1932

Abstract

Genomes undergo different types of sporadic alterations, including DNA damage, point mutations, and genome rearrangements, that constitute the basis for evolution. However, these changes may occur at high levels as a result of cell pathology and trigger genome instability, a hallmark of cancer and a number of genetic diseases. In the last two decades, evidence has accumulated that transcription constitutes an important natural source of DNA metabolic errors that can compromise the integrity of the genome. Transcription can create the conditions for high levels of mutations and recombination by its ability to open the DNA structure and remodel chromatin, making it more accessible to DNA insulting agents, and by its ability to become a barrier to DNA replication. Here we review the molecular basis of such events from a mechanistic perspective with particular emphasis on the role of transcription as a genome instability determinant.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014908
2016-06-02
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060815-014908.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014908&mimeType=html&fmt=ahah

Literature Cited

  1. Jackson SP, Bartek J. 1.  2009. The DNA-damage response in human biology and disease. Nature 461:1071–78 [Google Scholar]
  2. Gaillard H, Garcia-Muse T, Aguilera A. 2.  2015. Replication stress and cancer. Nat. Rev. Cancer 15:276–89 [Google Scholar]
  3. Belotserkovskii BP, Mirkin SM, Hanawalt PC. 3.  2013. DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev. 113:8620–37 [Google Scholar]
  4. Hanawalt PC, Spivak G. 4.  2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9:958–70 [Google Scholar]
  5. Aguilera A. 5.  2002. The connection between transcription and genomic instability. EMBO J. 21:195–201 [Google Scholar]
  6. Jinks-Robertson S, Bhagwat AS. 6.  2014. Transcription-associated mutagenesis. Annu. Rev. Genet. 48:341–59 [Google Scholar]
  7. Kim N, Jinks-Robertson S. 7.  2012. Transcription as a source of genome instability. Nat. Rev. Genet. 13:204–14 [Google Scholar]
  8. Gaillard H, Herrera-Moyano E, Aguilera A. 8.  2013. Transcription-associated genome instability. Chem. Rev. 113:8638–61 [Google Scholar]
  9. Herman RK, Dworkin NB. 9.  1971. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J. Bacteriol. 106:543–50 [Google Scholar]
  10. Beletskii A, Bhagwat AS. 10.  1996. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. PNAS 93:13919–24 [Google Scholar]
  11. Datta A, Jinks-Robertson S. 11.  1995. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268:1616–19 [Google Scholar]
  12. Wright BE, Longacre A, Reimers JM. 12.  1999. Hypermutation in derepressed operons of Escherichia coli K12. PNAS 96:5089–94 [Google Scholar]
  13. Green P, Ewing B, Miller W, Thomas PJ, Green ED. 13.  2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Genet. 33:514–17 [Google Scholar]
  14. Polak P, Arndt PF. 14.  2008. Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res. 18:1216–23 [Google Scholar]
  15. Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S. 15.  2004. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol. Cell. Biol. 24:4801–9 [Google Scholar]
  16. Ikeda H, Matsumoto T. 16.  1979. Transcription promotes recA-independent recombination mediated by DNA-dependent RNA polymerase in Escherichia coli. PNAS 76:4571–75 [Google Scholar]
  17. Keil RL, Roeder GS. 17.  1984. Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39:377–86 [Google Scholar]
  18. Voelkel-Meiman K, Keil RL, Roeder GS. 18.  1987. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–79 [Google Scholar]
  19. Dul JL, Drexler H. 19.  1988. Transcription stimulates recombination. II. Generalized transduction of Escherichia coli by phages T1 and T4. Virology 162:471–77 [Google Scholar]
  20. Thomas BJ, Rothstein R. 20.  1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–30 [Google Scholar]
  21. Nickoloff JA. 21.  1992. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol. Cell. Biol. 12:5311–18 [Google Scholar]
  22. de la Loza MC, Wellinger RE, Aguilera A. 22.  2009. Stimulation of direct-repeat recombination by RNA polymerase III transcription. DNA Repair 8:620–26 [Google Scholar]
  23. Gonzalez-Barrera S, Garcia-Rubio M, Aguilera A. 23.  2002. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 162:603–14 [Google Scholar]
  24. Garcia-Rubio M, Huertas P, Gonzalez-Barrera S, Aguilera A. 24.  2003. Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination. Genetics 165:457–66 [Google Scholar]
  25. Vilette D, Uzest M, Ehrlich SD, Michel B. 25.  1992. DNA transcription and repressor binding affect deletion formation in Escherichia coli plasmids. EMBO J. 11:3629–34 [Google Scholar]
