1932

Abstract

Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014801
2018-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-060815-014801.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014801&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Van Norden R 2014. Nobel for microscopy that reveals inner world of cells. Nature 514:286
    [Google Scholar]
  2. 2.  Hirano Y, Matsuda A, Hiraoka Y 2015. Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy 64:237–49
    [Google Scholar]
  3. 3.  Ströhl F, Kaminski CF 2016. Frontiers in structured illumination microscopy. Optica 3:667–77
    [Google Scholar]
  4. 4.  Demmerle J, Innocent C, North AJ, Ball G, Muller M et al. 2017. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12:988–1010
    [Google Scholar]
  5. 5.  Hell SW, Wichmann J 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:780–82
    [Google Scholar]
  6. 6.  Bottanelli F, Kromann EB, Allgeyer ES, Erdmann RS, Wood Baguley S et al. 2016. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7:10778
    [Google Scholar]
  7. 7.  Hell SW, Dyba M, Jakobs S 2004. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 14:599–609
    [Google Scholar]
  8. 8.  Dertinger T, Pallaoro A, Braun G, Ly S, Laurence TA, Weiss S 2013. Advances in superresolution optical fluctuation imaging (SOFI). Q. Rev. Biophys. 46:210–21
    [Google Scholar]
  9. 9.  Eggeling C, Willig KI, Sahl SJ, Hell SW 2015. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48:178–243
    [Google Scholar]
  10. 10.  Huang B, Bates M, Zhuang X 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  11. 11.  Patterson G, Davidson M, Manley S, Lippincott-Schwartz J 2010. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61:345–67
    [Google Scholar]
  12. 12.  Sauer M, Heilemann M 2017. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117:7478–509
    [Google Scholar]
  13. 13.  von Diezmann A, Shechtman Y, Moerner WE 2017. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75
    [Google Scholar]
  14. 14.  Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45
    [Google Scholar]
  15. 15.  Hess ST, Girirajan TP, Mason MD 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72
    [Google Scholar]
  16. 16.  Rust MJ, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95
    [Google Scholar]
  17. 17.  Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B et al. 2008. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47:6172–76
    [Google Scholar]
  18. 18.  Folling J, Bossi M, Bock H, Medda R, Wurm CA et al. 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5:943–45
    [Google Scholar]
  19. 19.  Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A et al. 2008. SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl. Phys. B 93:1
    [Google Scholar]
  20. 20.  Baddeley D, Jayasinghe ID, Cremer C, Cannell MB, Soeller C 2009. Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys. J. 96:L22–24
    [Google Scholar]
  21. 21.  Sharonov A, Hochstrasser RM 2006. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 103:18911–16
    [Google Scholar]
  22. 22.  Flors C, Ravarani CNJ, Dryden DTF 2009. Super-resolution imaging of DNA labelled with intercalating dyes. ChemPhysChem 10:2201–4
    [Google Scholar]
  23. 23.  Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC 2010. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10:4756–61
    [Google Scholar]
  24. 24.  Schoen I, Ries J, Klotzsch E, Ewers H, Vogel V 2011. Binding-activated localization microscopy of DNA structures. Nano Lett 11:4008–11
    [Google Scholar]
  25. 25.  Lew MD, Lee SF, Ptacin JL, Lee MK, Twieg RJ et al. 2011. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. PNAS 108:18577–78
    [Google Scholar]
  26. 26.  Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B 2011. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. PNAS 108:21081–86
    [Google Scholar]
  27. 27.  Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P 2014. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11:313–18
    [Google Scholar]
  28. 28.  Hell SW. 2015. Nanoscopy with focused light (Nobel lecture). Angew. Chem. Int. Ed. Engl. 54:8054–66
    [Google Scholar]
  29. 29.  Xu K, Zhong G, Zhuang X 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–56
    [Google Scholar]
  30. 30.  Chung JJ, Shim SH, Everley RA, Gygi SP, Zhuang X, Clapham DE 2014. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell 157:808–22
