1932

Abstract

A healthy proteome is essential for cell survival. Protein misfolding is linked to a rapidly expanding list of human diseases, ranging from neurodegenerative diseases to aging and cancer. Many of these diseases are characterized by the accumulation of misfolded proteins in intra- and extracellular inclusions, such as amyloid plaques. The clear link between protein misfolding and disease highlights the need to better understand the elaborate machinery that manages proteome homeostasis, or proteostasis, in the cell. Proteostasis depends on a network of molecular chaperones and clearance pathways involved in the recognition, refolding, and/or clearance of aberrant proteins. Recent studies reveal that an integral part of the cellular management of misfolded proteins is their spatial sequestration into several defined compartments. Here, we review the properties, function, and formation of these compartments. Spatial sequestration plays a central role in protein quality control and cellular fitness and represents a critical link to the pathogenesis of protein aggregation-linked diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014616
2017-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-060815-014616.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014616&mimeType=html&fmt=ahah

Literature Cited

  1. Balch WE, Morimoto RI, Dillin A, Kelly JW. 1.  2008. Adapting proteostasis for disease intervention. Science 319:916–19 [Google Scholar]
  2. Vendruscolo M. 2.  2012. Proteome folding and aggregation. Curr. Opin. Struct. Biol. 22:138–43 [Google Scholar]
  3. Hartl FU, Bracher A, Hayer-Hartl M. 3.  2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–32 [Google Scholar]
  4. Roth DM, Balch WE. 4.  2011. Modeling general proteostasis: proteome balance in health and disease. Curr. Opin. Cell Biol. 23:126–34 [Google Scholar]
  5. Buchberger A, Bukau B, Sommer T. 5.  2010. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40:238–52 [Google Scholar]
  6. Balchin D, Hayer-Hartl M, Hartl FU. 6.  2016. In vivo aspects of protein folding and quality control. Science 353:aac4354 [Google Scholar]
  7. Ross CA, Poirier MA. 7.  2004. Protein aggregation and neurodegenerative disease. Nat. Med. 10:Suppl.S10–17 [Google Scholar]
  8. Tyedmers J, Mogk A, Bukau B. 8.  2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777–88 [Google Scholar]
  9. Unruh JR, Slaughter BD, Li R. 9.  2013. Quality control: putting protein aggregates in a bind. Curr. Biol. 23:R74–76 [Google Scholar]
  10. Eftekharzadeh B, Hyman BT, Wegmann S. 10.  2016. Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mech. Ageing Dev. 156:1–13 [Google Scholar]
  11. Pechmann S, Willmund F, Frydman J. 11.  2013. The ribosome as a hub for protein quality control. Mol. Cell 49:411–21 [Google Scholar]
  12. Gregersen N, Bross P. 12.  2010. Protein misfolding and cellular stress: an overview. Methods Mol. Biol. 648:3–23 [Google Scholar]
  13. Houck SA, Singh S, Cyr DM. 13.  2012. Cellular responses to misfolded proteins and protein aggregates. Methods Mol. Biol. 832:455–61 [Google Scholar]
  14. Herczenik E, Gebbink MF. 14.  2008. Molecular and cellular aspects of protein misfolding and disease. FASEB J 22:2115–33 [Google Scholar]
  15. Morimoto RI. 15.  2011. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 76:91–99 [Google Scholar]
  16. Jeng W, Lee S, Sung N, Lee J, Tsai FT. 16.  2015. Molecular chaperones: guardians of the proteome in normal and disease states. F1000Research 4:1448 [Google Scholar]
  17. Lindberg I, Shorter J, Wiseman RL, Chiti F, Dickey CA, McLean PJ. 17.  2015. Chaperones in neurodegeneration. J. Neurosci. 35:13853–59 [Google Scholar]
  18. Chen B, Retzlaff M, Roos T, Frydman J. 18.  2011. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3:a004374 [Google Scholar]
  19. Miller SB, Mogk A, Bukau B. 19.  2015. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427:1564–74 [Google Scholar]
  20. Bagola K, Sommer T. 20.  2008. Protein quality control: on IPODs and other JUNQ. Curr. Biol. 18:R1019–21 [Google Scholar]
  21. Escusa-Toret S, Vonk WI, Frydman J. 21.  2013. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat. Cell Biol. 15:1231–43This study describes Q-bodies and shows that misfolded proteins are sequestered early in normal PQC to enhance fitness during stress. [Google Scholar]
  22. Kaganovich D, Kopito R, Frydman J. 22.  2008. Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–95This study describes the two pathways for spatial quality control for different classes of cytosolic proteins. [Google Scholar]
