1932

Abstract

Cellulosomes can be described as one of nature's most elaborate and highly efficient nanomachines. These cell bound multienzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on Earth, and thus play a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificity allows the incorporation of cellulases and hemicellulases onto a molecular scaffold. Cellulosome assembly promotes the exploitation of enzyme synergism because of spatial proximity and enzyme-substrate targeting. Recent structural and functional studies have revealed how cohesin-dockerin interactions mediate both cellulosome assembly and cell-surface attachment, while retaining the spatial flexibility required to optimize the catalytic synergy within the enzyme complex. These emerging advances in our knowledge of cellulosome function are reviewed here.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-091208-085603
2010-07-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/79/1/annurev-biochem-091208-085603.html?itemId=/content/journals/10.1146/annurev-biochem-091208-085603&mimeType=html&fmt=ahah

Literature Cited

  1. Brett CT, Waldren K. 1.  1996. Physiology and Biochemistry of Plant Cell Walls: Topics in Plant Functional Biology London: Chapman & Hall, 2nd. ed.
  2. Warren RA. 2.  1996. Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50:183–212 [Google Scholar]
  3. Bayer EA, Belaich JP, Shoham Y, Lamed R. 3.  2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58:521–54 [Google Scholar]
  4. Bayer EA, Chanzy H, Lamed R, Shoham Y. 4.  1998. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8:548–57 [Google Scholar]
  5. Béguin P, Lemaire M. 5.  1996. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31:201–36 [Google Scholar]
  6. Gilbert HJ. 6.  2007. Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol. Microbiol. 63:1568–76 [Google Scholar]
  7. Shoham Y, Lamed R, Bayer EA. 7.  1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7:275–81 [Google Scholar]
  8. Bayer EA, Kenig R, Lamed R. 8.  1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156:818–27 [Google Scholar]
  9. Lamed R, Setter E, Bayer EA. 9.  1983. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156:828–36 [Google Scholar]
  10. Lamed R, Setter E, Kenig R, Bayer EA. 10.  1983. The cellulosome: a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol. Bioeng. Symp. 13:163–81 [Google Scholar]
  11. Kosugi A, Murashima K, Doi RH. 11.  2002. Xylanase and acetyl xylan esterase activities of XynA, a key subunit of the Clostridium cellulovorans cellulosome for xylan degradation. Appl. Environ. Microbiol. 68:6399–402 [Google Scholar]
  12. Morag E, Bayer EA, Lamed R. 12.  1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172:6098–105 [Google Scholar]
  13. Tamaru Y, Doi RH. 13.  2001. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc. Natl. Acad. Sci. USA 98:4125–29 [Google Scholar]
  14. Salamitou S, Raynaud O, Lemaire M, Coughlan M, Béguin P, Aubert JP. 14.  1994. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J. Bacteriol. 176:2822–27 [Google Scholar]
  15. Tokatlidis K, Salamitou S, Béguin P, Dhurjati P, Aubert JP. 15.  1991. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291:185–88 [Google Scholar]
  16. Poole DM, Morag E, Lamed R, Bayer EA, Hazlewood GP, Gilbert HJ. 16.  1992. Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS. FEMS Microbiol. Lett. 78:181–86 [Google Scholar]
  17. Demain AL, Newcomb M, Wu JH. 17.  2005. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69:124–54 [Google Scholar]
  18. Ng TK, Zeikus JG. 18.  1981. Comparison of extracellular cellulase activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Appl. Environ. Microbiol. 42:231–40 [Google Scholar]
  19. Kataeva IA, Yang SJ, Dam P, Poole FL II, Yin Y. 19.  et al. 2009. Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J. Bacteriol. 191:3760–61 [Google Scholar]
  20. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ. 20.  et al. 2009. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl. Environ. Microbiol. 75:4762–69 [Google Scholar]
