1932

Abstract

Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology—the melding of old and new chemical knowledge—leading to useful molecules for advanced biochemical and biological experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044839
2017-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044839.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044839&mimeType=html&fmt=ahah

Literature Cited

  1. Lavis LD, Raines RT. 1.  2008. Bright ideas for chemical biology. ACS Chem. Biol. 3:142–55 [Google Scholar]
  2. Lavis LD, Raines RT. 2.  2014. Bright building blocks for chemical biology. ACS Chem. Biol. 9:855–66 [Google Scholar]
  3. Haugland RP, Spence MTZ, Johnson ID, Basey A. 3.  2005. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies Eugene, OR: Mol. Probes, 10th ed..
  4. Beija M, Afonso CAM, Martinho JMG. 4.  2009. Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 38:2410–33 [Google Scholar]
  5. Chan J, Dodani SC, Chang CJ. 5.  2012. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4:973–84 [Google Scholar]
  6. de Barry Barnett E. 6.  1919. Coal Tar Dyes and Intermediates New York: Van Nostrand
  7. Garfield S. 7.  2001. Mauve: How One Man Invented a Color that Changed the World New York: Norton
  8. Kaufman TS, Rúveda EA. 8.  2005. The quest for quinine: those who won the battles and those who won the war. Angew. Chem. Int. Ed. Engl. 44:854–85 [Google Scholar]
  9. Baeyer A. 9.  1871. Ueber eine neue Klasse von Farbstoffen. Ber. Dtsch. Chem. Ges. 4:555–58 [Google Scholar]
  10. Ceresole M. 10.  1887. Verfahren zur Darstellung von Farbstoffen aus der Gruppe des Meta-amidophenolphtaleïns. German Patent No. 44002
  11. Cooksey C. 11.  2016. Quirks of dye nomenclature. 5: Rhodamines. Biotech. Histochem. 91:71–76 [Google Scholar]
  12. Orndorff WR, Hemmer A. 12.  1927. Fluorescein and some of its derivatives. J. Am. Chem. Soc. 49:1272–80 [Google Scholar]
  13. Ioffe IS, Otten VF. 13.  1965. Rhodamine dyes and related compounds. XII. Diacetyl derivatives of rhodamine and rhodol; structure of colorless forms of fluoran dyes. Zh. Obshch. Khim. 1:336–39 [Google Scholar]
  14. Ioffe IS, Otten VF. 14.  1965. Rhodamine dyes and related compounds. XIV. Mutual conversions of colorless and colored forms of rhodamine and rhodol. Zh. Obshch. Khim. 1:343–46 [Google Scholar]
  15. Zanker V, Peter W. 15.  1958. Die prototropen Formen des Fluoresceins. Ber. Dtsch. Chem. Ges. 91:572–80 [Google Scholar]
  16. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T. 16.  2005. Evolution of fluorescein as a platform for finely tunable fluorescence probes. J. Am. Chem. Soc. 127:4888–94 [Google Scholar]
  17. Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM. 17.  et al. 2013. Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem. Biol. 8:1303–10 [Google Scholar]
  18. Tyagi S, Marras SA, Kramer FR. 18.  2000. Wavelength-shifting molecular beacons. Nat. Biotechnol. 18:1191–96 [Google Scholar]
  19. Liu JX, Diwu ZJ, Leung WY, Lu YX, Patch B, Haugland RP. 19.  2003. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths. Tetrahedron Lett 44:4355–59 [Google Scholar]
  20. Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M. 20.  et al. 2012. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging. J. Am. Chem. Soc. 134:5029–31 [Google Scholar]
  21. Chai X, Cui X, Wang B, Yang F, Cai Y. 21.  et al. 2015. Near-infrared phosphorus-substituted rhodamine with emission wavelength above 700 nm for bioimaging. Chem. Eur. J. 21:16754–58 [Google Scholar]
  22. Benson RC, Meyer RA, Zaruba ME, McKhann GM. 22.  1979. Cellular autofluorescence—Is it due to flavins?. J. Histochem. Cytochem. 27:44–48 [Google Scholar]
  23. Liu Z, Lavis LD, Betzig E. 23.  2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59 [Google Scholar]
  24. Menchen SM, Lee LG, Connell CR, Hershey ND, Chakerian V. 24.  et al. 1997. 4,7-dichlorofluorescein dyes as molecular probes. US Patent No. 5654442
  25. Fleming GR, Knight AWE, Morris JM, Morrison RJS, Robinson GW. 25.  1977. Picosecond fluorescence studies of xanthene dyes. J. Am. Chem. Soc. 99:4306–11 [Google Scholar]
  26. Neckers D. 26.  1989. Rose bengal. J. Photochem. Photobiol. A 47:1–29 [Google Scholar]
  27. Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD. 27.  2016. Virginia Orange: a versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes. Bioconjug. Chem. 27:474–80 [Google Scholar]