  23. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S. 23.  2012. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol. Cell 23:3041–56Sis1, Btn2, and Cur1 sort misfolded proteins to different PQC compartments during stress. [Google Scholar]
  24. Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A. 24.  et al. 2013. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–45A polyQ-expanded protein inhibits the proteasomal degradation of misfolded proteins by sequestering Sis1 in cytoplasmic inclusions. [Google Scholar]
  25. Ouellet J, Barral Y. 25.  2012. Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol. 196:305–13 [Google Scholar]
  26. Ogrodnik M, Salmonowicz H, Brown R, Turkowska J, Sredniawa W. 26.  et al. 2014. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. PNAS 111:8049–54 [Google Scholar]
  27. Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T. 27.  2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–53 [Google Scholar]
  28. Liu B, Larsson L, Caballero A, Hao X, Oling D. 28.  et al. 2010. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–67 [Google Scholar]
  29. Saarikangas J, Barral Y. 29.  2015. Protein aggregates are associated with replicative aging without compromising protein quality control. eLife 4:e06197 [Google Scholar]
  30. Erjavec N, Larsson L, Grantham J, Nystrom T. 30.  2007. Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–21 [Google Scholar]
  31. Erjavec N, Nystrom T. 31.  2007. Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. PNAS 104:10877–81 [Google Scholar]
  32. Specht S, Miller SB, Mogk A, Bukau B. 32.  2011. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195:617–29Hsp42 sorts misfolded proteins to the IPOD/peripheral PQC compartments under stress conditions. [Google Scholar]
  33. Johnston JA, Ward CL, Kopito RR. 33.  1998. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143:1883–98 [Google Scholar]
  34. Weisberg SJ, Lyakhovetsky R, Werdiger AC, Gitler AD, Soen Y, Kaganovich D. 34.  2012. Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. PNAS 109:15811–16Sequestration of SOD1 into the JUNQ contributes to toxicity in mammalian cells, which is mitigated by sequestration into insoluble inclusions. [Google Scholar]
  35. Gidalevitz T, Prahlad V, Morimoto RI. 35.  2011. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb. Perspect. Biol. 3:a009704 [Google Scholar]
  36. Tyedmers J, Treusch S, Dong J, McCaffery JM, Bevis B, Lindquist S. 36.  2010. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation. PNAS 107:8633–38 [Google Scholar]
  37. Kopito RR. 37.  2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–30 [Google Scholar]
  38. Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R. 38.  2011. Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 147:1186–96 [Google Scholar]
  39. Polling S, Mok YF, Ramdzan YM, Turner BJ, Yerbury JJ. 39.  et al. 2014. Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell. J. Biol. Chem. 289:6669–80 [Google Scholar]
  40. Farrawell NE, Lambert-Smith IA, Warraich ST, Blair IP, Saunders DN. 40.  et al. 2015. Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions. Sci. Rep. 5:13416 [Google Scholar]
  41. Decker CJ, Parker R. 41.  2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4:a012286 [Google Scholar]
  42. Protter DS, Parker R. 42.  2016. Principles and properties of stress granules. Trends Cell Biol 26:668–79 [Google Scholar]
  43. Buchan JR, Muhlrad D, Parker R. 43.  2008. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183:441–55 [Google Scholar]
  44. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J. 44.  et al. 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169:871–84 [Google Scholar]
  45. Buchan JR, Parker R. 45.  2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36:932–41 [Google Scholar]
  46. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 46.  2016. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–98This study shows that stress granules comprise stable cores and phase-separated shells and characterize the stress granule proteome. [Google Scholar]
  47. Buchan JR, Kolaitis RM, Taylor JP, Parker R. 47.  2013. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–74 [Google Scholar]
  48. Ganassi M, Mateju D, Bigi I, Mediani L, Poser I. 48.  et al. 2016. A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 63:796–810 [Google Scholar]
