1932

Abstract

Autophagy and the ubiquitin–proteasome system are the two major quality control pathways responsible for cellular homeostasis. As such, they provide protection against age-associated changes and a plethora of human diseases. Ubiquitination is utilized as a degradation signal by both systems, albeit in different ways, to mark cargoes for proteasomal and lysosomal degradation. Both systems intersect and communicate at multiple points to coordinate their actions in proteostasis and organelle homeostasis. This review summarizes molecular details of how proteasome and autophagy pathways are functionally interconnected in cells and indicates common principles and nodes of communication that can be therapeutically exploited.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-061516-044908
2017-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-061516-044908.html?itemId=/content/journals/10.1146/annurev-biochem-061516-044908&mimeType=html&fmt=ahah

Literature Cited

  1. Labbadia J, Morimoto RI. 1.  2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84:435–64 [Google Scholar]
  2. Kaushik S, Cuervo AM. 2.  2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–17 [Google Scholar]
  3. Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM. 3.  et al. 2016. Walking the tightrope: proteostasis and neurodegenerative disease. J. Neurochem. 137:489–505 [Google Scholar]
  4. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. 4.  2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–74 [Google Scholar]
  5. Turner GC, Varshavsky A. 5.  2000. Detecting and measuring cotranslational protein degradation in vivo. Science 289:2117–20 [Google Scholar]
  6. Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS. 6.  et al. 2009. The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol. Cell 36:141–52 [Google Scholar]
  7. McClellan AJ, Tam S, Kaganovich D, Frydman J. 7.  2005. Protein quality control: chaperones culling corrupt conformations. Nat. Cell Biol. 7:736–41 [Google Scholar]
  8. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M. 8.  et al. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171:603–14 [Google Scholar]
  9. Kaganovich D, Kopito R, Frydman J. 9.  2008. Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–95 [Google Scholar]
  10. Parsell DA, Kowal AS, Singer MA, Lindquist S. 10.  1994. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–78 [Google Scholar]
  11. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA. 11.  et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131–45 [Google Scholar]
  12. Specht S, Miller SB, Mogk A, Bukau B. 12.  2011. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195:617–29 [Google Scholar]
  13. Finley D. 13.  2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477–513 [Google Scholar]
  14. Lamb CA, Yoshimori T, Tooze SA. 14.  2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:759–74 [Google Scholar]
  15. Livnat-Levanon N, Kevei E, Kleifeld O, Krutauz D, Segref A. 15.  et al. 2014. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep 7:1371–80 [Google Scholar]
  16. Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. 16.  2011. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev. Proteom. 8:459–81 [Google Scholar]
  17. Hanna J, Meides A, Zhang DP, Finley D. 17.  2007. A ubiquitin stress response induces altered proteasome composition. Cell 129:747–59 [Google Scholar]
  18. Goldberg AL. 18.  2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–99 [Google Scholar]
  19. Baraibar MA, Friguet B. 19.  2012. Changes of the proteasomal system during the aging process. Prog. Mol. Biol. Transl. Sci. 109:249–75 [Google Scholar]
  20. Schmidt M, Finley D. 20.  2014. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843:13–25 [Google Scholar]
  21. Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. 21.  1999. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450:27–34 [Google Scholar]
  22. Xie Y, Varshavsky A. 22.  2001. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. PNAS 98:3056–61 [Google Scholar]
  23. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. 23.  2010. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38:17–28 [Google Scholar]
  24. Lundgren J, Masson P, Mirzaei Z, Young P. 24.  2005. Identification and characterization of a Drosophila proteasome regulatory network. Mol. Cell Biol 25:4662–75 [Google Scholar]
  25. Steffen J, Seeger M, Koch A, Kruger E. 25.  2010. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40:147–58 [Google Scholar]
  26. Radhakrishnan SK, den Besten W, Deshaies RJ. 26.  2014. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife 3:e01856 [Google Scholar]
  27. Zhang Y, Crouch DH, Yamamoto M, Hayes JD. 27.  2006. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochem. J. 399:373–85 [Google Scholar]
  28. Zhang Y, Hayes JD. 28.  2010. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem. J. 430:497–510 [Google Scholar]