  26. Prado F, Aguilera A. 26.  2005. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24:1267–76 [Google Scholar]
  27. Prado F, Piruat JI, Aguilera A. 27.  1997. Recombination between DNA repeats in yeast hpr1Δ cells is linked to transcription elongation. EMBO J. 16:2826–35 [Google Scholar]
  28. Liu LF, Wang JC. 28.  1987. Supercoiling of the DNA template during transcription. PNAS 84:7024–27 [Google Scholar]
  29. Brill SJ, Sternglanz R. 29.  1988. Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants. Cell 54:403–11 [Google Scholar]
  30. Naughton C, Avlonitis N, Corless S, Prendergast JG, Mati IK. 30.  et al. 2013. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20:387–95 [Google Scholar]
  31. Sperling AS, Jeong KS, Kitada T, Grunstein M. 31.  2011. Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast. PNAS 108:12693–98 [Google Scholar]
  32. Christman MF, Dietrich FS, Fink GR. 32.  1988. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55:413–25 [Google Scholar]
  33. Garcia-Rubio ML, Aguilera A. 33.  2012. Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes. Nucleic Acids Res. 40:1050–64 [Google Scholar]
  34. Lippert MJ, Kim N, Cho JE, Larson RP, Schoenly NE. 34.  et al. 2011. Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. PNAS 108:698–703 [Google Scholar]
  35. Takahashi T, Burguiere-Slezak G, Van der Kemp PA, Boiteux S. 35.  2011. Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae. PNAS 108:692–97 [Google Scholar]
  36. Sekiguchi J, Shuman S. 36.  1997. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1:89–97 [Google Scholar]
  37. Kim N, Huang SN, Williams JS, Li YC, Clark AB. 37.  et al. 2011. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332:1561–64 [Google Scholar]
  38. Sparks JL, Burgers PM. 38.  2015. Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J. 34:1259–69 [Google Scholar]
  39. Wang G, Vasquez KM. 39.  2014. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19:143–51 [Google Scholar]
  40. Lopez Castel A, Cleary JD, Pearson CE. 40.  2010. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 11:165–70 [Google Scholar]
  41. Aguilera A, García-Muse T. 41.  2013. Causes of genome instability. Annu. Rev. Genet. 47:1–32 [Google Scholar]
  42. Napierala M, Bacolla A, Wells RD. 42.  2005. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J. Biol. Chem. 280:37366–76 [Google Scholar]
  43. Kohwi Y, Panchenko Y. 43.  1993. Transcription-dependent recombination induced by triple-helix formation. Genes Dev. 7:1766–78 [Google Scholar]
  44. Mochmann LH, Wells RD. 44.  2004. Transcription influences the types of deletion and expansion products in an orientation-dependent manner from GAC*GTC repeats. Nucleic Acids Res. 32:4469–79 [Google Scholar]
  45. Wierdl M, Greene CN, Datta A, Jinks-Robertson S, Petes TD. 45.  1996. Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics 143:713–21 [Google Scholar]
  46. Lin Y, Dion V, Wilson JH. 46.  2006. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 13:179–80 [Google Scholar]
  47. Ditch S, Sammarco MC, Banerjee A, Grabczyk E. 47.  2009. Progressive GAA·TTC repeat expansion in human cell lines. PLOS Genet. 5:e1000704 [Google Scholar]
  48. Tang W, Dominska M, Greenwell PW, Harvanek Z, Lobachev KS. 48.  et al. 2011. Friedreich's ataxia (GAA)n·(TTC)n repeats strongly stimulate mitotic crossovers in Saccharomyces cerevisiae. PLOS Genet. 7:e1001270 [Google Scholar]
  49. Lin Y, Wilson JH. 49.  2007. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27:6209–17 [Google Scholar]
  50. Wang G, Seidman MM, Glazer PM. 50.  1996. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–5 [Google Scholar]
  51. Lu S, Wang G, Bacolla A, Zhao J, Spitser S, Vasquez KM. 51.  2015. Short inverted repeats are hotspots for genetic instability: relevance to cancer genomes. Cell Rep. 10:1674–80 [Google Scholar]
  52. Gray LT, Vallur AC, Eddy J, Maizels N. 52.  2014. G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nat. Chem. Biol. 10:313–18 [Google Scholar]
  53. Hendriks G, Calleja F, Vrieling H, Mullenders LH, Jansen JG, de Wind N. 53.  2008. Gene transcription increases DNA damage-induced mutagenesis in mammalian stem cells. DNA Repair 7:1330–39 [Google Scholar]
  54. Morey NJ, Greene CN, Jinks-Robertson S. 54.  2000. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics 154:109–20 [Google Scholar]
  55. Kim N, Jinks-Robertson S. 55.  2009. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 459:1150–53 [Google Scholar]
  56. Hendriks G, Calleja F, Besaratinia A, Vrieling H, Pfeifer GP. 56.  et al. 2010. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20:170–75 [Google Scholar]
  57. Chaudhuri J, Alt FW. 57.  2004. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4:541–52 [Google Scholar]