  49. Walters RW, Muhlrad D, Garcia J, Parker R. 49.  2015. Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21:1660–71 [Google Scholar]
  50. Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J. 50.  et al. 2013. Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23:2452–62 [Google Scholar]
  51. Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR. 51.  et al. 2015. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–98 [Google Scholar]
  52. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP. 52.  et al. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–33 [Google Scholar]
  53. Lin Y, Protter DS, Rosen MK, Parker R. 53.  2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19 [Google Scholar]
  54. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M. 54.  et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77 [Google Scholar]
  55. Guo L, Shorter J. 55.  2015. It's raining liquids: RNA tunes viscoelasticity and dynamics of membraneless organelles. Mol. Cell 60:189–92 [Google Scholar]
  56. Kroschwald S, Maharana S, Mateju D, Malinovska L, Nuske E. 56.  et al. 2015. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4:e06807 [Google Scholar]
  57. Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R. 57.  2016. Distinct stages in stress granule assembly and disassembly. eLife 5:e18413 [Google Scholar]
  58. Jones RD, Gardner RG. 58.  2016. Protein quality control in the nucleus. Curr. Opin. Cell Biol. 40:81–89 [Google Scholar]
  59. Prasad R, Kawaguchi S, Ng DT. 59.  2010. A nucleus-based quality control mechanism for cytosolic proteins. Mol. Biol. Cell 21:2117–27 [Google Scholar]
  60. Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A. 60.  et al. 2015. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34:778–97 [Google Scholar]
  61. Dundr M. 61.  2012. Nuclear bodies: multifunctional companions of the genome. Curr. Opin. Cell Biol. 24:415–22 [Google Scholar]
  62. Pederson T. 62.  2011. The nucleolus. Cold Spring Harb. Perspect. Biol. 3:a000638 [Google Scholar]
  63. Sinclair DA, Mills K, Guarente L. 63.  1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–16 [Google Scholar]
  64. Boulon S, Westman BJ, Hutten S, Boisvert F-M, Lamond AI. 64.  2010. The nucleolus under stress. Mol. Cell 40:2216–27 [Google Scholar]
  65. Carracedo A, Ito K, Pandolfi PP. 65.  2011. The nuclear bodies inside out: PML conquers the cytoplasm. Curr. Opin. Cell Biol. 23:360–66 [Google Scholar]
  66. Spector DL, Lamond AI. 66.  2011. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3:a000646 [Google Scholar]
  67. Mao YS, Zhang B, Spector DL. 67.  2011. Biogenesis and function of nuclear bodies. Trends Genet 27:295–306 [Google Scholar]
  68. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A. 68.  et al. 2016. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22:861–68 [Google Scholar]
  69. Morris GE. 69.  2008. The Cajal body. Biochim. Biophys. Acta 1783:2108–15 [Google Scholar]
  70. Huyer G, Longsworth GL, Mason DL, Mallampalli MP, McCaffery JM. 70.  et al. 2004. A striking quality control subcompartment in Saccharomyces cerevisiae: the endoplasmic reticulum-associated compartment. Mol. Biol. Cell 15:908–21 [Google Scholar]
  71. Ogen-Shtern N, Ben David T, Lederkremer GZ. 71.  2016. Protein aggregation and ER stress. Brain Res 1648:658–66 [Google Scholar]
  72. Brodsky JL. 72.  2012. Cleaning up: ER-associated degradation to the rescue. Cell 151:1163–67 [Google Scholar]
  73. Hanson PI, Cashikar A. 73.  2012. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 28:337–62 [Google Scholar]
  74. Babst M. 74.  2014. Quality control at the plasma membrane: one mechanism does not fit all. J. Cell Biol. 205:11–20 [Google Scholar]
  75. MacGurn JA. 75.  2014. Garbage on, garbage off: new insights into plasma membrane protein quality control. Curr. Opin. Cell Biol. 29:92–98 [Google Scholar]
  76. Wang S, Thibault G, Ng DT. 76.  2011. Routing misfolded proteins through the multivesicular body (MVB) pathway protects against proteotoxicity. J. Biol. Chem. 286:29376–87 [Google Scholar]
  77. Khmelinskii A, Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ. 77.  et al. 2014. Protein quality control at the inner nuclear membrane. Nature 516:410–13 [Google Scholar]
  78. Brandman O, Hegde RS. 78.  2016. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23:7–15 [Google Scholar]
  79. Duttler S, Pechmann S, Frydman J. 79.  2013. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50:379–93 [Google Scholar]