    [Google Scholar]
  31. 31.  Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JAG, Ellenberg J 2013. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–58
    [Google Scholar]
  32. 32.  Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M et al. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125:570–75
    [Google Scholar]
  33. 33.  Broeken J, Johnson H, Lidke DS, Liu S, Nieuwenhuizen RP et al. 2015. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc. 3:014003
    [Google Scholar]
  34. 34.  Shi X, Garcia G III, Van De Weghe JC, McGorty R, Pazour GJ et al. 2017. Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19:1178–88
    [Google Scholar]
  35. 35.  Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC et al. 2016. Ultra-high resolution 3D imaging of whole cells. Cell 166:1028–40
    [Google Scholar]
  36. 36.  Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  37. 37.  Laplante C, Huang F, Tebbs IR, Bewersdorf J, Pollard TD 2016. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast. PNAS 113:E5876–85
    [Google Scholar]
  38. 38.  Beliveau BJ, Boettiger AN, Avendano MS, Jungmann R, McCole RB et al. 2015. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6:7147
    [Google Scholar]
  39. 39.  Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ et al. 2014. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5:4650
    [Google Scholar]
  40. 40.  Tang A-H, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA 2016. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536:210–14
    [Google Scholar]
  41. 41.  Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82
    [Google Scholar]
  42. 42.  Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21:86–89
    [Google Scholar]
  43. 43.  Doksani Y, Wu JY, de Lange T, Zhuang X 2013. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155:345–56
    [Google Scholar]
  44. 44.  Huang F, Schwartz SL, Byars JM, Lidke KA 2011. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt. Express 2:1377–93
    [Google Scholar]
  45. 45.  Erdelyi M, Sinko J, Kakonyi R, Kelemen A, Rees E et al. 2015. Origin and compensation of imaging artefacts in localization-based super-resolution microscopy. Methods 88:122–32
    [Google Scholar]
  46. 46.  Burgert A, Letschert S, Doose S, Sauer M 2015. Artifacts in single-molecule localization microscopy. Histochem. Cell Biol. 144:123–31
    [Google Scholar]
  47. 47.  Yuan P, Condello C, Keene CD, Wang Y, Bird TD et al. 2016. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90:724–39
    [Google Scholar]
  48. 48.  Mikhaylova M, Cloin BM, Finan K, van den Berg R, Teeuw J et al. 2015. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6:7933
    [Google Scholar]
  49. 49.  Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C 2009. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. PNAS 106:22275–80
    [Google Scholar]
  50. 50.  Owen DM, Rentero C, Rossy J, Magenau A, Williamson D et al. 2010. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 3:446–54
    [Google Scholar]
  51. 51.  Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J 2011. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8:969–75
    [Google Scholar]
  52. 52.  Bar-On D, Wolter S, van de Linde S, Heilemann M, Nudelman G et al. 2012. Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J. Biol. Chem. 287:27158–67
    [Google Scholar]
  53. 53.  Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM et al. 2013. Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. PNAS 110:18519–24
    [Google Scholar]
  54. 54.  Caetano FA, Dirk BS, Tam JHK, Cavanagh PC, Goiko M et al. 2015. MIiSR: Molecular interactions in super-resolution imaging enables the analysis of protein interactions, dynamics and formation of multi-protein structures. PLOS Comput. Biol. 11:e1004634
    [Google Scholar]
  55. 55.  Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF et al. 2011. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 31:4994–5010
    [Google Scholar]
  56. 56.  Renz M, Daniels BR, Vamosi G, Arias IM, Lippincott-Schwartz J 2012. Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. PNAS 109:E2989–97
    [Google Scholar]
  57. 57.  Jayasinghe ID, Baddeley D, Kong CH, Wehrens XH, Cannell MB, Soeller C 2012. Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys. J. 102:L19–21
    [Google Scholar]