  29. Zhang Y, Li S, Xiang Y, Qiu L, Zhao H, Hayes JD. 29.  2015. The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Sci. Rep. 5:12983 [Google Scholar]
  30. Zhang Y, Manning BD. 30.  2015. mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 14:2011–17 [Google Scholar]
  31. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G. 31.  et al. 2002. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. PNAS 99:14374–79 [Google Scholar]
  32. Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H. 32.  et al. 2016. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 5:e18357 [Google Scholar]
  33. Lehrbach NJ, Ruvkun G. 33.  2016. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife 5:e17721 [Google Scholar]
  34. Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB. 34.  et al. 2014. Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513:440–43 [Google Scholar]
  35. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. 35.  2003. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell Biol. 23:8786–94 [Google Scholar]
  36. Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A. 36.  2014. An inducible chaperone adapts proteasome assembly to stress. Mol. Cell 55:566–77 [Google Scholar]
  37. Rousseau A, Bertolotti A. 37.  2016. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536:184–89 [Google Scholar]
  38. Lo SC, Hannink M. 38.  2008. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 314:1789–803 [Google Scholar]
  39. Tsakiri EN, Sykiotis GP, Papassideri IS, Terpos E, Dimopoulos MA. 39.  et al. 2013. Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 12:802–13 [Google Scholar]
  40. Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. 40.  2014. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci. Rep. 4:5896 [Google Scholar]
  41. Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T. 41.  et al. 2014. Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J. Biol. Chem. 289:24944–55 [Google Scholar]
  42. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y. 42.  et al. 2016. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol. 18:897–909 [Google Scholar]
  43. Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA. 43.  et al. 2016. Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway. PLOS Genet 12:e1005823 [Google Scholar]
  44. Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S. 44.  et al. 2010. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38:733–45 [Google Scholar]
  45. Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. 45.  1999. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. PNAS 96:6223–28 [Google Scholar]
  46. Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. 46.  2007. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282:22460–71 [Google Scholar]
  47. Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. 47.  2003. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115:715–25 [Google Scholar]
  48. Djakovic SN, Marquez-Lona EM, Jakawich SK, Wright R, Chu C. 48.  et al. 2012. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 32:5126–31 [Google Scholar]
  49. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN. 49.  2009. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284:26655–65 [Google Scholar]
  50. Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M. 50.  2010. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140:567–78 [Google Scholar]
  51. Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D. 51.  et al. 2012. Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol. Cell Proteom. 11:467–77 [Google Scholar]
  52. Um JW, Im E, Park J, Oh Y, Min B. 52.  et al. 2010. ASK1 negatively regulates the 26 S proteasome. J. Biol. Chem. 285:36434–46 [Google Scholar]
  53. Guo X, Wang X, Wang Z, Banerjee S, Yang J. 53.  et al. 2016. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 18:202–12 [Google Scholar]
  54. Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H. 54.  et al. 2010. Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics 10:2769–79 [Google Scholar]
  55. Hirano H, Kimura Y, Kimura A. 55.  2016. Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J. Proteom. 134:37–46 [Google Scholar]
  56. Cho-Park PF, Steller H. 56.  2013. Proteasome regulation by ADP-ribosylation. Cell 153:614–27 [Google Scholar]
  57. Kimura A, Kato Y, Hirano H. 57.  2012. N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry 51:8856–66 [Google Scholar]
  58. Castano JG, Mahillo E, Arizti P, Arribas J. 58.  1996. Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35:3782–89 [Google Scholar]
  59. Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ. 59.  2004. Phosphorylation of 20S proteasome α subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon. Biochem. J. 378:177–84 [Google Scholar]
  60. Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. 60.  2013. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front. Behav. Neurosci. 7:115 [Google Scholar]