  58. Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. 58.  2003. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4:442–51 [Google Scholar]
  59. Robbiani DF, Nussenzweig MC. 59.  2013. Chromosome translocation, B cell lymphoma, and activation-induced cytidine deaminase. Annu. Rev. Pathol. 8:79–103 [Google Scholar]
  60. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I. 60.  et al. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143:122–33 [Google Scholar]
  61. Meng FL, Du Z, Federation A, Hu J, Wang Q. 61.  et al. 2014. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159:1538–48 [Google Scholar]
  62. Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR. 62.  et al. 2014. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159:1524–37 [Google Scholar]
  63. Pefanis E, Wang J, Rothschild G, Lim J, Chao J. 63.  et al. 2014. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514:389–93 [Google Scholar]
  64. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D. 64.  et al. 2015. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161:774–89 [Google Scholar]
  65. Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C. 65.  2001. Increased transcription levels induce higher mutation rates in a hypermutating cell line. J. Immunol. 166:5051–57 [Google Scholar]
  66. Parsa JY, Ramachandran S, Zaheen A, Nepal RM, Kapelnikov A. 66.  et al. 2012. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis. PLOS Genet. 8:e1002518 [Google Scholar]
  67. Sohail A, Klapacz J, Samaranayake M, Ullah A, Bhagwat AS. 67.  2003. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31:2990–94 [Google Scholar]
  68. Gomez-Gonzalez B, Aguilera A. 68.  2007. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. PNAS 104:8409–14 [Google Scholar]
  69. Ruiz JF, Gomez-Gonzalez B, Aguilera A. 69.  2011. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants. PLOS Genet. 7:e1002009 [Google Scholar]
  70. Suspene R, Aynaud MM, Guetard D, Henry M, Eckhoff G. 70.  et al. 2011. Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism. PNAS 108:4858–63 [Google Scholar]
  71. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM. 71.  et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366–70 [Google Scholar]
  72. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D. 72.  et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45:970–76 [Google Scholar]
  73. Nordentoft I, Lamy P, Birkenkamp-Demtroder K, Shumansky K, Vang S. 73.  et al. 2014. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep. 7:1649–63 [Google Scholar]
  74. Lada AG, Kliver SF, Dhar A, Polev DE, Masharsky AE. 74.  et al. 2015. Disruption of transcriptional coactivator Sub1 leads to genome-wide re-distribution of clustered mutations induced by APOBEC in active yeast genes. PLOS Genet. 11:e1005217 [Google Scholar]
  75. Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. 75.  2014. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56:777–85 [Google Scholar]
  76. French S. 76.  1992. Consequences of replication fork movement through transcription units in vivo. Science 258:1362–65 [Google Scholar]
  77. Deshpande AM, Newlon CS. 77.  1996. DNA replication fork pause sites dependent on transcription. Science 272:1030–33 [Google Scholar]
  78. Cortes-Ledesma F, Aguilera A. 78.  2006. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep. 7:919–26 [Google Scholar]
  79. Moriel-Carretero M, Aguilera A. 79.  2010. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Mol. Cell 37:690–701 [Google Scholar]
  80. Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R. 80.  et al. 2010. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol. Cell 39:346–59 [Google Scholar]
  81. Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Freon K. 81.  et al. 2012. Recovery of arrested replication forks by homologous recombination is error-prone. PLOS Genet. 8:e1002976 [Google Scholar]
  82. Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. 82.  2005. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702 [Google Scholar]
  83. Mizuno K, Miyabe I, Schalbetter SA, Carr AM, Murray JM. 83.  2013. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats. Nature 493:246–49 [Google Scholar]
  84. Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H. 84.  et al. 2009. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11:1315–24 [Google Scholar]
  85. Herrera-Moyano E, Mergui X, Garcia-Rubio ML, Barroso S, Aguilera A. 85.  2014. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev. 28:735–48 [Google Scholar]
  86. Pardo B, Aguilera A. 86.  2012. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases. PLOS Genet. 8:e1002979 [Google Scholar]
  87. Smith CE, Llorente B, Symington LS. 87.  2007. Template switching during break-induced replication. Nature 447:102–5 [Google Scholar]
