1932

Abstract

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with β-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044643
2017-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044643.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044643&mimeType=html&fmt=ahah

Literature Cited

  1. Dacks JB, Field MC, Buick R, Eme L, Gribaldo S. 1.  et al. 2016. The changing view of eukaryogenesis—fossils, cells, lineages and how they all come together. J. Cell Sci. 129:3695–703 [Google Scholar]
  2. Szathmary E, Smith JM. 2.  1995. The major evolutionary transitions. Nature 374:227–32 [Google Scholar]
  3. Stolz JF. 3.  1998. Bacterial intracellular membranes. Nature Encyclopedia of Life Sciences A Mitchell, J Trapnell, S Hadfield, V Kerguelen, F Richmond 1–5 Chichester, UK: Wiley [Google Scholar]
  4. Fuerst JA. 4.  2005. Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol. 59:299–328 [Google Scholar]
  5. Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R. 5.  2004. The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J. Biol. Chem. 279:51193–202 [Google Scholar]
  6. Margulis L. 6.  1981. Symbiosis in Cell Evolution New York: W.H. Freeman
  7. Wilson RJ, Denny PW, Preiser PR, Rangachari K, Roberts K. 7.  et al. 1996. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261:155–72 [Google Scholar]
  8. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P. 8.  et al. 2002. A green algal apicoplast ancestor. Science 298:2155 [Google Scholar]
  9. McFadden GI. 9.  2011. The apicoplast. Protoplasma 248:641–50 [Google Scholar]
  10. McFadden GI. 10.  2014. Apicoplast. Curr. Biol. 24:R262–63 [Google Scholar]
  11. Field MC, Sali A, Rout MP. 11.  2011. Evolution: On a bender—BARs, ESCRTs, COPs, and finally getting your coat. J. Cell Biol. 193:963–72 [Google Scholar]
  12. De Franceschi N, Wild K, Schlacht A, Dacks JB, Sinning I, Filippini F. 12.  2014. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic 15:104–21 [Google Scholar]
  13. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. 13.  2012. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125:2500–8 [Google Scholar]
  14. Gabernet-Castello C, O'Reilly AJ, Dacks JB, Field MC. 14.  2013. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol. Biol. Cell 24:1574–83 [Google Scholar]
  15. Stachowiak JC, Brodsky FM, Miller EA. 15.  2013. A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15:1019–27 [Google Scholar]
  16. Jarsch IK, Daste F, Gallop JL. 16.  2016. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214:375–87 [Google Scholar]
  17. McMahon HT, Gallop JL. 17.  2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96 [Google Scholar]
  18. Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ. 18.  et al. 2002. Curvature of clathrin-coated pits driven by epsin. Nature 419:361–66 [Google Scholar]
  19. Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT. 19.  et al. 2015. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33:163–75 [Google Scholar]
  20. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ. 20.  et al. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–99 [Google Scholar]
  21. Mim C, Unger VM. 21.  2012. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37:526–33 [Google Scholar]
  22. Simunovic M, Voth GA, Callan-Jones A, Bassereau P. 22.  2015. When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol 25:780–92 [Google Scholar]
  23. McMahon HT, Boucrot E. 23.  2015. Membrane curvature at a glance. J. Cell Sci. 128:1065–70 [Google Scholar]
  24. Doyon JB, Zeitler B, Cheng J, Cheng AT, Cherone JM. 24.  et al. 2011. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13:331–37 [Google Scholar]
  25. Kaksonen M, Toret CP, Drubin DG. 25.  2005. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–20 [Google Scholar]
  26. Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT. 26.  et al. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154:971–82 [Google Scholar]
  27. Dacks JB, Field MC. 27.  2007. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120:2977–85 [Google Scholar]
  28. Field MC, Gabernet-Castello C, Dacks JB. 28.  2007. Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv. Exp. Med. Biol 607:84–96 [Google Scholar]
  29. Koumandou VL, Dacks JB, Coulson RM, Field MC. 29.  2007. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7:29 [Google Scholar]