  21. van de Werken HJ, Verhaart MR, VanFossen AL, Willquist K, Lewis DL. 21.  et al. 2008. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ. Microbiol. 74:6720–29 [Google Scholar]
  22. Zverlov VV, Klupp M, Krauss J, Schwarz WH. 22.  2008. Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J. Bacteriol. 190:4321–27 [Google Scholar]
  23. Lu Y, Zhang YH, Lynd LR. 23.  2006. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 103:16165–69 [Google Scholar]
  24. Boudet AM, Kajita S, Grima-Pettenati J, Goffner D. 24.  2003. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 8:576–81 [Google Scholar]
  25. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J. 25.  et al. 2006. The path forward for biofuels and biomaterials. Science 311:484–89 [Google Scholar]
  26. Miras I, Schaeffer F, Béguin P, Alzari PM. 26.  2002. Mapping by site-directed mutagenesis of the region responsible for cohesin-dockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. Biochemistry 41:2115–19 [Google Scholar]
  27. Schaeffer F, Matuschek M, Guglielmi G, Miras I, Alzari PM, Béguin P. 27.  2002. Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41:2106–14 [Google Scholar]
  28. Grepinet O, Chebrou MC, Béguin P. 28.  1988. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J. Bacteriol. 170:4582–88 [Google Scholar]
  29. Hall J, Hazlewood GP, Barker PJ, Gilbert HJ. 29.  1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69:29–38 [Google Scholar]
  30. Salamitou S, Tokatlidis K, Béguin P, Aubert JP. 30.  1992. Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett. 304:89–92 [Google Scholar]
  31. Pages S, Belaich A, Belaich JP, Morag E, Lamed R. 31.  et al. 1997. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–27 [Google Scholar]
  32. Choi SK, Ljungdahl LG. 32.  1996. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry 35:4906–10 [Google Scholar]
  33. Lytle BL, Volkman BF, Westler WM, Wu JH. 33.  2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys. 379:237–44 [Google Scholar]
  34. Ciruela A, Gilbert HJ, Ali BR, Hazlewood GP. 34.  1998. Synergistic interaction of the cellulosome integrating protein (CipA) from Clostridium thermocellum with a cellulosomal endoglucanase. FEBS Lett. 422:221–24 [Google Scholar]
  35. Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y. 35.  1995. Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett. 360:121–24 [Google Scholar]
  36. Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O. 36.  et al. 2009. The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J. 276:3076–86 [Google Scholar]
  37. Gold ND, Martin VJ. 37.  2007. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J. Bacteriol. 189:6787–95 [Google Scholar]
  38. Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK. 38.  et al. 2009. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271 [Google Scholar]
  39. Peer A, Smith SP, Bayer EA, Lamed R, Borovok I. 39.  2009. Noncellulosomal cohesin- and dockerin-like modules in the three domains of life. FEMS Microbiol. Lett. 291:1–16 [Google Scholar]
  40. Adams JJ, Gregg K, Bayer EA, Boraston AB, Smith SP. 40.  2008. Structural basis of Clostridium perfringens toxin complex formation. Proc. Natl. Acad. Sci. USA 105:12194–99 [Google Scholar]
  41. Fujino T, Béguin P, Aubert JP. 41.  1993. Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. J. Bacteriol. 175:1891–99 [Google Scholar]
  42. Lemaire M, Ohayon H, Gounon P, Fujino T, Béguin P. 42.  1995. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J. Bacteriol. 177:2451–59 [Google Scholar]
  43. Leibovitz E, Béguin P. 43.  1996. A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J. Bacteriol. 178:3077–84 [Google Scholar]
  44. Kosugi A, Amano Y, Murashima K, Doi RH. 44.  2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186:6351–59 [Google Scholar]
  45. Kosugi A, Murashima K, Tamaru Y, Doi RH. 45.  2002. Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184:884–88 [Google Scholar]