  88. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E. 88.  et al. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91 [Google Scholar]
  89. Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B. 89.  et al. 2011. Break-induced replication is highly inaccurate. PLOS Biol. 9:e1000594 [Google Scholar]
  90. Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA. 90.  et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7:1640–48 [Google Scholar]
  91. Liu B, Alberts BM. 91.  1995. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267:1131–37 [Google Scholar]
  92. Million-Weaver S, Samadpour AN, Merrikh H. 92.  2015. Replication restart after replication-transcription conflicts requires RecA in Bacillus subtilis. J. Bacteriol. 197:2374–82 [Google Scholar]
  93. Merrikh H, Zhang Y, Grossman AD, Wang JD. 93.  2012. Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 10:449–58 [Google Scholar]
  94. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 94.  2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–25 [Google Scholar]
  95. Ivanova D, Taylor T, Smith SL, Dimude JU, Upton AL. 95.  et al. 2015. Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin. Nucleic Acids Res. 43:7865–77 [Google Scholar]
  96. Pomerantz RT, O'Donnell M. 96.  2010. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327:590–92 [Google Scholar]
  97. Boubakri H, de Septenville AL, Viguera E, Michel B. 97.  2010. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29:145–57 [Google Scholar]
  98. Merrikh CN, Brewer BJ, Merrikh H. 98.  2015. The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units. PLOS Genet. 11:e1005289 [Google Scholar]
  99. Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. 99.  2006. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20:3104–16 [Google Scholar]
  100. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. 100.  2003. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12:1525–36 [Google Scholar]
  101. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. 101.  2009. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34:722–34 [Google Scholar]
  102. Gomez-Gonzalez B, Garcia-Rubio M, Bermejo R, Gaillard H, Shirahige K. 102.  et al. 2011. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30:3106–19 [Google Scholar]
  103. Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y. 103.  et al. 2010. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell 39:595–605 [Google Scholar]
  104. Gottipati P, Cassel TN, Savolainen L, Helleday T. 104.  2008. Transcription-associated recombination is dependent on replication in mammalian cells. Mol. Cell. Biol. 28:154–64 [Google Scholar]
  105. Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O. 105.  et al. 2006. SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–73 [Google Scholar]
  106. Bermejo R, Capra T, Jossen R, Colosio A, Frattini C. 106.  et al. 2011. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–46 [Google Scholar]
  107. Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. 107.  2005. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19:247–58 [Google Scholar]
  108. Tehranchi AK, Blankschien MD, Zhang Y, Halliday JA, Srivatsan A. 108.  et al. 2010. The transcription factor DksA prevents conflicts between DNA replication and transcription machinery. Cell 141:595–605 [Google Scholar]
  109. Washburn RS, Gottesman ME. 109.  2011. Transcription termination maintains chromosome integrity. PNAS 108:792–97 [Google Scholar]
  110. Gupta MK, Guy CP, Yeeles JT, Atkinson J, Bell H. 110.  et al. 2013. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. PNAS 110:7252–57 [Google Scholar]
  111. Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. 111.  2011. Linking RNA polymerase backtracking to genome instability in. E. coli. Cell 146:533–43 [Google Scholar]
  112. Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P. 112.  2011. Co-directional replication-transcription conflicts lead to replication restart. Nature 470:554–57 [Google Scholar]
  113. Ide S, Miyazaki T, Maki H, Kobayashi T. 113.  2010. Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–96 [Google Scholar]
  114. Kobayashi T, Heck DJ, Nomura M, Horiuchi T. 114.  1998. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12:3821–30 [Google Scholar]
  115. Brewer BJ, Fangman WL. 115.  1988. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–43 [Google Scholar]
  116. Takeuchi Y, Horiuchi T, Kobayashi T. 116.  2003. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17:1497–506 [Google Scholar]
  117. Muller M, Lucchini R, Sogo JM. 117.  2000. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell 5:767–77 [Google Scholar]
