1932

Abstract

Advancements in coherent Raman scattering (CRS) microscopy have enabled label-free visualization and analysis of functional, endogenous biomolecules in living systems. When compared with spontaneous Raman microscopy, a key advantage of CRS microscopy is the dramatic improvement in imaging speed, which gives rise to real-time vibrational imaging of live biological samples. Using molecular vibrational signatures, recently developed hyperspectral CRS microscopy has improved the readout of chemical information available from CRS images. In this article, we review recent achievements in CRS microscopy, focusing on the theory of the CRS signal-to-noise ratio, imaging speed, technical developments, and applications of CRS imaging in bioscience and clinical settings. In addition, we present possible future directions that the use of this technology may take.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040554
2015-12-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040554.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040554&mimeType=html&fmt=ahah

Literature Cited

  1. Raman CV, Krishnan KS. 1.  1928. A new type of secondary radiation. Nature 121:501–2 [Google Scholar]
  2. Hendra PJ, Stratton PM. 2.  1969. Laser-Raman spectroscopy. Chem. Rev. 69:325–44 [Google Scholar]
  3. Delhaye M, Dhamelincourt P. 3.  1975. Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3:33–43 [Google Scholar]
  4. Abraham J, Etz E. 4.  1979. Molecular microanalysis of pathological specimens in situ with a laser-Raman microprobe. Science 206:716–18 [Google Scholar]
  5. Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M. 5.  et al. 2013. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8:677–92 [Google Scholar]
  6. Yamakoshi H, Dodo K, Okada M, Ando J, Palonpon A. 6.  et al. 2011. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 133:6102–5 [Google Scholar]
  7. Cheng J-X, Xie XS. 7.  2012. Coherent Raman Scattering Microscopy London: CRC
  8. Boyd RW. 8.  2003. Nonlinear Optics Burlington, MA: Academic, 2nd ed..
  9. Cheng J-X, Xie XS. 9.  2003. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108:827–40 [Google Scholar]
  10. Terhune RW, Maker PD, Savage CM. 10.  1965. Measurements of nonlinear light scattering. Phys. Rev. Lett. 14:681–84 [Google Scholar]
  11. Régnier PR, Taran JPE. 11.  1973. On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering. Appl. Phys. Lett. 23:240–42 [Google Scholar]
  12. Gord JR, Meyer TR, Roy S. 12.  2008. Applications of ultrafast lasers for optical measurements in combusting flows. Annu. Rev. Anal. Chem. 1:663–87 [Google Scholar]
  13. Duncan MD, Reintjes J, Manuccia TJ. 13.  1982. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7:350–52 [Google Scholar]
  14. Zumbusch A, Holtom GR, Xie XS. 14.  1999. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82:4142–45 [Google Scholar]
  15. Cheng J-X, Book LD, Xie XS. 15.  2001. Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 26:1341–43 [Google Scholar]
  16. Cheng J-X, Jia YK, Zheng G, Xie XS. 16.  2002. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys. J. 83:502–9 [Google Scholar]
  17. Volkmer A, Cheng J-X, Sunney Xie X. 17.  2001. Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett. 87:023901 [Google Scholar]
  18. Evans CL, Potma EO, Puoris'haag M, Côté D, Lin CP, Xie XS. 18.  2005. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. PNAS 102:16807–12 [Google Scholar]
  19. Cheng J-X, Volkmer A, Xie XS. 19.  2002. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 19:1363–75 [Google Scholar]
  20. Cheng J-X, Volkmer A, Book LD, Xie XS. 20.  2002. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles. J. Phys. Chem. B 106:8493–98 [Google Scholar]
  21. Müller M, Schins JM. 21.  2002. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J. Phys. Chem. B 106:3715–23 [Google Scholar]
  22. Rinia HA, Bonn M, Müller M. 22.  2006. Quantitative multiplex CARS spectroscopy in congested spectral regions. J. Phys. Chem. B 110:4472–79 [Google Scholar]
  23. Kee TW, Zhao H, Cicerone MT. 23.  2006. One-laser interferometric broadband coherent anti-Stokes Raman scattering. Opt. Express 14:3631–40 [Google Scholar]
  24. Nan X, Cheng J-X, Xie XS. 24.  2003. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44:2202–8 [Google Scholar]
  25. Rinia HA, Burger KNJ, Bonn M, Müller M. 25.  2008. Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys. J. 95:4908–14 [Google Scholar]
  26. Wang H, Fu Y, Zickmund P, Shi R, Cheng J-X. 26.  2005. Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys. J. 89:581–91 [Google Scholar]
  27. Bélanger E, Henry FP, Vallée R, Randolph MA, Kochevar IE. 27.  et al. 2011. In vivo evaluation of demyelination and remyelination in a nerve crush injury model. Biomed. Opt. Express 2:2698–708 [Google Scholar]