  30. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y. 30.  et al. 2014. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev. Cell 31:279–90 [Google Scholar]
  31. Elias M, Klimes V, Derelle R, Petrzelkova R, Tachezy J. 31.  2016. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol. Direct 11:5 [Google Scholar]
  32. Huet D, Blisnick T, Perrot S, Bastin P. 32.  2014. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. eLife 3:e02419 [Google Scholar]
  33. Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D. 33.  1998. NTF2 mediates nuclear import of Ran. EMBO J 17:6587–98 [Google Scholar]
  34. Wang Z, Fan ZC, Williamson SM, Qin H. 34.  2009. Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLOS ONE 4:e5384 [Google Scholar]
  35. Guy L, Ettema TJ. 35.  2011. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19:580–87 [Google Scholar]
  36. Raymann K, Brochier-Armanet C, Gribaldo S. 36.  2015. The two-domain tree of life is linked to a new root for the Archaea. PNAS 112:6670–75 [Google Scholar]
  37. Saw JH, Spang A, Zaremba-Niedzwiedzka K, Juzokaite L, Dodsworth JA. 37.  et al. 2015. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philos. Trans. R. Soc. B 370:20140328 [Google Scholar]
  38. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J. 38.  et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–79 [Google Scholar]
  39. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L. 39.  et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:7637353–58 [Google Scholar]
  40. Klinger CM, Spang A, Dacks JB, Ettema TJ. 40.  2016. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33:1528–41 [Google Scholar]
  41. Surkont J, Pereira-Leal JB. 41.  2016. Are there Rab GTPases in Archaea?. Mol. Biol. Evol. 33:1833–42 [Google Scholar]
  42. Dacks JB, Peden AA, Field MC. 42.  2009. Evolution of specificity in the eukaryotic endomembrane system. Int. J. Biochem. Cell Biol. 41:330–40 [Google Scholar]
  43. Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. 43.  2013. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48:373–96 [Google Scholar]
  44. Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. 44.  2016. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem. Sci. 42:42–56 [Google Scholar]
  45. McDonald NA, Gould KL. 45.  2016. Linking up at the BAR: oligomerization and F-BAR protein function. Cell Cycle 15:1977–85 [Google Scholar]
  46. Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R. 46.  et al. 2014. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol. Cell Proteom. 13:2855–70 [Google Scholar]
  47. Chou HT, Dukovski D, Chambers MG, Reinisch KM, Walz T. 47.  2016. CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat. Struct. Mol. Biol. 23:761–63 [Google Scholar]
  48. Spang A. 48.  2012. The DSL1 complex: the smallest but not the least CATCHR. Traffic 13:908–13 [Google Scholar]
  49. van Dam TJ, Townsend MJ, Turk M, Schlessinger A, Sali A. 49.  et al. 2013. Evolution of modular intraflagellar transport from a coatomer-like progenitor. PNAS 110:6943–48 [Google Scholar]
  50. Spang A. 50.  2016. Membrane tethering complexes in the endosomal system. Front. Cell Dev. Biol. 4:35 [Google Scholar]
  51. Boehm M, Bonifacino JS. 51.  2001. Adaptins: the final recount. Mol. Biol. Cell 12:2907–20 [Google Scholar]
  52. Duden R, Griffiths G, Frank R, Argos P, Kreis TE. 52.  1991. β-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to β-adaptin. Cell 64:3649–65 [Google Scholar]
  53. Schledzewski K, Brinkmann H, Mendel RR. 53.  1999. Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J. Mol. Evol. 48:6770–78 [Google Scholar]
  54. Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT. 54.  et al. 2004. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLOS Biol 2:e380 [Google Scholar]
  55. Devos D, Dokudovskaya S, Williams R, Alber F, Eswar N. 55.  et al. 2006. Simple fold composition and modular architecture of the nuclear pore complex. PNAS 103:2172–77 [Google Scholar]
  56. Field MC, Dacks JB. 56.  2009. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr. Opin. Cell Biol. 21:4–13 [Google Scholar]
  57. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J. 57.  et al. 2007. The molecular architecture of the nuclear pore complex. Nature 450:695–701 [Google Scholar]