  118. Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O. 118.  et al. 2014. The histone deacetylases Sir2 and Rpd3 act on ribosomal DNA to control the replication program in budding yeast. Mol. Cell 54:691–97 [Google Scholar]
  119. Gottlieb S, Esposito RE. 119.  1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–76 [Google Scholar]
  120. Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. 120.  2004. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–53 [Google Scholar]
  121. Kobayashi T, Ganley AR. 121.  2005. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–84 [Google Scholar]
  122. Duch A, Felipe-Abrio I, Barroso S, Yaakov G, Garcia-Rubio M. 122.  et al. 2013. Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493:116–19 [Google Scholar]
  123. Nguyen VC, Clelland BW, Hockman DJ, Kujat-Choy SL, Mewhort HE, Schultz MC. 123.  2010. Replication stress checkpoint signaling controls tRNA gene transcription. Nat. Struct. Mol. Biol. 17:976–81 [Google Scholar]
  124. Islam MN, Fox D 3rd, Guo R, Enomoto T, Wang W. 124.  2010. RecQL5 promotes genome stabilization through two parallel mechanisms–interacting with RNA polymerase II and acting as a helicase. Mol. Cell. Biol. 30:2460–72 [Google Scholar]
  125. Kassube SA, Jinek M, Fang J, Tsutakawa S, Nogales E. 125.  2013. Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5. Nat. Struct. Mol. Biol. 20:892–99 [Google Scholar]
  126. Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M. 126.  et al. 2014. RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–49 [Google Scholar]
  127. Felipe-Abrio I, Lafuente-Barquero J, Garcia-Rubio ML, Aguilera A. 127.  2015. RNA polymerase II contributes to preventing transcription-mediated replication fork stalls. EMBO J. 34:236–50 [Google Scholar]
  128. Poli J, Gerhold CB, Tosi A, Hustedt N, Seeber A. 128.  et al. 2016. Mec1, INO80, and the PAF1 complex cooperate to limit transcription replication conflicts through RNAPII removal during replication stress. Genes Dev 30337–54
  129. Huertas P, Aguilera A. 129.  2003. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12:711–21 [Google Scholar]
  130. Li X, Manley JL. 130.  2005. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–78 [Google Scholar]
  131. Jimeno S, Luna R, Garcia-Rubio M, Aguilera A. 131.  2006. Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol. Cell. Biol. 26:4387–98 [Google Scholar]
  132. Li X, Niu T, Manley JL. 132.  2007. The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability. RNA 13:2108–15 [Google Scholar]
  133. Dominguez-Sanchez MS, Barroso S, Gomez-Gonzalez B, Luna R, Aguilera A. 133.  2011. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLOS Genet. 7:e1002386 [Google Scholar]
  134. Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC. 134.  et al. 2009. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35:228–39 [Google Scholar]
  135. Wahba L, Amon JD, Koshland D, Vuica-Ross M. 135.  2011. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44:978–88 [Google Scholar]
  136. Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I. 136.  et al. 2012. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26:163–75 [Google Scholar]
  137. Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W. 137.  et al. 2011. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol. Cell 41:21–32 [Google Scholar]
  138. Santos-Pereira JM, Aguilera A. 138.  2015. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16:583–97 [Google Scholar]
  139. Wellinger RE, Prado F, Aguilera A. 139.  2006. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 26:3327–34 [Google Scholar]
  140. Castellano-Pozo M, Garcia-Muse T, Aguilera A. 140.  2012. R-loops cause replication impairment and genome instability during meiosis. EMBO Rep. 13:923–29 [Google Scholar]
  141. Gan W, Guan Z, Liu J, Gui T, Shen K. 141.  et al. 2011. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25:2041–56 [Google Scholar]
  142. Santos-Pereira JM, Herrero AB, Garcia-Rubio ML, Marin A, Moreno S, Aguilera A. 142.  2013. The Npl3 hnRNP prevents R-loop-mediated transcription-replication conflicts and genome instability. Genes Dev. 27:2445–58 [Google Scholar]
  143. Alzu A, Bermejo R, Begnis M, Lucca C, Piccini D. 143.  et al. 2012. Senataxin associates with replication forks to protect fork integrity across RNA-Polymerase-II-transcribed genes. Cell 151:835–46 [Google Scholar]
  144. Helmrich A, Ballarino M, Tora L. 144.  2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44:966–77 [Google Scholar]
  145. Grabczyk E, Mancuso M, Sammarco MC. 145.  2007. A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res. 35:5351–59 [Google Scholar]
  146. Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M. 146.  2010. R loops stimulate genetic instability of CTG·CAG repeats. PNAS 107:692–97 [Google Scholar]