  28. Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T. 28.  2011. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region. Chem. Commun. 47:4162–64 [Google Scholar]
  29. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z. 29.  et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:244–50 [Google Scholar]
  30. Lavis LD, Chao T-Y, Raines RT. 30.  2006. Fluorogenic label for biomolecular imaging. ACS Chem. Biol. 1:252–60 [Google Scholar]
  31. Grimm JB, Lavis LD. 31.  2011. Synthesis of rhodamines from fluoresceins using Pd-catalyzed C-N cross-coupling. Org. Lett. 13:6354–57 [Google Scholar]
  32. Koide Y, Urano Y, Hanaoka K, Terai T, Nagano T. 32.  2011. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer. ACS Chem. Biol. 6:600–8 [Google Scholar]
  33. Watkins RW, Lavis LD, Kung VM, Los GV, Raines RT. 33.  2009. Fluorogenic affinity label for the facile, rapid imaging of proteins in live cells. Org. Biomol. Chem. 7:3969–75 [Google Scholar]
  34. Lukinavičius G, Umezawa K, Olivier N, Honigmann A, Yang G. 34.  et al. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5:132–39 [Google Scholar]
  35. Lukinavičius G, Blaukopf C, Pershagen E, Schena A, Reymond L. 35.  et al. 2015. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Comm. 6:8497 [Google Scholar]
  36. Xue L, Karpenko IA, Hiblot J, Johnsson K. 36.  2015. Imaging and manipulating proteins in live cells through covalent labeling. Nat. Chem. Biol. 11:917–23 [Google Scholar]
  37. Butkevich AN, Mitronova GY, Sidenstein SC, Klocke JL, Kamin D. 37.  et al. 2016. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. Engl. 55:3290–94 [Google Scholar]
  38. Grimm JB, Klein T, Kopek BG, Hess HF, Sauer M, Lavis LD. 38.  2016. Synthesis of a far-red photoactivatable Si-rhodamine for super resolution microscopy. Angew. Chem. Int. Ed. Engl. 55:1723–27 [Google Scholar]
  39. Sun W-C, Gee KR, Klaubert DH, Haugland RP. 39.  1997. Synthesis of fluorinated fluoresceins. J. Org. Chem. 62:6469–75 [Google Scholar]
  40. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ. 40.  et al. 1999. Alexa Dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47:1179–88 [Google Scholar]
  41. Coons AH, Creech H, Jones R, Berliner E. 41.  1942. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45:159–70 [Google Scholar]
  42. Coons AH, Kaplan MH. 42.  1950. Localization of antigen in tissue cells. II. Improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exp. Med. 91:1–13 [Google Scholar]
  43. Levsky JM, Singer RH. 43.  2003. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116:2833–38 [Google Scholar]
  44. Inglese J, Johnson RL, Simeonov A, Xia M, Zheng W. 44.  et al. 2007. High-throughput screening assays for the identification of chemical probes. Nat. Chem. Biol. 3:466–79 [Google Scholar]
  45. Patterson DM, Nazarova LA, Prescher JA. 45.  2014. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9:592–605 [Google Scholar]
  46. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 46.  2002. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21:86–89 [Google Scholar]
  47. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. 47.  1993. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug. Chem. 4:105–11 [Google Scholar]
  48. Griffin BA, Adams SR, Tsien RY. 48.  1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–72 [Google Scholar]
  49. Walker AS, Rablen PR, Schepartz A. 49.  2016. Rotamer-restricted fluorogenicity of the bis-arsenical ReAsH. J. Am. Chem. Soc. 138:7143–50 [Google Scholar]
  50. Gautier A, Juillerat A, Heinis C, Corrêa IR Jr., Kindermann M. 50.  et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15:128–36 [Google Scholar]
  51. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N. 51.  et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82 [Google Scholar]
  52. Liu Z, Legant WR, Chen BC, Li L, Grimm JB. 52.  et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236 [Google Scholar]
  53. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB. 53.  et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26 [Google Scholar]
  54. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I. 54.  et al. 2016. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165:593–605 [Google Scholar]
  55. Shieh P, Dien VT, Beahm BJ, Castellano JM, Wyss-Coray T, Bertozzi CR. 55.  2015. CalFluors: a universal motif for fluorogenic azide probes across the visible spectrum. J. Am. Chem. Soc. 137:7145–51 [Google Scholar]