  61. Lokireddy S, Kukushkin NV, Goldberg AL. 61.  2015. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. PNAS 112:E7176–85 [Google Scholar]
  62. Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH. 62.  et al. 2016. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22:46–53 [Google Scholar]
  63. Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM. 63.  et al. 2014. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J 33:1159–76 [Google Scholar]
  64. Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW. 64.  2014. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell 25:1824–35 [Google Scholar]
  65. Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R. 65.  et al. 2006. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8:163–69 [Google Scholar]
  66. Zuin A, Bichmann A, Isasa M, Puig-Sarries P, Diaz LM, Crosas B. 66.  2015. Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem. J. 472:353–65 [Google Scholar]
  67. Park S, Kim W, Tian G, Gygi SP, Finley D. 67.  2011. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 286:36652–66 [Google Scholar]
  68. Lee SY, De La Mota-Peynado A, Roelofs J. 68.  2011. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J. Biol. Chem. 286:36641–51 [Google Scholar]
  69. De La Mota-Peynado A, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J. 69.  2013. The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J. Biol. Chem. 288:29467–81 [Google Scholar]
  70. Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK. 70.  et al. 2013. A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy 9:1500–8 [Google Scholar]
  71. Haratake K, Sato A, Tsuruta F, Chiba T. 71.  2016. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J. Biochem. 159:609–18 [Google Scholar]
  72. Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. 72.  2016. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci. Rep. 6:27873 [Google Scholar]
  73. Vilchez D, Saez I, Dillin A. 73.  2014. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5:5659 [Google Scholar]
  74. Dahlmann B. 74.  2007. Role of proteasomes in disease. BMC Biochem 8:Suppl 1S3 [Google Scholar]
  75. Dimopoulos MA, Richardson PG, Moreau P, Anderson KC. 75.  2015. Current treatment landscape for relapsed and/or refractory multiple myeloma. Nat. Rev. Clin. Oncol. 12:42–54 [Google Scholar]
  76. Feist E, Burmester GR, Kruger E. 76.  2016. The proteasome—victim or culprit in autoimmunity. Clin. Immunol. 172:83–89 [Google Scholar]
  77. Lazaro S, Gamarra D, Del Val M. 77.  2015. Proteolytic enzymes involved in MHC class I antigen processing: a guerrilla army that partners with the proteasome. Mol. Immunol. 68:72–76 [Google Scholar]
  78. Basler M, Kirk CJ, Groettrup M. 78.  2013. The immunoproteasome in antigen processing and other immunological functions. Curr. Opin. Immunol. 25:74–80 [Google Scholar]
  79. Vigneron N, Van den Eynde BJ. 79.  2014. Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 4:994–1025 [Google Scholar]
  80. Tai HC, Schuman EM. 80.  2008. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9:826–38 [Google Scholar]
  81. Li WW, Li J, Bao JK. 81.  2012. Microautophagy: lesser-known self-eating. Cell Mol. Life Sci. 69:1125–36 [Google Scholar]
  82. Galluzzi L, Pietrocola F, Levine B, Kroemer G. 82.  2014. Metabolic control of autophagy. Cell 159:1263–76 [Google Scholar]
  83. Kim J, Kundu M, Viollet B, Guan KL. 83.  2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132–41 [Google Scholar]
  84. Hardie DG, Ross FA, Hawley SA. 84.  2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13:251–62 [Google Scholar]
  85. Hara T, Takamura A, Kishi C, Iemura S, Natsume T. 85.  et al. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181:497–510 [Google Scholar]
  86. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM. 86.  et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992–2003 [Google Scholar]
  87. Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V. 87.  et al. 2013. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15:406–16 [Google Scholar]
  88. Zaffagnini G, Martens S. 88.  2016. Mechanisms of selective autophagy. J. Mol. Biol. 428:1714–24 [Google Scholar]
  89. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C. 89.  et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14 [Google Scholar]
  90. Kamber RA, Shoemaker CJ, Denic V. 90.  2015. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59:372–81 [Google Scholar]
  91. Majcher V, Goode A, James V, Layfield R. 91.  2015. Autophagy receptor defects and ALS-FTLD. Mol. Cell Neurosci. 66:43–52 [Google Scholar]
  92. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V. 92.  et al. 2015. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18:631–36 [Google Scholar]
  93. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M. 93.  et al. 2015. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92 [Google Scholar]