  80. Choe YJ, Park SH, Hassemer T, Korner R, Vincenz-Donnelly L. 80.  et al. 2016. Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature 531:191–95This study shows that stalled nascent chains with CAT-tails form toxic aggregates. [Google Scholar]
  81. Yonashiro R, Tahara EB, Bengtson MH, Khokhrina M, Lorenz H. 81.  et al. 2016. The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. eLife 5:e11794 [Google Scholar]
  82. Yang J, Hao X, Cao X, Liu B, Nystrom T. 82.  2016. Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. eLife 5:e11792 [Google Scholar]
  83. Defenouillere Q, Zhang E, Namane A, Mouaikel J, Jacquier A, Fromont-Racine M. 83.  2016. Rqc1 and Ltn1 prevent C-terminal alanine-threonine tail (CAT-tail)-induced protein aggregation by efficient recruitment of Cdc48 on stalled 60S subunits. J. Biol. Chem. 291:12245–53 [Google Scholar]
  84. Shao S, Hegde RS. 84.  2011. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27:25–56 [Google Scholar]
  85. Rane NS, Kang SW, Chakrabarti O, Feigenbaum L, Hegde RS. 85.  2008. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev. Cell 15:359–70 [Google Scholar]
  86. Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS. 86.  2011. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–97 [Google Scholar]
  87. Leznicki P, High S. 87.  2012. SGTA antagonizes BAG6-mediated protein triage. PNAS 109:19214–19 [Google Scholar]
  88. Wunderley L, Leznicki P, Payapilly A, High S. 88.  2014. SGTA regulates the cytosolic quality control of hydrophobic substrates. J. Cell Sci. 127:4728–39 [Google Scholar]
  89. Schmidt O, Pfanner N, Meisinger C. 89.  2010. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 11:655–67 [Google Scholar]
  90. Topf U, Wrobel L, Chacinska A. 90.  2016. Chatty mitochondria: keeping balance in cellular protein homeostasis. Trends Cell Biol 26:577–86 [Google Scholar]
  91. Wrobel L, Topf U, Bragoszewski P, Wiese S, Sztolsztener ME. 91.  et al. 2015. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524:485–88 [Google Scholar]
  92. Wang X, Chen XJ. 92.  2015. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524:481–84 [Google Scholar]
  93. Hetz C. 93.  2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13:89–102 [Google Scholar]
  94. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS. 94.  2016. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol. Cell 63:21–33 [Google Scholar]
  95. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB. 95.  et al. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11:4241–57 [Google Scholar]
  96. Albanese V, Yam AY, Baughman J, Parnot C, Frydman J. 96.  2006. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88 [Google Scholar]
  97. Lindquist S. 97.  1986. The heat-shock response. Annu. Rev. Biochem. 55:1151–91 [Google Scholar]
  98. Medicherla B, Goldberg AL. 98.  2008. Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J. Cell Biol. 182:663–73 [Google Scholar]
  99. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. 99.  2006. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–74 [Google Scholar]
  100. Gidalevitz T, Krupinski T, Garcia S, Morimoto RI. 100.  2009. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLOS Genet 5:e1000399 [Google Scholar]
  101. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R. 101.  et al. 2011. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 7:285–95 [Google Scholar]
  102. Arosio P, Michaels TC, Linse S, Mansson C, Emanuelsson C. 102.  et al. 2016. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat. Commun. 7:10948 [Google Scholar]
  103. Ciryam P, Kundra R, Morimoto RI, Dobson CM, Vendruscolo M. 103.  2015. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol. Sci. 36:72–77 [Google Scholar]
  104. Koplin A, Preissler S, Ilina Y, Koch M, Scior A. 104.  et al. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J. Cell Biol. 189:57–68 [Google Scholar]
  105. Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G. 105.  et al. 2015. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:919–32 [Google Scholar]
  106. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. 106.  2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLOS Biol 8:e1000450 [Google Scholar]
  107. Alberti S, Hyman AA. 107.  2016. Are aberrant phase transitions a driver of cellular aging?. BioEssays 38:959–68 [Google Scholar]
  108. Munder MC, Midtvedt D, Franzmann T, Nuske E, Otto O. 108.  et al. 2016. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 5:e09347 [Google Scholar]