  46. Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V. 46.  et al. 2003. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J. Bacteriol. 185:703–13 [Google Scholar]
  47. Rincon MT, Martin JC, Aurilia V, McCrae SI, Rucklidge GJ. 47.  et al. 2004. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J. Bacteriol. 186:2576–85 [Google Scholar]
  48. Felix CR, Ljungdahl LG. 48.  1993. The cellulosome: the exocellular organelle of Clostridium. Annu. Rev. Microbiol. 47:791–819 [Google Scholar]
  49. Xu Q, Bayer EA, Goldman M, Kenig R, Shoham Y, Lamed R. 49.  2004. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J. Bacteriol. 186:968–77 [Google Scholar]
  50. Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R. 50.  2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J. Bacteriol. 182:4915–25 [Google Scholar]
  51. Xu Q, Barak Y, Kenig R, Shoham Y, Bayer EA, Lamed R. 51.  2004. A novel Acetivibrio cellulolyticus anchoring scaffoldin that bears divergent cohesins. J. Bacteriol. 186:5782–89 [Google Scholar]
  52. Xu Q, Gao W, Ding SY, Kenig R, Shoham Y. 52.  et al. 2003. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J. Bacteriol. 185:4548–57 [Google Scholar]
  53. Ding SY, Rincon MT, Lamed R, Martin JC, McCrae SI. 53.  et al. 2001. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J. Bacteriol. 183:1945–53 [Google Scholar]
  54. Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA. 54.  et al. 2006. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J. Bacteriol. 188:7971–76 [Google Scholar]
  55. Jindou S, Brulc JM, Levy-Assaraf M, Rincon MT, Flint HJ. 55.  et al. 2008. Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol. Lett. 285:188–94 [Google Scholar]
  56. Rincon MT, Cepeljnik T, Martin JC, Lamed R, Barak Y. 56.  et al. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol. 187:7569–78 [Google Scholar]
  57. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 57.  2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233–38 [Google Scholar]
  58. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 58.  2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:769–81 [Google Scholar]
  59. Sakon J, Irwin D, Wilson DB, Karplus PA. 59.  1997. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol. 4:810–18 [Google Scholar]
  60. Burstein T, Shulman M, Jindou S, Petkun S, Frolow F. 60.  et al. 2009. Physical association of the catalytic and helper modules of a family-9 glycoside hydrolase is essential for activity. FEBS Lett. 583:879–84 [Google Scholar]
  61. Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB. 61.  et al. 2006. Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J. Biol. Chem. 281:29321–29 [Google Scholar]
  62. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA. 62.  et al. 1996. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J. 15:5739–51 [Google Scholar]
  63. Charnock SJ, Bolam DN, Nurizzo D, Szabo L, McKie VA. 63.  et al. 2002. Promiscuity in ligand-binding: the three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose. Proc. Natl. Acad. Sci. USA 99:14077–82 [Google Scholar]
  64. Rincon MT, Cepeljnik T, Martin JC, Barak Y, Lamed R. 64.  et al. 2007. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens. J. Bacteriol. 189:4774–83 [Google Scholar]
  65. Xu Q, Morrison M, Nelson KE, Bayer EA, Atamna N, Lamed R. 65.  2004. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett. 566:11–16 [Google Scholar]
  66. Ezer A, Matalon E, Jindou S, Borovok I, Atamna N. 66.  et al. 2008. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J. Bacteriol. 190:8220–22 [Google Scholar]
  67. Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R. 67.  et al. 2001. Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J. Biol. Chem. 276:9883–88 [Google Scholar]
  68. Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y. 68.  et al. 2008. Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–79 [Google Scholar]
  69. Jindou S, Soda A, Karita S, Kajino T, Béguin P. 69.  et al. 2004. Cohesin-dockerin interactions within and between Clostridium josui and Clostridium thermocellum: binding selectivity between cognate dockerin and cohesin domains and species specificity. J. Biol. Chem. 279:9867–74 [Google Scholar]