  94. Goode A, Butler K, Long J, Cavey J, Scott D. 94.  et al. 2016. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy 12:1094–104 [Google Scholar]
  95. Stolz A, Ernst A, Dikic I. 95.  2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495–501 [Google Scholar]
  96. Khaminets A, Behl C, Dikic I. 96.  2016. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16 [Google Scholar]
  97. Herhaus L, Dikic I. 97.  2015. Expanding the ubiquitin code through post-translational modification. EMBO Rep 16:1071–83 [Google Scholar]
  98. Qiao L, Zhang J. 98.  2009. Inhibition of lysosomal functions reduces proteasomal activity. Neurosci. Lett. 456:15–19 [Google Scholar]
  99. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. 99.  2009. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33:517–27 [Google Scholar]
  100. Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T. 100.  et al. 2010. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191:537–52 [Google Scholar]
  101. Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V. 101.  et al. 2015. Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cell Signal 27:1186–97 [Google Scholar]
  102. Min H, Xu M, Chen ZR, Zhou JD, Huang M. 102.  et al. 2014. Bortezomib induces protective autophagy through AMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother. Pharmacol. 74:167–76 [Google Scholar]
  103. Deshmukh RR, Dou QP. 103.  2015. Proteasome inhibitors induce AMPK activation via CaMKKβ in human breast cancer cells. Breast Cancer Res. Treat. 153:79–88 [Google Scholar]
  104. Sun A, Li C, Chen R, Huang Y, Chen Q. 104.  et al. 2016. GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate 76:172–83 [Google Scholar]
  105. Gavilan E, Pintado C, Gavilan MP, Daza P, Sanchez-Aguayo I. 105.  et al. 2015. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol. Aging 36:1953–63 [Google Scholar]
  106. Gavilan E, Sanchez-Aguayo I, Daza P, Ruano D. 106.  2013. GSK-3β signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis 4:e572 [Google Scholar]
  107. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. 107.  2010. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285:33154–64 [Google Scholar]
  108. Senft D, Ronai ZA. 108.  2015. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40:141–48 [Google Scholar]
  109. Bruning A, Rahmeh M, Friese K. 109.  2013. Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol. Oncol. 7:1012–18 [Google Scholar]
  110. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G. 110.  et al. 2007. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 25:193–205 [Google Scholar]
  111. Digaleh H, Kiaei M, Khodagholi F. 111.  2013. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol. Life Sci. 70:4681–94 [Google Scholar]
  112. Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB. 112.  et al. 2014. AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev. Cell 31:734–46 [Google Scholar]
  113. Liu CC, Lin YC, Chen YH, Chen CM, Pang LY. 113.  et al. 2016. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61:84–97 [Google Scholar]
  114. Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. 114.  2010. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 6:126–37 [Google Scholar]
  115. Kuang E, Qi J, Ronai Z. 115.  2013. Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem. Sci. 38:453–60 [Google Scholar]
  116. Hanna J, Leggett DS, Finley D. 116.  2003. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell Biol. 23:9251–61 [Google Scholar]
  117. Finley D, Ozkaynak E, Varshavsky A. 117.  1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–46 [Google Scholar]
  118. Park CW, Ryu KY. 118.  2014. Cellular ubiquitin pool dynamics and homeostasis. BMB Rep 47:475–82 [Google Scholar]
  119. Ryu HW, Park CW, Ryu KY. 119.  2014. Disruption of polyubiquitin gene Ubb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Sci. Rep. 4:7026 [Google Scholar]
  120. Chen PC, Bhattacharyya BJ, Hanna J, Minkel H, Wilson JA. 120.  et al. 2011. Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 31:17505–13 [Google Scholar]
  121. Chen PC, Qin LN, Li XM, Walters BJ, Wilson JA. 121.  et al. 2009. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29:10909–19 [Google Scholar]
  122. Dantuma NP, Hoppe T. 122.  2012. Growing sphere of influence: Cdc48/p97 orchestrates ubiquitin-dependent extraction from chromatin. Trends Cell Biol 22:483–91 [Google Scholar]
  123. Stolz A, Hilt W, Buchberger A, Wolf DH. 123.  2011. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36:515–23 [Google Scholar]
  124. Meyer H, Bug M, Bremer S. 124.  2012. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14:117–23 [Google Scholar]
  125. Yan JQ, Yuan YH, Gao YN, Huang JY, Ma KL. 125.  et al. 2014. Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Mol. Neurobiol. 50:685–701 [Google Scholar]
  126. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE. 126.  et al. 2010. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190:1023–37 [Google Scholar]