  56. Kim YK, Ha H-H, Lee J-S, Bi X, Ahn Y-H. 56.  et al. 2009. Control of muscle differentiation by a mitochondria-targeted fluorophore. J. Am. Chem. Soc. 132:576–79 [Google Scholar]
  57. Im CN, Kang NY, Ha HH, Bi X, Lee JJ. 57.  et al. 2010. A fluorescent rosamine compound selectively stains pluripotent stem cells. Angew. Chem. Int. Ed. Engl. 49:7497–500 [Google Scholar]
  58. Johnson LV, Walsh ML, Chen LB. 58.  1980. Localization of mitochondria in living cells with rhodamine 123. PNAS 77:990–94 [Google Scholar]
  59. Legant WR, Shao L, Grimm JB, Brown TA, Milkie DE. 59.  et al. 2016. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13:359–65 [Google Scholar]
  60. Crissman HA, Hirons GT. 60.  1994. Staining of DNA in live and fixed cells. Methods Cell Biol 41:195–209 [Google Scholar]
  61. Rotman B, Zderic JA, Edelstein M. 61.  1963. Fluorogenic substrates for β-D-galactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfluoran) and its monomethyl ether. PNAS 50:1–6 [Google Scholar]
  62. Zhang YZ, Naleway JJ, Larison KD, Huang ZJ, Haugland RP. 62.  1991. Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic beta-galactosidase substrates. FASEB J 5:3108–13 [Google Scholar]
  63. Huang Z, Olson NA, You W, Haugland RP. 63.  1992. A sensitive competitive ELISA for 2,4-dinitrophenol using 3,6-fluorescein diphosphate as a fluorogenic substrate. J. Immunol. Methods 149:261–66 [Google Scholar]
  64. Goddard JP, Reymond JL. 64.  2004. Enzyme assays for high-throughput screening. Curr. Opin. Biotechnol. 15:314–22 [Google Scholar]
  65. Grimm JB, Heckman LM, Lavis LD. 65.  2013. The chemistry of small-molecule fluorogenic probes. Prog. Mol. Biol. Transl. Sci. 113:1–34 [Google Scholar]
  66. Smith EL, Bertozzi CR, Beatty KE. 66.  2014. An expanded set of fluorogenic sulfatase activity probes. ChemBioChem 15:1101–5 [Google Scholar]
  67. Ueo H, Shinden Y, Tobo T, Gamachi A, Udo M. 67.  et al. 2015. Rapid intraoperative visualization of breast lesions with γ-glutamyl hydroxymethyl rhodamine green. Sci. Rep. 5:12080 [Google Scholar]
  68. Lavis LD, Chao TY, Raines RT. 68.  2011. Synthesis and utility of fluorogenic acetoxymethyl ethers. Chem. Sci. 2:521–30 [Google Scholar]
  69. Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A. 69.  et al. 2012. A selective esterase-ester pair for targeting small molecules with cellular specificity. PNAS 109:4756–61 [Google Scholar]
  70. Rotman B, Papermaster BW. 70.  1966. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. PNAS 55:134–41 [Google Scholar]
  71. Filippova EV, Weston LA, Kuhn ML, Geissler B, Gehring AM. 71.  et al. 2013. Large-scale structural rearrangement of a serine hydrolase from Francisella tularensis facilitates catalysis. J. Biol. Chem. 288:10522–35 [Google Scholar]
  72. Huang Z. 72.  1991. Kinetic fluorescence measurement of fluorescein di-β-d-galactoside hydrolysis by β-galactosidase: intermediate channeling in stepwise catalysis by a free single enzyme. Biochemistry 30:8535–40 [Google Scholar]
  73. Leytus SP, Melhado LL, Mangel WF. 73.  1983. Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209:299–307 [Google Scholar]
  74. Leytus SP, Patterson WL, Mangel WF. 74.  1983. New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine. Biochem. J. 215:253–60 [Google Scholar]
  75. Sakabe M, Asanuma D, Kamiya M, Iwatate RJ, Hanaoka K. 75.  et al. 2012. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J. Am. Chem. Soc. 135:409–14 [Google Scholar]
  76. Chambers C, Smith F, Williams C, Marcos S, Liu Z. 76.  et al. 2003. Measuring intracellular calcium fluxes in high throughput mode. Comb. Chem. High Throughput Screen. 6:355–62 [Google Scholar]
  77. Kerr JN, Greenberg D, Helmchen F. 77.  2005. Imaging input and output of neocortical networks in vivo. PNAS 102:14063–68 [Google Scholar]
  78. Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JN. 78.  2009. Visually evoked activity in cortical cells imaged in freely moving animals. PNAS 106:19557–62 [Google Scholar]
  79. Tischbirek C, Birkner A, Jia H, Sakmann B, Konnerth A. 79.  2015. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. PNAS 112:11377–82 [Google Scholar]
  80. Lavis LD, Rutkoski TJ, Raines RT. 80.  2007. Tuning the pKa of fluorescein to optimize binding assays. Anal. Chem. 79:6775–82 [Google Scholar]
  81. Paradiso AM, Tsien RY, Machen TE. 81.  1984. Na+–H+ exchange in gastric glands as measured with a cytoplasmic-trapped, fluorescent pH indicator. PNAS 81:7436–40 [Google Scholar]
  82. Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. 82.  2008. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37:1465–72 [Google Scholar]
  83. Asanuma D, Takaoka Y, Namiki S, Takikawa K, Kamiya M. 83.  et al. 2014. Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics. Angew. Chem. Int. Ed. Engl. 53:6085–89 [Google Scholar]
  84. Minta A, Kao JP, Tsien RY. 84.  1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem. 264:8171–78 [Google Scholar]
  85. Tsien RY. 85.  1980. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–404 [Google Scholar]
  86. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I. 86.  2000. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27:97–106 [Google Scholar]
  87. Egawa T, Hirabayashi K, Koide Y, Kobayashi C, Takahashi N. 87.  et al. 2013. Red fluorescent probe for monitoring the dynamics of cytoplasmic calcium ions. Angew. Chem. Int. Ed. Engl. 52:3874–77 [Google Scholar]
  88. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB, Tsien RY. 88.  2012. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. PNAS 109:2114–19 [Google Scholar]
  89. Huang Y-L, Walker AS, Miller EW. 89.  2015. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137:10767–76 [Google Scholar]
  90. Deal PE, Kulkarni RU, Al-Abdullatif SH, Miller EW. 90.  2016. Isomerically pure tetramethylrhodamine voltage reporters. J. Am. Chem. Soc. 138:9085–88 [Google Scholar]
  91. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T. 91.  1999. Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. Engl. 38:3209–12 [Google Scholar]
  92. Chang MC, Pralle A, Isacoff EY, Chang CJ. 92.  2004. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126:15392–93 [Google Scholar]
  93. Qin Y, Lu M, Gong X. 93.  2008. Dihydrorhodamine 123 is superior to 2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide in tumor cells. Cell Biol. Int. 32:224–28 [Google Scholar]
  94. Dujols V, Ford F, Czarnik AW. 94.  1997. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119:7386–87 [Google Scholar]
  95. Mitchison TJ, Sawin KE, Theriot JA, Gee K, Mallavarapu A, Marriott G. 95.  1998. Caged fluorescent probes. Methods Enzymol 291:63–78 [Google Scholar]
  96. Puliti D, Warther D, Orange C, Specht A, Goeldner M. 96.  2011. Small photoactivatable molecules for controlled fluorescence activation in living cells. Bioorg. Med. Chem 19:1023–29 [Google Scholar]
  97. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S. 97.  et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45 [Google Scholar]
  98. Krafft GA, Sutton WR, Cummings RT. 98.  1988. Photoactivable fluorophores. 3. Synthesis and photoactivation of fluorogenic difunctionalized fluoresceins. J. Am. Chem. Soc. 110:301–3 [Google Scholar]
  99. Mitchison T. 99.  1989. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109:637–52 [Google Scholar]
  100. Wysocki LM, Grimm JB, Tkachuk AN, Brown TA, Betzig E, Lavis LD. 100.  2011. Facile and general synthesis of photoactivatable xanthene dyes. Angew. Chem. Int. Ed. Engl. 50:11206–9 [Google Scholar]
  101. Furukawa K, Abe H, Tsuneda S, Ito Y. 101.  2010. Photoactivatable fluorescein derivatives with azidomethyl caging groups for tracing oligonucleotides in living human cells. Org. Biomol. Chem. 8:2309–11 [Google Scholar]
  102. Vaughan JC, Jia S, Zhuang X. 102.  2012. Ultrabright photoactivatable fluorophores created by reductive caging. Nat. Methods 9:1181–84 [Google Scholar]
  103. Knauer KH, Gleiter R. 103.  1977. Photochromism of rhodamine derivatives. Angew. Chem. Int. Ed. Engl. 16:113 [Google Scholar]
  104. Fölling J, Belov V, Kunetsky R, Medda R, Schönle A. 104.  et al. 2007. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. Engl. 46:6266–70 [Google Scholar]
  105. Lin W, Long L, Tan W, Chen B, Yuan L. 105.  2010. Coumarin caged rosamine probes based on a unique intramolecular carbon–carbon spirocyclization. Chem. Eur. J. 16:3914–17 [Google Scholar]
  106. Wolff L. 106.  1902. Ueber Diazoanhydride. Justus Liebigs Ann. Chem. 325:129–95 [Google Scholar]
  107. Belov VN, Wurm CA, Boyarskiy VP, Jakobs S, Hell SW. 107.  2010. Rhodamines NN: a novel class of caged fluorescent dyes. Angew. Chem. Int. Ed. Engl. 49:3520–23 [Google Scholar]
  108. Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP. 108.  et al. 2016. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13:985–88 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044839
Loading
/content/journals/10.1146/annurev-biochem-061516-044839
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error