  58. 58.  Triller A, Choquet D 2008. New concepts in synaptic biology derived from single-molecule imaging. Neuron 59:359–74
    [Google Scholar]
  59. 59.  Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:281–89
    [Google Scholar]
  60. 60.  Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK 2014. Tracking single molecules at work in living cells. Nat. Chem. Biol. 10:524–32
    [Google Scholar]
  61. 61.  Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF et al. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155–57
    [Google Scholar]
  62. 62.  Giannone G, Hosy E, Levet F, Constals A, Schulze K et al. 2010. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99:1303–10
    [Google Scholar]
  63. 63.  Hoze N, Nair D, Hosy E, Sieben C, Manley S et al. 2012. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. PNAS 109:17052–57
    [Google Scholar]
  64. 64.  Abbe E. 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9:413–68
    [Google Scholar]
  65. 65.  Thompson RE, Larson DR, Webb WW 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–83
    [Google Scholar]
  66. 66.  Ober RJ, Ram S, Ward ES 2004. Localization accuracy in single-molecule microscopy. Biophys. J. 86:1185–200
    [Google Scholar]
  67. 67.  Rieger B, Stallinga S 2014. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15:664–70
    [Google Scholar]
  68. 68.  Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H 2010. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7:377–81
    [Google Scholar]
  69. 69.  Li D, Shao L, Chen BC, Zhang X, Zhang M et al. 2015. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349:aab3500
    [Google Scholar]
  70. 70.  Legant WR, Shao L, Grimm JB, Brown TA, Milkie DE et al. 2016. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13:359–65
    [Google Scholar]
  71. 71.  van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R et al. 2001. Single-particle electron cryo-microscopy: towards atomic resolution. Q. Rev. Biophys. 33:307–69
    [Google Scholar]
  72. 72.  Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grunwald D et al. 2013. Measuring image resolution in optical nanoscopy. Nat. Methods 10:557–62
    [Google Scholar]
  73. 73.  Banterle N, Bui KH, Lemke EA, Beck M 2013. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183:363–67
    [Google Scholar]
  74. 74.  Rose A. 1973. Vision: Human and Electronic. New York: Plenum Press
  75. 75.  Sparrow CM. 1916. On spectroscopic resolving power. Astrophys. J. 44:76–86
    [Google Scholar]
  76. 76.  den Dekker AJ, van den Bos A 1997. Resolution: a survey. J. Opt. Soc. Am. A 14:547–57
    [Google Scholar]
  77. 77.  Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A 2011. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods 8:527–28
    [Google Scholar]
  78. 78.  Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA 2012. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLOS ONE 7:e31457
    [Google Scholar]
  79. 79.  Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A 2011. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLOS ONE 6:e22678
    [Google Scholar]
  80. 80.  Coltharp C, Kessler RP, Xiao J 2012. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements. PLOS ONE 7:e51725
    [Google Scholar]
  81. 81.  Lee SH, Shin JY, Lee A, Bustamante C 2012. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). PNAS 109:17436–41
    [Google Scholar]
  82. 82.  Puchner EM, Walter JM, Kasper R, Huang B, Lim WA 2013. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. PNAS 110:16015–20
    [Google Scholar]
  83. 83.  Rollins GC, Shin JY, Bustamante C, Pressé S 2015. Stochastic approach to the molecular counting problem in superresolution microscopy. PNAS 112:E110–18
    [Google Scholar]
  84. 84.  Fricke F, Beaudouin J, Eils R, Heilemann M 2015. One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci. Rep. 5:14072
    [Google Scholar]
  85. 85.  Nieuwenhuizen RP, Nahidiazar L, Manders EM, Jalink K, Stallinga S, Rieger B 2015. Co-orientation: quantifying simultaneous co-localization and orientational alignment of filaments in light microscopy. PLOS ONE 10:e0131756
    [Google Scholar]
  86. 86.  Hummer G, Fricke F, Heilemann M 2016. Model-independent counting of molecules in single-molecule localization microscopy. Mol. Biol. Cell 27:3637–44
    [Google Scholar]