  109. Theodoraki MA, Caplan AJ. 109.  2012. Quality control and fate determination of Hsp90 client proteins. Biochim. Biophys. Acta 1823:683–88 [Google Scholar]
  110. Bracher A, Verghese J. 110.  2015. The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci. 2:10 [Google Scholar]
  111. Bakthisaran R, Tangirala R, ChM Rao. 111.  2015. Small heat shock proteins: role in cellular functions and pathology. Biochim. Biophys. Acta 1854:291–319 [Google Scholar]
  112. McClellan AJ, Tam S, Kaganovich D, Frydman J. 112.  2005. Protein quality control: chaperones culling corrupt conformations. Nat. Cell Biol. 7:736–41 [Google Scholar]
  113. Kampinga HH, Craig EA. 113.  2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11:579–92 [Google Scholar]
  114. Clerico EM, Tilitsky JM, Meng W, Gierasch LM. 114.  2015. How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J. Mol. Biol. 427:1575–88 [Google Scholar]
  115. Summers DW, Wolfe KJ, Ren HY, Cyr DM. 115.  2013. The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLOS ONE 8:e52099 [Google Scholar]
  116. Reidy M, Sharma R, Shastry S, Roberts BL, Albino-Flores I. 116.  et al. 2014. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines. PLOS Genet 10:e1004720 [Google Scholar]
  117. Heck JW, Cheung SK, Hampton RY. 117.  2010. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. PNAS 107:1106–11Cytoplasmic misfolded proteins can be ubiquitinated by either cytoplasmic Ubr1 or nuclear San1 in yeast. [Google Scholar]
  118. Guerriero CJ, Weiberth KF, Brodsky JL. 118.  2013. Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase. J. Biol. Chem. 288:18506–20 [Google Scholar]
  119. Mandal AK, Gibney PA, Nillegoda NB, Theodoraki MA, Caplan AJ, Morano KA. 119.  2010. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system. Mol. Biol. Cell 21:1439–48 [Google Scholar]
  120. Wickner RB, Bezsonov E, Bateman DA. 120.  2014. Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. PNAS 111:E2711–20 [Google Scholar]
  121. Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F. 121.  2012. A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol. Microbiol. 86:1531–47 [Google Scholar]
  122. Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE. 122.  et al. 1999. Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–51 [Google Scholar]
  123. Franzmann TM, Menhorn P, Walter S, Buchner J. 123.  2008. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol. Cell 29:207–16 [Google Scholar]
  124. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS. 124.  et al. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–83 [Google Scholar]
  125. Morley JF, Morimoto RI. 125.  2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15:657–64 [Google Scholar]
  126. Hsu AL, Murphy CT, Kenyon C. 126.  2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–45 [Google Scholar]
  127. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. 127.  2006. Opposing activities protect against age-onset proteotoxicity. Science 313:1604–10 [Google Scholar]
  128. Cashikar AG, Duennwald M, Lindquist SL. 128.  2005. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280:23869–75 [Google Scholar]
  129. Doyle SM, Genest O, Wickner S. 129.  2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nat. Rev. Mol. Cell Biol. 14:617–29 [Google Scholar]
  130. Glover JR, Lindquist S. 130.  1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82 [Google Scholar]
  131. Shorter J. 131.  2011. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLOS ONE 6:e26319 [Google Scholar]
  132. Aguado A, Fernandez-Higuero JA, Moro F, Muga A. 132.  2015. Chaperone-assisted protein aggregate reactivation: different solutions for the same problem. Arch. Biochem. Biophys. 580:121–34 [Google Scholar]
  133. Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A. 133.  et al. 2015. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524:247–51 [Google Scholar]
  134. Hjerpe R, Bett JS, Keuss MJ, Solovyova A, McWilliams TG. 134.  et al. 2016. UBQLN2 mediates autophagy-independent protein aggregate clearance by the proteasome. Cell 166:935–49 [Google Scholar]
  135. Amm I, Sommer T, Wolf DH. 135.  2014. Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. Biochim. Biophys. Acta 1843:182–96 [Google Scholar]
  136. Gardner RG, Nelson ZW, Gottschling DE. 136.  2005. Degradation-mediated protein quality control in the nucleus. Cell 120:803–15 [Google Scholar]