  127. Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM. 127.  2013. Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288:15194–210 [Google Scholar]
  128. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS. 128.  et al. 2014. HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10:144–54 [Google Scholar]
  129. Wang K, Huang J, Xie W, Huang L, Zhong C, Chen Z. 129.  2016. Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol. 11:15 [Google Scholar]
  130. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. 130.  2008. Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging 29:1607–18 [Google Scholar]
  131. Bence NF, Sampat RM, Kopito RR. 131.  2001. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–55 [Google Scholar]
  132. Suraweera A, Munch C, Hanssum A, Bertolotti A. 132.  2012. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48:242–53 [Google Scholar]
  133. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW. 133.  et al. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–98 [Google Scholar]
  134. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA. 134.  et al. 2015. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94 [Google Scholar]
  135. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. 135.  2008. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10:935–45 [Google Scholar]
  136. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC. 136.  et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–501 [Google Scholar]
  137. Tsokanos FF, Albert MA, Demetriades C, Spirohn K, Boutros M, Teleman AA. 137.  2016. eIF4A inactivates TORC1 in response to amino acid starvation. EMBO J 35:1058–76 [Google Scholar]
  138. Aiken CT, Kaake RM, Wang X, Huang L. 138.  2011. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteom. 10:R110 006924 [Google Scholar]
  139. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP. 139.  et al. 2007. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–63 [Google Scholar]
  140. Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML. 140.  et al. 2016. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12:1902–16 [Google Scholar]
  141. Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. 141.  2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24:8055–68 [Google Scholar]
  142. Babu JR, Geetha T, Wooten MW. 142.  2005. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94:192–203 [Google Scholar]
  143. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T. 143.  et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–63 [Google Scholar]
  144. Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS. 144.  et al. 2008. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17:431–39 [Google Scholar]
  145. Chin LS, Olzmann JA, Li L. 145.  2010. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38:144–49 [Google Scholar]
  146. Lamark T, Johansen T. 146.  2012. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012:736905 [Google Scholar]
  147. Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M. 147.  et al. 2015. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLOS Genet 11:e1004987 [Google Scholar]
  148. Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J. 148.  et al. 2001. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell Biol. 21:8035–44 [Google Scholar]
  149. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A. 149.  et al. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417:455–58 [Google Scholar]
  150. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. 150.  2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–38 [Google Scholar]
  151. Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A. 151.  et al. 2013. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51:819–28 [Google Scholar]
  152. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E. 152.  et al. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–80 [Google Scholar]
  153. Nanduri P, Hao R, Fitzpatrick T, Yao TP. 153.  2015. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance. J. Biol. Chem. 290:9455–64 [Google Scholar]
  154. Kabbage M, Dickman MB. 154.  2008. The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol. Life Sci. 65:1390–402 [Google Scholar]
  155. Luders J, Demand J, Hohfeld J. 155.  2000. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275:4613–17 [Google Scholar]
  156. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. 156.  2009. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28:889–901 [Google Scholar]
  157. Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. 157.  2011. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12:149–56 [Google Scholar]
  158. Carra S, Seguin SJ, Landry J. 158.  2008. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4:237–39 [Google Scholar]
  159. Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF. 159.  et al. 2014. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10:1603–21 [Google Scholar]