  87. 87.  Zhang Y, Lara-Tejero M, Bewersdorf J, Galan JE 2017. Visualization and characterization of individual type III protein secretion machines in live bacteria. PNAS 114:6098–103
    [Google Scholar]
  88. 88.  Ripley BD. 1976. The second-order analysis of stationary point processes. J. Appl. Probab. 13:255–66
    [Google Scholar]
  89. 89.  Dixon PM. 2006. Encyclopedia of Environmetrics1796–803 New York: John Wiley
  90. 90.  Schubert E, Sander J, Ester M, Kriegel HP, Xu X 2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42:1–21
    [Google Scholar]
  91. 91.  MacQueen J. 1967. Some methods for classification and analysis of multivariate observations 1 Statistics. Presented at Proc. Fifth Berkeley Symp. Math. Stat. Probab Berkeley, CA:
  92. 92.  Baddeley D, Cannell MB, Soeller C 2010. Visualization of localization microscopy data. Microsc. Microanal 16:64–72
    [Google Scholar]
  93. 93.  Levet F, Hosy E, Kechkar A, Butler C, Beghin A et al. 2015. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12:1065–71
    [Google Scholar]
  94. 94.  Rubin-Delanchy P, Burn GL, Griffie J, Williamson DJ, Heard NA et al. 2015. Bayesian cluster identification in single-molecule localization microscopy data. Nat. Methods 12:1072–76
    [Google Scholar]
  95. 95.  Dunn KW, Kamocka MM, McDonald JH 2011. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300:C723–42
    [Google Scholar]
  96. 96.  Lagache T, Sauvonnet N, Danglot L, Olivo‐Marin JC 2015. Statistical analysis of molecule colocalization in bioimaging. Cytometry Part A 87:568–79
    [Google Scholar]
  97. 97.  Coltharp C, Yang X, Xiao J 2014. Quantitative analysis of single-molecule superresolution images. Curr. Opin. Struct. Biol. 28:112–21
    [Google Scholar]
  98. 98.  Rossy J, Cohen E, Gaus K, Owen DM 2014. Method for co-cluster analysis in multichannel single-molecule localisation data. Histochem. Cell Biol. 141:605–12
    [Google Scholar]
  99. 99.  Tarancón Díez L, Bönsch C, Malkusch S, Truan Z, Munteanu M et al. 2014. Coordinate-based co-localization-mediated analysis of arrestin clustering upon stimulation of the C–C chemokine receptor 5 with RANTES/CCL5 analogues. Histochem. Cell Biol. 142:69–77
    [Google Scholar]
  100. 100.  Veeraraghavan R, Gourdie RG 2016. Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization. Mol. Biol. Cell 27:3583–90
    [Google Scholar]
  101. 101.  Durisic N, Laparra-Cuervo L, Sandoval-Alvarez A, Borbely JS, Lakadamyali M 2014. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11:156–62
    [Google Scholar]
  102. 102.  Lin Y, Long JJ, Huang F, Duim WC, Kirschbaum S et al. 2015. Quantifying and optimizing single-molecule switching nanoscopy at high speeds. PLOS ONE 10:e0128135
    [Google Scholar]
  103. 103.  Venkataramani V, Herrmannsdorfer F, Heilemann M, Kuner T 2016. SuReSim: simulating localization microscopy experiments from ground truth models. Nat. Methods 13:319–21
    [Google Scholar]
  104. 104.  Novak T, Gajdos T, Sinko J, Szabo G, Erdelyi M 2017. TestSTORM: versatile simulator software for multimodal super-resolution localization fluorescence microscopy. Sci. Rep. 7:951
    [Google Scholar]
  105. 105.  Zheng Q, Lavis LD 2017. Development of photostable fluorophores for molecular imaging. Curr. Opin. Chem. Biol. 39:32–38
    [Google Scholar]
  106. 106.  Hartwich TMP, Soeller C, Baddeley D 2014. A simple chemical oxygen scavenging system for improved dSTORM tissue imaging. Biophys. J. 106:401a
    [Google Scholar]
  107. 107.  Allen JR, Silfies JS, Schwartz SA, Davidson MW Single-Molecule Super-Resolution Imaging New York: Nikon Instruments. https://www.microscopyu.com/techniques/super-resolution/single-molecule-super-resolution-imaging
  108. 108.  Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L et al. 2011. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8:1047–49
    [Google Scholar]
  109. 109.  Jones SA, Shim SH, He J, Zhuang X 2011. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8:499–508
    [Google Scholar]
  110. 110.  Huang F, Hartwich TM, Rivera-Molina FE, Lin Y, Duim WC et al. 2013. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10:653–58
    [Google Scholar]
  111. 111.  Takakura H, Zhang Y, Erdmann RS, Thompson AD, Lin Y et al. 2017. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol. 35:773–80
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014801
Loading
/content/journals/10.1146/annurev-biochem-060815-014801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error