  137. Fredrickson EK, Rosenbaum JC, Locke MN, Milac TI, Gardner RG. 137.  2011. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol. Biol. Cell 22:2384–95 [Google Scholar]
  138. Amm I, Wolf DH. 138.  2016. Molecular mass as a determinant for nuclear San1-dependent targeting of misfolded cytosolic proteins to proteasomal degradation. FEBS Lett 590:1765–75 [Google Scholar]
  139. Deng M, Hochstrasser M. 139.  2006. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443:827–31 [Google Scholar]
  140. Ravid T, Kreft SG, Hochstrasser M. 140.  2006. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25:533–43 [Google Scholar]
  141. Metzger MB, Maurer MJ, Dancy BM, Michaelis S. 141.  2008. Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery. J. Biol. Chem. 283:32302–16 [Google Scholar]
  142. Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL. 142.  2008. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132:101–12 [Google Scholar]
  143. Dang FW, Chen L, Madura K. 143.  2016. Catalytically active proteasomes function predominantly in the cytosol. J. Biol. Chem. 291:18765–77 [Google Scholar]
  144. Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K. 144.  2014. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18:16–28 [Google Scholar]
  145. Khaminets A, Behl C, Dikic I. 145.  2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16 [Google Scholar]
  146. Lu K, Psakhye I, Jentsch S. 146.  2014. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158:549–63 [Google Scholar]
  147. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K. 147.  et al. 2013. Aβ secretion and plaque formation depend on autophagy. Cell Rep 5:61–69 [Google Scholar]
  148. Su M, Shi JJ, Yang YP, Li J, Zhang YL. 148.  et al. 2011. HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. J. Neurochem. 117:112–20 [Google Scholar]
  149. Gallagher PS, Clowes Candadai SV, Gardner RG. 149.  2014. The requirement for Cdc48/p97 in nuclear protein quality control degradation depends on the substrate and correlates with substrate insolubility. J. Cell Sci. 127:1980–91 [Google Scholar]
  150. Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM. 150.  et al. 2004. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119:9–18 [Google Scholar]
  151. Ghislain M, Dohmen RJ, Levy F, Varshavsky A. 151.  1996. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15:4884–99 [Google Scholar]
  152. Yao TP. 152.  2010. The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 1:779–86 [Google Scholar]
  153. Andersson V, Hanzen S, Liu B, Molin M, Nystrom T. 153.  2013. Enhancing protein disaggregation restores proteasome activity in aged cells. Aging 5:802–12 [Google Scholar]
  154. Clague MJ, Urbe S. 154.  2010. Ubiquitin: same molecule, different degradation pathways. Cell 143:682–85 [Google Scholar]
  155. Kroemer G, Marino G, Levine B. 155.  2010. Autophagy and the integrated stress response. Mol. Cell 40:280–93 [Google Scholar]
  156. Lilienbaum A. 156.  2013. Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4:1–26 [Google Scholar]
  157. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. 157.  2005. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates α-synuclein degradation decisions between proteasomal and lysosomal pathways. J. Biol. Chem. 280:23727–34 [Google Scholar]
  158. Gamerdinger M, Carra S, Behl C. 158.  2011. Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J. Mol. Med. (Berl.) 891175–82 [Google Scholar]
  159. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. 159.  2003. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278:25009–13 [Google Scholar]
  160. Ravikumar B, Duden R, Rubinsztein DC. 160.  2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107–17 [Google Scholar]
  161. Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A. 161.  et al. 2014. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat. Cell Biol. 16:1227–37 [Google Scholar]
  162. Fang NN, Ng AH, Measday V, Mayor T. 162.  2011. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 13:1344–52 [Google Scholar]
  163. Ben-Gedalya T, Lyakhovetsky R, Yedidia Y, Bejerano-Sagie M, Kogan NM. 163.  et al. 2011. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. J. Cell Sci. 124:1891–902 [Google Scholar]
  164. Romanova NV, Chernoff YO. 164.  2009. Hsp104 and prion propagation. Protein Pept. Lett. 16:598–605 [Google Scholar]
  165. Kryndushkin DS, Engel A, Edskes H, Wickner RB. 165.  2011. Molecular chaperone Hsp104 can promote yeast prion generation. Genetics 188:339–48 [Google Scholar]