  58. Cook A, Bono F, Jinek M, Conti E. 58.  2007. Structural biology of nucleocytoplasmic transport. Annu. Rev. Biochem. 76:647–71 [Google Scholar]
  59. Brohawn SG, Partridge JR, Whittle JR, Schwartz TU. 59.  2009. The nuclear pore complex has entered the atomic age. Structure 17:1156–68 [Google Scholar]
  60. Fath S, Mancias JD, Bi X, Goldberg J. 60.  2007. Structure and organization of coat proteins in the COPII cage. Cell 129:1325–36 [Google Scholar]
  61. Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T. 61.  2004. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432:649–53 [Google Scholar]
  62. Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC. 62.  et al. 2004. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573–79 [Google Scholar]
  63. Lee C, Goldberg J. 63.  2010. Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell 142:123–32 [Google Scholar]
  64. Graham SC, Wartosch L, Gray SR, Scourfield EJ, Deane JE. 64.  et al. 2013. Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. PNAS 110:13345–50 [Google Scholar]
  65. Guo Z, Johnston W, Kovtun O, Mureev S, Brocker C. 65.  et al. 2013. Subunit organisation of in vitro reconstituted HOPS and CORVET multisubunit membrane tethering complexes. PLOS ONE 8:e81534 [Google Scholar]
  66. Stagg SM, LaPointe P, Razvi A, Gurkan C, Potter CS. 66.  et al. 2008. Structural basis for cargo regulation of COPII coat assembly. Cell 134:474–84 [Google Scholar]
  67. Sampathkumar P, Gheyi T, Miller SA, Bain KT, Dickey M. 67.  et al. 2011. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex. Proteins 79:1672–77 [Google Scholar]
  68. Collins BM. 68.  2008. The structure and function of the retromer protein complex. Traffic 9:1811–22 [Google Scholar]
  69. Hesketh GG, Perez-Dorado I, Jackson LP, Wartosch L, Schafer IB. 69.  et al. 2014. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev. Cell 29:591–606 [Google Scholar]
  70. Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G. 70.  et al. 2007. Functional architecture of the retromer cargo-recognition complex. Nature 449:1063–67 [Google Scholar]
  71. Daste F, Galli T, Tareste D. 71.  2015. Structure and function of longin SNAREs. J. Cell Sci. 128:4263–72 [Google Scholar]
  72. Dubuke ML, Munson M. 72.  2016. The secret life of tethers: the role of tethering factors in SNARE complex regulation. Front. Cell Dev. Biol. 4:42 [Google Scholar]
  73. Bombardier JP, Munson M. 73.  2015. Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr. Opin. Chem. Biol. 29:66–71 [Google Scholar]
  74. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL. 74.  et al. 2016. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352:363–65 [Google Scholar]
  75. Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R. 75.  et al. 2016. Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167:1215–28 [Google Scholar]
  76. Antonny B. 76.  2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101–23 [Google Scholar]
  77. Hanna MG IV, Mela I, Wang L, Henderson RM, Chapman ER. 77.  et al. 2016. Sar1 GTPase activity is regulated by membrane curvature. J. Biol. Chem. 291:1014–27 [Google Scholar]
  78. Vanni S, Vamparys L, Gautier R, Drin G, Etchebest C. 78.  et al. 2013. Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys. J. 104:575–84 [Google Scholar]
  79. Drin G, Morello V, Casella JF, Gounon P, Antonny B. 79.  2008. Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320:670–73 [Google Scholar]
  80. Paczkowski JE, Richardson BC, Fromme JC. 80.  2015. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol 25:408–16 [Google Scholar]
  81. Haucke V. 81.  2003. Vesicle budding: a coat for the COPs. Trends Cell Biol 13:59–60 [Google Scholar]
  82. Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJ, Beck R. 82.  et al. 2015. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349:195–98 [Google Scholar]
  83. Kobe B, Kajava AV. 83.  2000. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25:509–15 [Google Scholar]
  84. Yoshimura SH, Hirano T. 84.  2016. HEAT repeats—versatile arrays of amphiphilic helices working in crowded environments?. J. Cell Sci. 129:3963–70 [Google Scholar]