  70. Ljungdahl LG. 70.  2008. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N.Y. Acad. Sci. 1125:308–21 [Google Scholar]
  71. Ali BR, Zhou L, Graves FM, Freedman RB, Black GW. 71.  et al. 1995. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett. 125:15–21 [Google Scholar]
  72. Wood CA, Wood TM. 72.  1992. Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme Microb. Technol. 14:258–64 [Google Scholar]
  73. Black GW, Hazlewood GP, Xue GP, Orpin CG, Gilbert HJ. 73.  1994. Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem. J. 299:381–87 [Google Scholar]
  74. Millward-Sadler SJ, Hall J, Black GW, Hazlewood GP, Gilbert HJ. 74.  1996. Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol. Lett. 141:183–88 [Google Scholar]
  75. Zhou L, Xue GP, Orpin CG, Black GW, Gilbert HJ, Hazlewood GP. 75.  1994. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem. J. 297:359–64 [Google Scholar]
  76. Fanutti C, Ponyi T, Black GW, Hazlewood GP, Gilbert HJ. 76.  1995. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 270:29314–22 [Google Scholar]
  77. Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP. 77.  2007. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J. Mol. Biol. 373:612–22 [Google Scholar]
  78. Raghothama S, Eberhardt RY, Simpson P, Wigelsworth D, White P. 78.  et al. 2001. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat. Struct. Biol. 8:775–78 [Google Scholar]
  79. Raghothama S, Simpson PJ, Szabo L, Nagy T, Gilbert HJ, Williamson MP. 79.  2000. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry 39:978–84 [Google Scholar]
  80. Davies G, Henrissat B. 80.  1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853–59 [Google Scholar]
  81. Tomme P, Warren RA, Gilkes NR. 81.  1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microbiol. Physiol. 37:1–81 [Google Scholar]
  82. Wood TM. 82.  1992. Fungal cellulases. Biochem. Soc. Trans. 20:46–53 [Google Scholar]
  83. Armand S, Drouillard S, Schulein M, Henrissat B, Driguez H. 83.  1997. A bifunctionalized fluorogenic tetrasaccharide as a substrate to study cellulases. J. Biol. Chem. 272:2709–13 [Google Scholar]
  84. Boisset C, Fraschini C, Schulein M, Henrissat B, Chanzy H. 84.  2000. Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66:1444–52 [Google Scholar]
  85. Varrot A, Schulein M, Davies GJ. 85.  1999. Structural changes of the active site tunnel of Humicola insolens cellobiohydrolase, Cel6A, upon oligosaccharide binding. Biochemistry 38:8884–91 [Google Scholar]
  86. Wood TM, McCrae SI. 86.  1986. The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem. J. 234:93–99 [Google Scholar]
  87. Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A. 87.  et al. 2002. Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277:49621–30 [Google Scholar]
  88. Guimaräes BG, Souchon H, Lytle BL, David Wu JH, Alzari PM. 88.  2002. The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum cellulosome. J. Mol. Biol. 320:587–96 [Google Scholar]
  89. Parsiegla G, Juy M, Reverbel-Leroy C, Tardif C, Belaich JP. 89.  et al. 1998. The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. EMBO J. 17:5551–62 [Google Scholar]
  90. Parsiegla G, Reverbel C, Tardif C, Driguez H, Haser R. 90.  2008. Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. J. Mol. Biol. 375:499–510 [Google Scholar]
  91. Guérin DMA, Lascombe M-B, Costabel M, Souchon H, Lamzin V. 91.  et al. 2002. Atomic (0.94 Å) resolution structure of an inverting glycosidase in complex with substrate. J. Mol. Biol. 316:1061–69 [Google Scholar]
  92. Zverlov VV, Schantz N, Schwarz WH. 92.  2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249:353–58 [Google Scholar]
  93. Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R. 93.  et al. 2001. Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276:21257–61 [Google Scholar]
  94. Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT. 94.  et al. 2005. Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J. Biol. Chem. 280:16325–34 [Google Scholar]