  166. Treusch S, Lindquist S. 166.  2012. An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. J. Cell Biol. 197:369–79 [Google Scholar]
  167. Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F. 167.  et al. 2016. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351:173–76 [Google Scholar]
  168. Wolfe KJ, Cyr DM. 168.  2011. Amyloid in neurodegenerative diseases: Friend or foe?. Semin. Cell Dev. Biol. 22:476–81 [Google Scholar]
  169. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. 169.  2004. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–10 [Google Scholar]
  170. Sahl SJ, Weiss LE, Duim WC, Frydman J, Moerner WE. 170.  2012. Cellular inclusion bodies of mutant huntingtin exon 1 obscure small fibrillar aggregate species. Sci. Rep. 2:895 [Google Scholar]
  171. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH. 171.  et al. 2011. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78 [Google Scholar]
  172. Gopinath RK, Leu JY. 172.  2016. Hsp90 maintains proteostasis of the galactose utilization pathway to prevent cell lethality. Mol. Cell Biol. 36:1412–24 [Google Scholar]
  173. Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D. 173.  et al. 2012. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287:28152–62 [Google Scholar]
  174. Soragni A, Janzen DM, Johnson LM, Lindgren AG, Thai-Quynh Nguyen A. 174.  et al. 2016. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29:90–103 [Google Scholar]
  175. Weids AJ, Ibstedt S, Tamas MJ, Grant CM. 175.  2016. Distinct stress conditions result in aggregation of proteins with similar properties. Sci. Rep. 6:24554 [Google Scholar]
  176. Soto C. 176.  2011. Prion hypothesis: the end of the controversy?. Trends Biochem. Sci. 36:151–58 [Google Scholar]
  177. Lavut A, Raveh D. 177.  2012. Sequestration of highly expressed mRNAs in cytoplasmic granules, P-bodies, and stress granules enhances cell viability. PLOS Genet 8:e1002527 [Google Scholar]
  178. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. 178.  2008. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat. Cell Biol. 10:1324–32 [Google Scholar]
  179. Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T. 179.  et al. 2013. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol. Cell Biol. 33:815–29 [Google Scholar]
  180. Anderson P, Kedersha N, Ivanov P. 180.  2015. Stress granules, P-bodies and cancer. Biochim. Biophys. Acta 1849:861–70 [Google Scholar]
  181. Wolozin B. 181.  2014. Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov. Med. 17:47–52 [Google Scholar]
  182. Bentmann E, Haass C, Dormann D. 182.  2013. Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280:4348–70 [Google Scholar]
  183. Malinovska L, Kroschwald S, Alberti S. 183.  2013. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834:918–31 [Google Scholar]
  184. Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T. 184.  2014. Antiviral innate immunity and stress granule responses. Trends Immunol 35:420–28 [Google Scholar]
  185. Poblete-Duran N, Prades-Perez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverria F. 185.  2016. Who regulates whom? An overview of RNA granules and viral infections. Viruses 8:180 [Google Scholar]
  186. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. 186.  2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91 [Google Scholar]
  187. De Virgilio C. 187.  2012. The essence of yeast quiescence. FEMS Microbiol. Rev. 36:306–39 [Google Scholar]
  188. Bajorek M, Finley D, Glickman MH. 188.  2003. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13:1140–44 [Google Scholar]
  189. Laporte D, Salin B, Daignan-Fornier B, Sagot I. 189.  2008. Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J. Cell Biol. 181:737–45 [Google Scholar]
  190. Saunier R, Esposito M, Dassa EP, Delahodde A. 190.  2013. Integrity of the Saccharomyces cerevisiae Rpn11 protein is critical for formation of proteasome storage granules (PSG) and survival in stationary phase. PLOS ONE 8:e70357 [Google Scholar]
  191. Peters LZ, Karmon O, Miodownik S, Ben-Aroya S. 191.  2016. Proteasome storage granules are transiently associated with the insoluble protein deposit in Saccharomyces cerevisiae. J. Cell Sci. 129:1190–97 [Google Scholar]
  192. Marshall RS, McLoughlin F, Vierstra RD. 192.  2016. Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 16:1717–32 [Google Scholar]
  193. Shah KH, Zhang B, Ramachandran V, Herman PK. 193.  2013. Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 193:109–23 [Google Scholar]