  85. Forwood JK, Lange A, Zachariae U, Marfori M, Preast C. 85.  et al. 2010. Quantitative structural analysis of importin-β flexibility: paradigm for solenoid protein structures. Structure 18:1171–83 [Google Scholar]
  86. Chaudhuri I, Soding J, Lupas AN. 86.  2008. Evolution of the β-propeller fold. Proteins 71:795–803 [Google Scholar]
  87. Robinson MS. 87.  2015. Forty years of clathrin-coated vesicles. Traffic 16:1210–38 [Google Scholar]
  88. Bonifacino JS. 88.  2014. Adaptor proteins involved in polarized sorting. J. Cell Biol. 204:7–17 [Google Scholar]
  89. Dacks JB, Poon PP, Field MC. 89.  2008. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. PNAS 105:588–93 [Google Scholar]
  90. Hirst J, Schlacht A, Norcott JP, Traynor D, Bloomfield G. 90.  et al. 2014. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife 3:e02866 [Google Scholar]
  91. Beck R, Rawet M, Wieland FT, Cassel D. 91.  2009. The COPI system: molecular mechanisms and function. FEBS Lett 583:2701–9 [Google Scholar]
  92. Kaksonen M, Sun Y, Drubin DG. 92.  2003. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–87 [Google Scholar]
  93. Liu J, Sun Y, Drubin DG, Oster GF. 93.  2009. The mechanochemistry of endocytosis. PLOS Biol 7:e1000204 [Google Scholar]
  94. Hirst J, Borner GH, Edgar J, Hein MY, Mann M. 94.  et al. 2013. Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol. Biol. Cell 24:162558–69 [Google Scholar]
  95. Zanetti G, Prinz S, Daum S, Meister A, Schekman R. 95.  et al. 2013. The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2:e00951 [Google Scholar]
  96. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL. 96.  et al. 2016. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352:6283363–65 [Google Scholar]
  97. Fischer J, Teimer R, Amlacher S, Kunze R, Hurt E. 97.  2015. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22:774–81 [Google Scholar]
  98. Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP. 98.  et al. 2011. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae. Mol. Cell Proteom. 10:M110 006478 [Google Scholar]
  99. Kubo T, Brown JM, Bellve K, Craige B, Craft JM. 99.  et al. 2016. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J. Cell Sci. 129:2106–19 [Google Scholar]
  100. Taschner M, Weber K, Mourao A, Vetter M, Awasthi M. 100.  et al. 2016. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 35:773–90 [Google Scholar]
  101. Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E. 101.  2011. Crystal structure of the intraflagellar transport complex 25/27. EMBO J 30:1907–18 [Google Scholar]
  102. Hemsworth GR, Price HP, Smith DF, Wilson KS. 102.  2013. Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei. Protein Sci 22:196–203 [Google Scholar]
  103. Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E. 103.  2014. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J. Cell Biol. 207:269–82 [Google Scholar]
  104. Kee HL, Verhey KJ. 104.  2013. Molecular connections between nuclear and ciliary import processes. Cilia 2:11 [Google Scholar]
  105. Balderhaar HJ, Ungermann C. 105.  2013. CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J. Cell Sci. 126:1307–16 [Google Scholar]
  106. Nickerson DP, Brett CL, Merz AJ. 106.  2009. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21:543–51 [Google Scholar]
  107. Cabrera M, Langemeyer L, Mari M, Rethmeier R, Orban I. 107.  et al. 2010. Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. J. Cell Biol. 191:845–59 [Google Scholar]
  108. Barlow LD, Dacks JB, Wideman JG. 108.  2014. From all to (nearly) none: tracing adaptin evolution in Fungi. Cell. Logist. 4:e28114 [Google Scholar]
  109. Lee LJ, Klute MJ, Herman EK, Read B, Dacks JB. 109.  2015. Losses, expansions, and novel subunit discovery of adaptor protein complexes in haptophyte algae. Protist 166:585–97 [Google Scholar]
  110. Manna PT, Kelly S, Field MC. 110.  2013. Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in African trypanosomatids. Mol. Phylogenet. Evol. 67:123–28 [Google Scholar]
  111. Hurley JH. 111.  2015. ESCRTs are everywhere. EMBO J 34:2398–407 [Google Scholar]
  112. Leung KF, Dacks JB, Field MC. 112.  2008. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9:1698–716 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044643
Loading
/content/journals/10.1146/annurev-biochem-061516-044643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error