1932

Abstract

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5′G residue of the 5′GA/TGG loop and of the first 5′A residue of the 5′GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000–4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-070611-095951
2017-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/86/1/annurev-biochem-070611-095951.html?itemId=/content/journals/10.1146/annurev-biochem-070611-095951&mimeType=html&fmt=ahah

Literature Cited

  1. Amosova O, Coulter R, Fresco JR. 1.  2006. Self-catalyzed site-specific depurination of guanine residues within gene sequences. PNAS 103:4392–97 [Google Scholar]
  2. Broitman S, Amosova O, Dolinnaya NG, Fresco JR. 2.  1999. Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair. J. Biol. Chem. 274:21763–68 [Google Scholar]
  3. Lhomme J, Constant JF, Demeunynck M. 3.  1999. Abasic DNA structure, reactivity, and recognition. Biopolymers 52:65–83 [Google Scholar]
  4. Sugiyama H, Fujiwara T, Ura A, Tashiro T, Yamamoto K. 4.  et al. 1994. Chemistry of thermal degradation of abasic sites in DNA. Mechanistic investigation on thermal DNA strand cleavage of alkylated DNA. Chem. Res. Toxicol. 7:673–83 [Google Scholar]
  5. Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA. 5.  1995. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374:381–86 [Google Scholar]
  6. Robson CN, Hickson ID. 6.  1991. Isolation of cDNA clones encoding a human apurinicapyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 19:5519–23 [Google Scholar]
  7. Amosova O, Smith A, Fresco JR. 7.  2011. The consensus sequence for self-catalyzed site-specific G residue depurination in DNA. J. Biol. Chem. 286:36316–21 [Google Scholar]
  8. Fresco JR, Amosova O, Wei P, Alvarez-Dominguez JR, Glumcher D, Torres R. 8.  2011. Site-specific self-catalyzed DNA depurination, the basis of a spontaneous mutagenic mechanism of wide evolutionary significance. Evolutionary Biology—Concepts, Biodiversity, Macroevolution and Genome Evolution P Pontarotti 3–19 Berlin: Springer-Verlag [Google Scholar]
  9. Shabarova Z, Bogdanov A. 9.  1994. Advanced Organic Chemistry of Nucleic Acids New York: VCH
  10. Lindahl T, Karlström O. 10.  1973. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 12:5151–54 [Google Scholar]
  11. An R, Jia Y, Wan B, Zhang Y, Dong P. 11.  et al. 2014. Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLOS ONE 9:e115950 [Google Scholar]
  12. Zoltewicz JA, Clark DF, Sharpless TW, Grahe G. 12.  1970. Kinetics and mechanism of the acid-catalyzed hydrolysis of some purine nucleosides. J. Am. Chem. Soc. 92:1741–49 [Google Scholar]
  13. Stivers JT, Jiang YL. 13.  2003. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103:2729–59 [Google Scholar]
  14. Lindahl T, Nyberg B. 14.  1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–18 [Google Scholar]
  15. Minton AP. 15.  2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276:10577–80 [Google Scholar]
  16. Ellis RJ. 16.  2001. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–19 [Google Scholar]
  17. Dill KA, Bromberg S. 17.  2011. Molecular Driving Forces: Statistical Thermodynamics in Chemistry, Physics, Biology, and Nanoscience London: Garland Science
  18. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. 18.  1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31:147–57 [Google Scholar]
  19. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. 19.  1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–57 [Google Scholar]
  20. Nesbitt S, Hegg LA, Fedor MJ. 20.  1997. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem. Biol. 4:619–30 [Google Scholar]
  21. Kurz JC, Flerke CA. 21.  2000. Ribonuclease P: a ribonucleoprotein. Curr. Opin. Chem. Biol. 4:553–58 [Google Scholar]
  22. Roth A, Breaker RR. 22.  2009. The structural and functional diversity of metabolite-binding riboswitches. Annu. Rev. Biochem. 78:305–34 [Google Scholar]
  23. Serganov A, Patel DJ. 23.  2007. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8:776–90 [Google Scholar]
  24. Serganov A, Patel DJ. 24.  2012. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 22:279–86 [Google Scholar]
  25. Tuerk C, Gold L. 25.  1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10 [Google Scholar]
  26. Ellington AD, Szostak JW. 26.  1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22 [Google Scholar]