  95. Devillard E, Goodheart DB, Karnati SK, Bayer EA, Lamed R. 95.  et al. 2004. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol. 186:136–45 [Google Scholar]
  96. Xu Q, Morrison M, Nelson KE, Bayer EA, Atamna N, Lamed R. 96.  2004. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett. 566:11–16 [Google Scholar]
  97. Charnock SJ, Bolam DN, Turkenburg JP, Gilbert HJ, Ferreira LM. 97.  et al. 2000. The X6 “thermostabilizing” domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39:5013–21 [Google Scholar]
  98. Carvalho AL, Goyal A, Prates JA, Bolam DN, Gilbert HJ. 98.  et al. 2004. The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J. Biol. Chem. 279:34785–93 [Google Scholar]
  99. Najmudin S, Guerreiro CI, Carvalho AL, Prates JA, Correia MA. 99.  et al. 2006. Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. J. Biol. Chem. 281:8815–28 [Google Scholar]
  100. Montanier C, van Bueren AL, Dumon C, Flint JE, Correia MA. 100.  et al. 2009. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc. Natl. Acad. Sci. USA 106:3065–70 [Google Scholar]
  101. Durrant AJ, Hall J, Hazlewood GP, Gilbert HJ. 101.  1991. The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochem. J. 273:289–93 [Google Scholar]
  102. Montanier C, Money VA, Pires VM, Flint JE, Pinheiro BA. 102.  et al. 2009. The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. PLoS Biol. 7:e71 [Google Scholar]
  103. Gilad R, Rabinovich L, Yaron S, Bayer EA, Lamed R. 103.  et al. 2003. CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol. 185:391–98 [Google Scholar]
  104. Lytle BL, Volkman BF, Westler WM, Heckman MP, Wu JH. 104.  2001. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. J. Mol. Biol. 307:745–53 [Google Scholar]
  105. Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ. 105.  et al. 2003. Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 100:13809–14 [Google Scholar]
  106. Carvalho AL, Dias FM, Nagy T, Prates JA, Proctor MR. 106.  et al. 2007. Evidence for a dual binding mode of dockerin modules to cohesins. Proc. Natl. Acad. Sci. USA 104:3089–94 [Google Scholar]
  107. Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JA, Money VA. 107.  et al. 2008. The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J. Biol. Chem. 283:18422–30 [Google Scholar]
  108. Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Brechot V. 108.  2004. Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J. Biol. Chem. 279:55985–94 [Google Scholar]
  109. Adams JJ, Pal G, Jia Z, Smith SP. 109.  2006. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 103:305–10 [Google Scholar]
  110. Caspi J, Irwin D, Lamed R, Li Y, Fierobe HP. 110.  et al. 2008. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J. Biotechnol. 135:351–57 [Google Scholar]
  111. Mingardon F, Chanal A, Lopez-Contreras AM, Dray C, Bayer EA, Fierobe HP. 111.  2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol. 73:3822–32 [Google Scholar]
  112. Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. 112.  2005. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71:1215–22 [Google Scholar]
  113. Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F. 113.  et al. 2004. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol. 186:253–57 [Google Scholar]
  114. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. 114.  2007. The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70:452–64 [Google Scholar]
  115. Heap JT, Pennington OJ, Cartman ST, Minton NP. 115.  2009. A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78:79–85 [Google Scholar]
  116. Heyman A, Barak Y, Caspi J, Wilson DB, Altman A. 116.  et al. 2007. Multiple display of catalytic modules on a protein scaffold: nano-fabrication of enzyme particles. J. Biotechnol. 131:433–39 [Google Scholar]
/content/journals/10.1146/annurev-biochem-091208-085603
Loading
/content/journals/10.1146/annurev-biochem-091208-085603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error