  194. Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O'Connell JD. 194.  et al. 2009. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. PNAS 106:10147–52 [Google Scholar]
  195. Liu IC, Chiu SW, Lee HY, Leu JY. 195.  2012. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol. Biol. Cell 23:1231–42 [Google Scholar]
  196. Shah KH, Nostramo R, Zhang B, Varia SN, Klett BM, Herman PK. 196.  2014. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells. Genetics 198:1495–512 [Google Scholar]
  197. Munch C, Harper JW. 197.  2016. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–13 [Google Scholar]
  198. Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE. 198.  2016. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife 5:e13943 [Google Scholar]
  199. Nguyen TN, Padman BS, Lazarou M. 199.  2016. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–44 [Google Scholar]
  200. Baker MJ, Palmer CS, Stojanovski D. 200.  2014. Mitochondrial protein quality control in health and disease. Br. J. Pharmacol. 171:1870–89 [Google Scholar]
  201. Chourasia AH, Boland ML, Macleod KF. 201.  2015. Mitophagy and cancer. Cancer Metab 3:4 [Google Scholar]
  202. Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R. 202.  et al. 2016. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–42 [Google Scholar]
  203. Squier TC. 203.  2001. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36:1539–50 [Google Scholar]
  204. Nystrom T. 204.  2005. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–17 [Google Scholar]
  205. Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L. 205.  et al. 2016. Role of carbonyl modifications on aging-associated protein aggregation. Sci. Rep. 6:19311 [Google Scholar]
  206. Labbadia J, Morimoto RI. 206.  2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84:435–64 [Google Scholar]
  207. Taylor RC, Dillin A. 207.  2011. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3:a004440 [Google Scholar]
  208. Ben-Zvi A, Miller EA, Morimoto RI. 208.  2009. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. PNAS 106:14914–19 [Google Scholar]
  209. Brehme M, Voisine C, Rolland T, Wachi S, Soper JH. 209.  et al. 2014. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–50 [Google Scholar]
  210. van Deventer S, Menendez-Benito V, van Leeuwen F, Neefjes J. 210.  2015. N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. J. Cell Sci. 128:109–17 [Google Scholar]
  211. Moronetti Mazzeo LE, Dersh D, Boccitto M, Kalb RG, Lamitina T. 211.  2012. Stress and aging induce distinct polyQ protein aggregation states. PNAS 109:10587–92 [Google Scholar]
  212. Liang V, Ullrich M, Lam H, Chew YL, Banister S. 212.  et al. 2014. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome. Cell Mol. Life Sci. 71:3339–61 [Google Scholar]
  213. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. 213.  2012. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 16:18–31 [Google Scholar]
  214. Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D. 214.  2012. Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2:738–47 [Google Scholar]
  215. Tessarz P, Schwarz M, Mogk A, Bukau B. 215.  2009. The yeast AAA+ chaperone Hsp104 is part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol. Cell Biol. 29:3738–45 [Google Scholar]
  216. Hill SM, Hao X, Gronvall J, Spikings-Nordby S, Widlund PO. 216.  et al. 2016. Asymmetric inheritance of aggregated proteins and age reset in yeast are regulated by Vac17-dependent vacuolar functions. Cell Rep 16:826–38 [Google Scholar]
  217. Song J, Yang Q, Yang J, Larsson L, Hao X. 217.  et al. 2014. Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLOS Genet 10:e1004539 [Google Scholar]
  218. Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z. 218.  et al. 2014. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:530–42 [Google Scholar]
  219. Kennedy BK, Austriaco NR Jr, Guarente L. 219.  1994. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127:1985–93 [Google Scholar]
  220. Moore DL, Pilz GA, Arauzo-Bravo MJ, Barral Y, Jessberger S. 220.  2015. A mechanism for the segregation of age in mammalian neural stem cells. Science 349:1334–38This study shows that asymmetric inheritance of aggregates during neural stem cell division declined during aging. [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014616
Loading
/content/journals/10.1146/annurev-biochem-060815-014616
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error