  27. Cho EJ, Lee J-W, Ellington AD. 27.  2009. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2:241–64 [Google Scholar]
  28. Phillips JA, Lopez-Colon D, Zhu Z, Xu Y, Tan W. 28.  2008. Applications of aptamers in cancer cell biology. Anal. Chim. Acta 621:101–8 [Google Scholar]
  29. Silverman SK. 29.  2009. Artificial functional nucleic acids: aptamers, ribozymes, and deoxyribozymes identified by in vitro selection. Functional Nucleic Acids for Analytical Applications L Yingfu and L Yi 47–108 New York: Springer [Google Scholar]
  30. Burgstaller P, Famulok M. 30.  1995. Synthetic ribozymes and the first deoxiribozyme. Angew. Chem. Int. Ed. Engl. 34:1189–92 [Google Scholar]
  31. Carmi N, Shultz LA, Breaker RR. 31.  1996. In vitro selection of self-cleaving DNAs. Chem. Biol. 3:1039–46 [Google Scholar]
  32. Breaker RR, Joyce GF. 32.  1994. A DNA enzyme that cleaves RNA. Chem. Biol. 1:223–29 [Google Scholar]
  33. Cuenoud B, Szostak JW. 33.  1995. A DNA metalloenzyme with DNA ligase activity. Nature 375:611–14 [Google Scholar]
  34. Li Y, Breaker RR. 34.  1999. Phosphorylating DNA with DNA. PNAS 96:2746–51 [Google Scholar]
  35. Li YF, Liu Y, Breaker RR. 35.  2000. Capping DNA with DNA. Biochemistry 39:3106–14 [Google Scholar]
  36. Santoro SW, Joyce GF. 36.  1997. A general purpose RNA-cleaving DNA enzyme. PNAS 94:4262–66 [Google Scholar]
  37. Sheppard TL, Ordoukhanian P, Joyce GF. 37.  2000. A DNA enzyme with N-glycosylase activity. PNAS 97:7802–7 [Google Scholar]
  38. Faulhammer D, Famulok M. 38.  1997. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269:188–202 [Google Scholar]
  39. Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR. 39.  2013. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 135:249121–29 [Google Scholar]
  40. Sugimoto N, Okumoto Y, Ohmichi T. 40.  1999. Effect of metal ions and sequence of deoxyribozymes on their RNA cleavage activity. J. Chem. Soc. Perkin Trans. 2:1381–86 [Google Scholar]
  41. Roth A, Breaker RR. 41.  1998. An amino acid as a cofactor for a catalytic polynucleotide. PNAS 95:6027–31 [Google Scholar]
  42. Krokan HE, Bjørås M. 42.  2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5:a012583 [Google Scholar]
  43. Zimmerman SB, Trach SO. 43.  1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:599–620 [Google Scholar]
  44. Alvarez-Dominguez JR, Amosova O, Fresco JR. 44.  2013. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias. J. Biol. Chem. 288:11581–89 [Google Scholar]
  45. Amosova O, Alvarez-Dominguez JR, Fresco JR. 45.  2015. Why the DNA self-depurination mechanism operates in HB-β but not in β-globin paralogs HB-δ, HB-ε1, HB-γ1 and HB-γ2. Mutat. Res. 778:11–17 [Google Scholar]
  46. Alvarez-Dominguez J. 46.  2009. Computational and experimental excursions into the role of self-catalytic DNA depurination in site-specific mutagenesis B.A. thesis Princeton Univ. Princeton, NJ:
  47. Zuniga Penaranda A. 47.  2012. A bioinformatic analysis of the role of self-depurinating stem loops in olfactory receptors B.A. thesis Princeton Univ. Princeton, NJ:
  48. Amukele TK, Schramm VL. 48.  2004. Ricin A-chain substrate specificity in RNA, DNA, and hybrid stem-loop structures. Biochemistry 43:4913–22 [Google Scholar]
  49. Amukele TK, Roday S, Schramm VL. 49.  2005. Ricin A-chain activity on stem-loop and unstructured DNA substrates. Biochemistry 44:4416–25 [Google Scholar]
  50. Chen X-Y, Berti PJ, Schramm VL. 50.  2000. Transition-state analysis for depurination of DNA by ricin A-chain. J. Am. Chem. Soc. 122:6527–34 [Google Scholar]
  51. Haasnoot CA, Hilbers CW, van der Marel GA, van Boom JH, Singh UC. 51.  et al. 1986. On loop folding in nucleic acid hairpin-type structures. J. Biomol. Struct. Dyn. 3:843–57 [Google Scholar]
  52. Varani G. 52.  1995. Exceptionally stable nucleic acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24:379–404 [Google Scholar]
  53. Zhao J, Bacolla A, Wang G, Vasquez KM. 53.  2010. Non-B DNA structure-induced genetic instability and evolution. Cell. Mol. Life Sci. 67:43–62 [Google Scholar]
  54. Wang G, Vasquez KM. 54.  2014. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19:143–51 [Google Scholar]
  55. Wells RD. 55.  2007. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32:271–78 [Google Scholar]