  147. El Hage A, French SL, Beyer AL, Tollervey D. 147.  2010. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24:1546–58 [Google Scholar]
  148. Pomerantz RT, O'Donnell M. 148.  2008. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456:762–66 [Google Scholar]
  149. Stuckey R, Garcia-Rodriguez N, Aguilera A, Wellinger RE. 149.  2015. Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. PNAS 112:5779–84 [Google Scholar]
  150. Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E. 150.  et al. 2013. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52:583–90 [Google Scholar]
  151. Groh M, Lufino MM, Wade-Martins R, Gromak N. 151.  2014. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLOS Genet. 10:e1004318 [Google Scholar]
  152. Loomis EW, Sanz LA, Chedin F, Hagerman PJ. 152.  2014. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLOS Genet. 10:e1004294 [Google Scholar]
  153. Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ. 153.  2014. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:436–39 [Google Scholar]
  154. Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. 154.  2014. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511:362–65 [Google Scholar]
  155. Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS. 155.  et al. 2014. Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev. 28:1957–75 [Google Scholar]
  156. García-Rubio ML, Pérez-Calero C, Barroso S, Tumini E, Herrera-Moyano E. 156.  et al. 2015. The Fanconi anemia pathway protects genome integrity from R-loops. PLOS Genet. 11:e1005674 [Google Scholar]
  157. Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D. 157.  et al. 2015. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60:351–61 [Google Scholar]
  158. Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 158.  2013. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4:2115 [Google Scholar]
  159. Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A. 159.  et al. 2015. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57:636–47 [Google Scholar]
  160. Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG. 160.  et al. 2015. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523:53–58 [Google Scholar]
  161. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A. 161.  et al. 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–13 [Google Scholar]
  162. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F. 162.  et al. 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–70 [Google Scholar]
  163. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, Garcia P. 163.  et al. 2013. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 32:3744–53 [Google Scholar]
  164. Neelsen KJ, Zanini IM, Herrador R, Lopes M. 164.  2013. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200:699–708 [Google Scholar]
  165. Dominguez-Sola D, Gautier J. 165.  2014. MYC and the control of DNA replication. Cold Spring Harb. Perspect. Med. 4:a014423 [Google Scholar]
  166. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S. 166.  et al. 2010. Signatures of mutation and selection in the cancer genome. Nature 463:893–98 [Google Scholar]
  167. Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A. 167.  et al. 2013. Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–32 [Google Scholar]
  168. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W. 168.  et al. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21:3073–84 [Google Scholar]
  169. Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M. 169.  et al. 2011. Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res. 39:1749–62 [Google Scholar]
  170. Goula AV, Stys A, Chan JP, Trottier Y, Festenstein R, Merienne K. 170.  2012. Transcription elongation and tissue-specific somatic CAG instability. PLOS Genet. 8:e1003051 [Google Scholar]
  171. Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B. 171.  et al. 2014. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505:372–77 [Google Scholar]
  172. Venema J, Mullenders LH, Natarajan AT, van Zeeland AA, Mayne LV. 172.  1990. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. PNAS 87:4707–11 [Google Scholar]
  173. Spivak G, Ganesan AK. 173.  2014. The complex choreography of transcription-coupled repair. DNA Repair 19:64–70 [Google Scholar]
  174. Durkin SG, Glover TW. 174.  2007. Chromosome fragile sites. Annu. Rev. Genet. 41:169–92 [Google Scholar]
  175. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N. 175.  et al. 2011. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–23 [Google Scholar]
  176. Cha RS, Kleckner N. 176.  2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–6 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014908
Loading
/content/journals/10.1146/annurev-biochem-060815-014908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error