:1508–15 [Google Scholar]
  153. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. 153.  2013. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14:206–11 [Google Scholar]
  154. Otomo C, Metlagel Z, Takaesu G, Otomo T. 154.  2013. Structure of the human ATG12∼ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol. 20:59–66 [Google Scholar]
  155. Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR. 155.  et al. 2012. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol. 180:551–62 [Google Scholar]
  156. Hu C, Zhang X, Teng YB, Hu HX, Li WF. 156.  2010. Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr. Sect. F 66:787–90 [Google Scholar]
  157. Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. 157.  2009. Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 5:1085–91 [Google Scholar]
  158. Nakatogawa H, Ichimura Y, Ohsumi Y. 158.  2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–78 [Google Scholar]
  159. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W. 159.  et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–18 [Google Scholar]
  160. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 160.  2004. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–18 [Google Scholar]
  161. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z. 161.  2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:444–54 [Google Scholar]
  162. Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K. 162.  et al. 2010. The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR 47:237–41 [Google Scholar]
  163. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J. 163.  et al. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283:22847–57 [Google Scholar]
  164. Birgisdottir AB, Lamark T, Johansen T. 164.  2013. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126:3237–47 [Google Scholar]
  165. Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I. 165.  et al. 2006. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355:612–18 [Google Scholar]
  166. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N. 166.  et al. 2009. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28:1341–50 [Google Scholar]
  167. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 167.  2005. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280:40058–65 [Google Scholar]
  168. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H. 168.  et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323–30 [Google Scholar]
  169. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K. 169.  et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462–75 [Google Scholar]
  170. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A. 170.  et al. 2011. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451–61 [Google Scholar]
  171. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H. 171.  et al. 2007. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282:8036–43 [Google Scholar]
  172. Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. 172.  2010. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285:29599–607 [Google Scholar]
  173. Nath S, Dancourt J, Shteyn V, Puente G, Fong WM. 173.  et al. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16:415–24 [Google Scholar]
  174. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 174.  2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971–81 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014556
Loading
/content/journals/10.1146/annurev-biochem-060815-014556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error