  56. Kurahashi H, Inagaki H, Yamada K, Ohye T, Taniguchi M. 56.  et al. 2004. Cruciform DNA structure underlies the etiology for palindrome-mediated human chromosomal translocations. J. Biol. Chem. 279:35377–83 [Google Scholar]
  57. Inagaki H, Ohye T, Kogo H, Kato T, Bolor H. 57.  et al. 2009. Chromosomal instability mediated by non-B DNA: Cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 19:191–98 [Google Scholar]
  58. Cox R, Mirkin SM. 58.  1997. Characteristic enrichment of DNA repeats in different genomes. PNAS 94:5237–42 [Google Scholar]
  59. Schroth GP, Ho PS. 59.  1995. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res 23:1977–83 [Google Scholar]
  60. Zheng G, Ussery DW, Sinden RR. 60.  1991. Estimation of superhelical density in vivo from analysis of the level of cruciforms existing in living cells. J. Mol. Biol. 221:122–29 [Google Scholar]
  61. Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL. 61.  1998. Structure and dynamics of supercoil-stabilized DNA cruciforms. J. Mol. Biol. 280:61–72 [Google Scholar]
  62. Dai X, Greizerstein MB, Nadas-Chinni K, Rothman-Denes LB. 62.  1997. Supercoil-induced extrusion of a regulatory DNA hairpin. PNAS 94:2174–79 [Google Scholar]
  63. Dai X, Kloster M, Rothman-Denes LB. 63.  1998. Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. J. Mol. Biol. 283:43–58 [Google Scholar]
  64. Havas K, Flaus A, Phelan M, Kingston R, Wade PA. 64.  et al. 2000. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103:1133–42 [Google Scholar]
  65. Ramreddy T, Sachidanandam R, Strick TR. 65.  2011. Real-time detection of cruciform extrusion by single-molecule DNA nanomanipulation. Nucleic Acids Res 39:4275–83 [Google Scholar]
  66. Dayn A, Malkhosyan S, Duzhy D, Lyamichev V, Panchenko Y, Mirkin S. 66.  1991. Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. J. Bacteriol 173:2658–64 [Google Scholar]
  67. Cunningham LA, Coté AG, Cam-Ozdemir C, Lewis SM. 67.  2003. Rapid, stabilizing palindrome rearrangements in somatic cells by the center-break mechanism. Mol. Cell. Biol. 23:8740–50 [Google Scholar]
  68. Pearson CE, Ruiz MT, Price GB, Zannis-Hadjopoulos M. 68.  1994. Cruciform DNA binding protein in HeLa cell extracts. Biochemistry 33:14185–96 [Google Scholar]
  69. Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL. 69.  2000. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J. Mol. Biol. 296:1169–73 [Google Scholar]
  70. Kim EL, Peng H, Esparza FM, Maltchenko SZ, Stachowiak MK. 70.  1998. Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter. Nucleic Acids Res 26:1793–800 [Google Scholar]
  71. Kolb J, Chuzhanova NA, Högel J, Vasquez KM, Cooper DN. 71.  et al. 2009. Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosome Res 17:469–83 [Google Scholar]
  72. Amosova O, Kumar V, Deutsch A, Fresco JR. 72.  2011. Self-catalyzed site-specific depurination of G residues mediated by cruciform extrusion in closed circular DNA plasmids. J. Biol. Chem. 286:36322–30 [Google Scholar]
  73. Croteau DL, Bohr VA. 73.  1997. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272:25409–12 [Google Scholar]
  74. Lindahl T. 74.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  75. DeBont R, van Larebeke N. 75.  2004. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169–85 [Google Scholar]
  76. Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T. 76.  1996. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J 15:6662–70 [Google Scholar]
  77. Srivastava DK, Berg BJ, Prasad R, Molina JT, Beard WA. 77.  et al. 1998. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273:21203–9 [Google Scholar]
  78. Kokoska RJ, McCulloch SD, Kunkel TA. 78.  2003. The efficiency and specificity of apurinic apyrimidinic site bypass by human DNA polymerase II and Sulfolobus solfataricus Dpo4. J. Biol. Chem. 278:50537–45 [Google Scholar]
  79. Fiala KA, Suo ZC. 79.  2007. Sloppy bypass of an abasic lesion catalyzed by a Y-family DNA polymerase. J. Biol. Chem. 282:8199–206 [Google Scholar]
  80. Avkin S, Adar S, Blander G, Livneh Z. 80.  2002. Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase. PNAS 99:3764–69 [Google Scholar]
  81. Kunkel TA. 81.  1984. Mutational specificity of depurination. PNAS 81:1494–98 [Google Scholar]
  82. Simonelli V, Narciso L, Dogliotti E, Fortini P. 82.  2005. Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res 33:4404–11 [Google Scholar]