  28. Shi Y, Zhang D, Huff TB, Wang X, Shi R. 28.  et al. 2011. Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord. J. Biomed. Opt. 16:1060121 [Google Scholar]
  29. Cheng J-X. 29.  2007. Coherent anti-Stokes Raman scattering microscopy. Appl. Spectrosc. 61:197–208 [Google Scholar]
  30. Müller M, Zumbusch A. 30.  2007. Coherent anti-Stokes Raman scattering microscopy. ChemPhysChem 8:2156–70 [Google Scholar]
  31. Evans CL, Xie XS. 31.  2008. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1:883–909 [Google Scholar]
  32. Zumbusch A, Langbein W, Borri P. 32.  2013. Nonlinear vibrational microscopy applied to lipid biology. Prog. Lipid Res. 52:615–32 [Google Scholar]
  33. Parekh SH, Lee YJ, Aamer KA, Cicerone MT. 33.  2010. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys. J. 99:2695–704 [Google Scholar]
  34. Camp CH Jr, Lee YJ, Heddleston JM, Hartshorn CM, Hight Walker AR. 34.  et al. 2014. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 8:627–34 [Google Scholar]
  35. Di Napoli C, Pope I, Masia F, Watson P, Langbein W, Borri P. 35.  2014. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes. Biomed. Opt. Express 5:1378–90 [Google Scholar]
  36. Pegoraro AF, Slepkov AD, Ridsdale A, Moffatt DJ, Stolow A. 36.  2014. Hyperspectral multimodal CARS microscopy in the fingerprint region. J. Biophotonics 7:49–58 [Google Scholar]
  37. Woodbury EJ, Ng WK. 37.  1962. Ruby operation in the near IR. Proc. Inst. Radio Eng. 50:2367 [Google Scholar]
  38. Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P. 38.  2007. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87:389–93 [Google Scholar]
  39. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR. 39.  et al. 2008. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–61 [Google Scholar]
  40. Ozeki Y, Dake F, Kajiyama Si, Fukui K, Itoh K. 40.  2009. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17:3651–58 [Google Scholar]
  41. Nandakumar P, Kovalev A, Volkmer A. 41.  2009. Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys. 11:033026 [Google Scholar]
  42. Zhang D, Slipchenko MN, Cheng J-X. 42.  2011. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J. Phys. Chem. Lett. 2:1248–53 [Google Scholar]
  43. Andresen ER, Berto P, Rigneault H. 43.  2011. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt. Lett. 36:2387–89 [Google Scholar]
  44. Beier HT, Noojin GD, Rockwell BA. 44.  2011. Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications. Opt. Express 19:18885–92 [Google Scholar]
  45. Ozeki Y, Umemura W, Sumimura K, Nishizawa N, Fukui K, Itoh K. 45.  2012. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses. Opt. Lett. 37:431–33 [Google Scholar]
  46. Suhalim JL, Chung C-Y, Lilledahl MB, Lim RS, Levi M. 46.  et al. 2012. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. Biophys. J. 102:1988–95 [Google Scholar]
  47. Fu D, Holtom G, Freudiger C, Zhang X, Xie XS. 47.  2012. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117:4634–40 [Google Scholar]
  48. Zhang D, Wang P, Slipchenko MN, Ben-Amotz D, Weiner AM, Cheng J-X. 48.  2012. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 85:98–106 [Google Scholar]
  49. Zhang D, Wang P, Slipchenko MN, Cheng J-X. 49.  2014. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Acc. Chem. Res. 47:2282–90 [Google Scholar]
  50. Min W, Freudiger CW, Lu S, Xie XS. 50.  2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30 [Google Scholar]
  51. Beenakker C, Büttiker M. 51.  1992. Suppression of shot noise in metallic diffusive conductors. Phys. Rev. B 46:1889 [Google Scholar]
  52. Nyquist H. 52.  1928. Thermal agitation of electric charge in conductors. Phys. Rev. 32:110–13 [Google Scholar]
  53. Kato Y, Takuma H. 53.  1971. Absolute measurement of Raman-scattering cross sections of liquids. J. Opt. Soc. Am. 61:347–50 [Google Scholar]
  54. Chung C-Y, Boik J, Potma EO. 54.  2013. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64:77–99 [Google Scholar]
  55. Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS. 55.  2010. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330:1368–70 [Google Scholar]
  56. Dudovich N, Oron D, Silberberg Y. 56.  2002. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–14 [Google Scholar]
  57. Bremer MT, Dantus M. 57.  2013. Standoff explosives trace detection and imaging by selective stimulated Raman scattering. Appl. Phys. Lett. 103:061119 [Google Scholar]
  58. Heinrich C, Bernet S, Ritsch-Marte M. 58.  2004. Wide-field coherent anti-Stokes Raman scattering microscopy. Appl. Phys. Lett. 84:816–18 [Google Scholar]
  59. Cheng J-X, Volkmer A, Book LD, Xie XS. 59.  2001. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B 105:1277–80 [Google Scholar]
  60. Ganikhanov F, Carrasco S, Sunney Xie X, Katz M, Seitz W, Kopf D. 60.  2006. Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31:1292–94 [Google Scholar]
  61. Bonn M, Müller M, Rinia HA, Burger KNJ. 61.  2009. