1932

Abstract

This brief disquisition about the early history of studies on regulated protein degradation introduces several detailed reviews about the ubiquitin system and autophagy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044859
2017-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044859.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044859&mimeType=html&fmt=ahah

Literature Cited

  1. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA. 1.  1980. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. PNAS 77:1783–86 [Google Scholar]
  2. Hershko A, Ciechanover A, Varshavsky A. 2.  2000. The ubiquitin system. Nat. Med. 10:1073–81 [Google Scholar]
  3. Finley D, Chen X, Walters KJ. 3.  2016. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41:77–93 [Google Scholar]
  4. Förster F, Unverdorben P, Sledź P, Baumeister W. 4.  2013. Unveiling the long-held secrets of the 26S proteasome. Structure 21:1551–62 [Google Scholar]
  5. Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G. 5.  et al. 2016. Structure of the human 26S proteasome at a resolution of 3.9 Å. PNAS 113:7816–21 [Google Scholar]
  6. Chen S, Wu J, Lu Y, Ma YB, Lee BH. 6.  et al. 2016. Structural basis for dynamic regulation of the human 26S proteasome. PNAS 113:12991–96 [Google Scholar]
  7. Varshavsky A. 7.  2006. The early history of the ubiquitin field. Protein Sci 15:647–54 [Google Scholar]
  8. Varshavsky A. 8.  2008. Discovery of cellular regulation by protein degradation. J. Biol. Chem. 283:34469–89 [Google Scholar]
  9. Varshavsky A. 9.  2011. The N-end rule pathway and regulation by proteolysis. Protein Sci 20:1298–345 [Google Scholar]
  10. Varshavsky A. 10.  1991. Naming a targeting signal. Cell 64:13–15 [Google Scholar]
  11. Hwang CS, Shemorry A, Varshavsky A. 11.  2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–77 [Google Scholar]
  12. Chen SJ, Wu X, Wadas B, Oh J-H, Varshavsky A. 12.  2017. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355:366 [Google Scholar]
  13. Tasaki T, Sriram SM, Park KS, Kwon YT. 13.  2012. The N-end rule pathway. Annu. Rev. Biochem. 81:261–89 [Google Scholar]
  14. Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. 14.  2014. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 24:603–11 [Google Scholar]
  15. Eldeeb M, Fahlman R. 15.  2016. The-N-end rule: the beginning determines the end. Protein Pept. Lett. 23:343–48 [Google Scholar]
  16. Dougan DA, Micevski D, Truscott KN. 16.  2011. The N-end rule pathway: from recognition by N-recognins to destruction by AAA+ proteases. Biochim. Biophys. Acta 1823:83–91 [Google Scholar]
  17. Mogk A, Schmidt R, Bukau B. 17.  2007. The N-end rule pathway of regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–72 [Google Scholar]
  18. Graciet E, Wellmer F. 18.  2010. The plant N-end rule pathway: structure and functions. Trends Plant Sci 15:447–53 [Google Scholar]
  19. Ohsumi Y. 19.  2014. Historical landmarks of autophagy research. Cell Res 24:9–23 [Google Scholar]
  20. Cha-Molstad H, Sung KS, Hwang J, Kim KA, Yu JE. 20.  et al. 2015. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17:917–29 [Google Scholar]
  21. Dikic I. 21.  2017. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86:193–224 [Google Scholar]
  22. Hurley JH, Young LN. 22.  2017. Mechanisms of autophagy initiation. Annu. Rev. Biochem. 86:225–44 [Google Scholar]
  23. Preston GM, Brodsky JL. 23.  2017. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem. J. 474:445–69 [Google Scholar]
  24. Buetow L, Huang DT. 24.  2016. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17:626–42 [Google Scholar]
  25. Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. 25.  2016. The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int. J. Biochem. Cell Biol. 79:403–18 [Google Scholar]
  26. Garcia-Rodriguez N, Wong RP, Ulrich HD. 26.  2016. Functions of ubiquitin and SUMO in DNA replication and replication stress. Front. Genet. 7:87 [Google Scholar]
  27. Yau R, Rape M. 27.  2016. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18:579–86 [Google Scholar]
  28. Swatek KN, Komander D. 28.  2016. Ubiquitin modifications. Cell Res 26:399–422 [Google Scholar]
  29. Huang X, Dixit VM. 29.  2016. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–98 [Google Scholar]
  30. Maculins T, Fiskin E, Bhogaraju S, Dikic I. 30.  2016. Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res 26:499–510 [Google Scholar]
  31. Wang F, Canadeo LA, Huibregtse JM. 31.  2015. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114:127–33 [Google Scholar]
  32. Vittal V, Stewart MD, Brzovic PS, Klevit RE. 32.  2015. Regulating the regulators: recent revelations in the control of E3 ubiquitin ligases. J. Biol. Chem. 290:21244–51 [Google Scholar]
  33. Ordureau A, Munch C, Harper JW. 33.  2015. Quantifying ubiquitin signaling. Mol. Cell 58:660–76 [Google Scholar]
  34. Popovic D, Vucic D, Dikic I. 34.  2014. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20:1242–53 [Google Scholar]
  35. Deshaies RJ. 35.  2014. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94 [Google Scholar]
  36. Finley D, Ulrich HD, Sommer T, Kaiser P. 36.  2012. The ubiquitin–proteasome system of Saccharomyces cerevisiae. Genetics 192:319–60 [Google Scholar]
  37. Burroughs AM, Iyer LM, Aravind L. 37.  2012. Structure and evolution of ubiquitin and ubiquitin-related domains. Methods Mol. Biol. 832:15–63 [Google Scholar]
  38. Schulman BA. 38.  2011. Twists and turns in ubiquitin-like conjugation cascades. Protein Sci 20:1941–54 [Google Scholar]
  39. Thomas LR, Tansey WP. 39.  2011. Proteolytic control of the oncoprotein transcription factor Myc. Adv. Cancer Res. 110:77–106 [Google Scholar]
  40. Geoffroy M-C, Hay RT. 40.  2010. An additional role for SUMO in ubiquitin-mediated proteolysis. Nat. Rev. Mol. Cell Biol. 10:564–68 [Google Scholar]
  41. Hochstrasser M. 41.  2009. Origin and function of ubiquitin-like proteins. Nature 458:422–29 [Google Scholar]
  42. Bergink S, Jentsch S. 42.  2009. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–67 [Google Scholar]
  43. Grabbe C, Dikic I. 43.  2009. Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem. Rev. 109:1481–94 [Google Scholar]
  44. Daulni A, Tansey WP. 44.  2009. Damage control: DNA repair, transcription, and the ubiquitin-proteasome system. DNA Rep 8:444–48 [Google Scholar]
  45. Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. 45.  2009. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 109:1509–36 [Google Scholar]
  46. Zheng N, Shabek N. 46.  2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57 [Google Scholar]
  47. Mevissen TET, Komander D. 47.  2017. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86:159–91 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044859
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error