  83. Atamna H, Cheung I, Ames BN. 83.  2000. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. PNAS 97:686–91 [Google Scholar]
  84. Vesnaver G, Chang CN, Eisenberg M, Grollman AP, Breslauer KJ. 84.  1989. Influence of abasic and anucleosidic sites on the stability, conformation, and melting behavior of a DNA duplex: correlations of thermodynamic and structural data. PNAS 86:3614–18 [Google Scholar]
  85. Li XY, McClure WR. 85.  1998. Stimulation of open complex formation by nicks and apurinic sites suggests a role for nucleation of DNA melting in Escherichia coli promoter function. J. Biol. Chem. 273:23558–66 [Google Scholar]
  86. Ayadi L, Coulombeau C, Lavery R. 86.  2000. The impact of abasic sites on DNA flexibility. J. Biomol. Struct. Dyn. 17:645–53 [Google Scholar]
  87. Tsutakawa SE, Lafrance-Vanasse J, Tainer JA. 87.  2014. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. DNA Repair 19:95–107 [Google Scholar]
  88. Mol CD, Parikh SS, Putnam CD, Lo TP, Tainer JA. 88.  1999. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28:101–28 [Google Scholar]
  89. Wendy P, Osheroff WP, Jung HK, Beard WA, Wilson SH, Kunkel TA. 89.  1999. The fidelity of DNA polymerase β during distributive and processive DNA synthesis. J. Biol. Chem. 274:3642–50 [Google Scholar]
  90. Garcia-Diaz M, Kunkel TA. 90.  2006. Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem. Sci. 31:206–14 [Google Scholar]
  91. Das SK, Talukder G. 91.  2002. β globin gene and related diseases: a review. Int. J. Hum. Genet. 2:139–52 [Google Scholar]
  92. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA. 92.  et al. 2003. Human gene mutation database (HGMD®): 2003 update. Hum. Mutat. 21:577–81 [Google Scholar]
  93. Hardison RC, Chui DHK, Giardine B, Riemer C, Patrinos GP. 93.  et al. 2002. HbVar: a relational database of human hemoglobin variants and thalassemia mutations at the globin gene server. Hum. Mutat. 19:225–33 [Google Scholar]
  94. Opresko PL, Cheng WH, Bohr VA. 94.  2004. Junction of RecQ helicase biochemistry and human disease. J. Biol. Chem. 279:18099–102 [Google Scholar]
  95. Mohaghegh P, Karow JK, Brosh RM Jr., Bohr VA, Hickson ID. 95.  2001. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:132843–49 [Google Scholar]
  96. Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L. 96.  et al. 2004. The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol. Cell 14:763–74 [Google Scholar]
  97. Loeb LA, Preston BD. 97.  1986. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20:201–30 [Google Scholar]
  98. Otterlei M, Kavli B, Standal R, Skjelbred C, Bharati S, Krokan HE. 98.  2000. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways. EMBO J 19:5542–51 [Google Scholar]
  99. Hickson ID. 99.  2003. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3:169–78 [Google Scholar]
  100. Bohr VA. 100.  2005. Deficient DNA repair in the human progeroid disorder, Werner syndrome. Mutat. Res. 577:252–59 [Google Scholar]
  101. Kaneko H, Fukao T, Kondo N. 101.  2004. The function of RecQ helicase gene family (especially BLM) in DNA recombination and joining. Adv. Biophys. 38:45–64 [Google Scholar]
  102. Macris MA, Krejci L, Bussen W, Shimamoto A, Sung P. 102.  2006. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair 5:172–80 [Google Scholar]
  103. Sidorova JM, Monnat RJ Jr.. 103.  2014. Human RECQ helicases: roles in cancer, aging, and inherited disease. Adv. Genom. Genet. 5:19–33 [Google Scholar]
  104. Laine JP, Opresko PL, Indig FE, Harrigan JA, von Kobbe C, Bohr VA. 104.  2003. Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Res 63:7136–46 [Google Scholar]
  105. Szczesny B, Mitra S. 105.  2005. Effect of aging on intracellular distribution of abasic (AP) endonuclease 1 in the mouse liver. Mech. Ageing Dev. 126:1071–78 [Google Scholar]
  106. Shen GP, Galick H, Inoue M, Wallace SS. 106.  2003. Decline of nuclear and mitochondrial oxidative base excision repair activity in late passage human diploid fibroblasts. DNA Repair 2:673–93 [Google Scholar]
  107. Harrigan JA, Wilson DM 3rd, Prasad R, Opresko PL, Beck G. 107.  et al. 2006. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase β.. Nucleic Acids Res 34:745–54 [Google Scholar]
/content/journals/10.1146/annurev-biochem-070611-095951
Loading
/content/journals/10.1146/annurev-biochem-070611-095951
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error