  160. Wang HQ, Liu HM, Zhang HY, Guan Y, Du ZX. 160.  2008. Transcriptional upregulation of BAG3 upon proteasome inhibition. Biochem. Biophys. Res. Commun. 365:381–85 [Google Scholar]
  161. Rapino F, Jung M, Fulda S. 161.  2014. BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33:1713–24 [Google Scholar]
  162. Nivon M, Richet E, Codogno P, Arrigo AP, Kretz-Remy C. 162.  2009. Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy 5:766–83 [Google Scholar]
  163. Rapino F, Abhari BA, Jung M, Fulda S. 163.  2015. NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death Dis 6:e1692 [Google Scholar]
  164. Behl C. 164.  2016. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci. 37:672–88 [Google Scholar]
  165. Biala AK, Dhingra R, Kirshenbaum LA. 165.  2015. Mitochondrial dynamics: orchestrating the journey to advanced age. J. Mol. Cell Cardiol. 83:37–43 [Google Scholar]
  166. Wai T, Langer T. 166.  2016. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27:105–17 [Google Scholar]
  167. Vyas S, Zaganjor E, Haigis MC. 167.  2016. Mitochondria and cancer. Cell 166:555–66 [Google Scholar]
  168. Kim B, Song YS. 168.  2016. Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic. Res. 50:1065–70 [Google Scholar]
  169. Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. 169.  2016. Mitochondrial reactive oxygen species and inflammation: molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol. 81:281–93 [Google Scholar]
  170. Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL. 170.  et al. 2016. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7:44879–905 [Google Scholar]
  171. Yan MH, Wang X, Zhu X. 171.  2013. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62:90–101 [Google Scholar]
  172. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA. 172.  et al. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLOS ONE 3:e1487 [Google Scholar]
  173. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. 173.  2006. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 7:1019–22 [Google Scholar]
  174. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E. 174.  et al. 2006. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25:3618–26 [Google Scholar]
  175. Karbowski M, Neutzner A, Youle RJ. 175.  2007. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178:71–84 [Google Scholar]
  176. Narendra D, Tanaka A, Suen DF, Youle RJ. 176.  2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803 [Google Scholar]
  177. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL. 177.  et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906 [Google Scholar]
  178. Escobar-Henriques M, Westermann B, Langer T. 178.  2006. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173:645–50 [Google Scholar]
  179. Cohen MM, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. 179.  2008. Ubiquitin–proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol. Biol. Cell 19:2457–64 [Google Scholar]
  180. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD. 180.  et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–46 [Google Scholar]
  181. Gomes LC, Di Benedetto G, Scorrano L. 181.  2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589–98 [Google Scholar]
  182. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. 182.  2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. PNAS 108:10190–95 [Google Scholar]
  183. Xu S, Cherok E, Das S, Li S, Roelofs BA. 183.  et al. 2016. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27:349–59 [Google Scholar]
  184. Hamacher-Brady A, Brady NR. 184.  2016. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol. Life Sci. 73:775–95 [Google Scholar]
  185. Durcan TM, Fon EA. 185.  2015. The three ‘P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29:989–99 [Google Scholar]
  186. Kazlauskaite A, Muqit MM. 186.  2015. PINK1 and Parkin–mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 282:215–23 [Google Scholar]
  187. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. 187.  2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60:7–20 [Google Scholar]
  188. Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA. 188.  et al. 2016. Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst 3:395–403 [Google Scholar]
  189. Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL. 189.  et al. 2015. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. PNAS 112:6637–42 [Google Scholar]
  190. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K. 190.  et al. 2014. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:143–53 [Google Scholar]
  191. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS. 191.  et al. 2014. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460:127–39 [Google Scholar]
  192. Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP. 192.  et al. 2014. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56:360–75 [Google Scholar]
  193. Yoshii SR, Kishi C, Ishihara N, Mizushima N. 193.  2011. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286:19630–40 [Google Scholar]
  194. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF. 194.  et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367–80 [Google Scholar]
  195. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ. 195.  et al. 2011. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726–37 [Google Scholar]
  196. Ordureau A, Munch C, Harper JW. 196.  2015. Quantifying ubiquitin signaling. Mol. Cell 58:660–76 [Google Scholar]
  197. Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M. 197.  et al. 2015. The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J. Biol. Chem. 290:7492–505 [Google Scholar]
  198. Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y. 198.  et al. 2010. The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLOS Genet. 6:e1001229 [Google Scholar]
  199. Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L. 199.  et al. 2014. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat. Commun. 5:4930 [Google Scholar]
  200. Chen G, Han Z, Feng D, Chen Y, Chen L. 200.  et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54:362–77 [Google Scholar]
  201. Davies KJ. 201.  2001. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–10 [Google Scholar]
  202. Wang X, Yen J, Kaiser P, Huang L. 202.  2010. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 3:ra88 [Google Scholar]
  203. Martindale JL, Holbrook NJ. 203.  2002. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192:1–15 [Google Scholar]
  204. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 204.  2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–60 [Google Scholar]
  205. Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T. 205.  et al. 2006. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell Biol. 26:221–29 [Google Scholar]
  206. Motohashi H, Yamamoto M. 206.  2004. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10:549–57 [Google Scholar]
  207. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A. 207.  et al. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12:213–23 [Google Scholar]
  208. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA. 208.  et al. 2010. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285:22576–91 [Google Scholar]
  209. Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J. 209.  et al. 2013. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51:618–31 [Google Scholar]
  210. Budanov AV, Karin M. 210.  2008. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–60 [Google Scholar]
  211. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. 211.  2004. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600 [Google Scholar]
  212. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK. 212.  et al. 2013. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17:73–84 [Google Scholar]
  213. Scheuner D, Song B, McEwen E, Liu C, Laybutt R. 213.  et al. 2001. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7:1165–76 [Google Scholar]
  214. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD. 214.  et al. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11:619–33 [Google Scholar]
  215. Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M. 215.  et al. 2015. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239–42 [Google Scholar]
  216. Bernales S, McDonald KL, Walter P. 216.  2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol 4:e423 [Google Scholar]
  217. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. 217.  2006. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281:30299–304 [Google Scholar]
  218. Ding WX, Yin XM. 218.  2008. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4:141–50 [Google Scholar]
  219. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. 219.  2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–91 [Google Scholar]
  220. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. 220.  2007. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry. Mol. Cell 27:731–44 [Google Scholar]
  221. Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS. 221.  et al. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4:725–30 [Google Scholar]
  222. Peth A, Besche HC, Goldberg AL. 222.  2009. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36:794–804 [Google Scholar]
  223. Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. 223.  2015. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58:1053–66 [Google Scholar]
  224. Marshall RS, McLoughlin F, Vierstra RD. 224.  2016. Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep 16:1717–32 [Google Scholar]
  225. Waite KA, De La Mota-Peynado A, Vontz G, Roelofs J. 225.  2016. Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J. Biol. Chem. 291:3239–53 [Google Scholar]
/content/journals/10.1146/annurev-biochem-061516-044908
Loading
/content/journals/10.1146/annurev-biochem-061516-044908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error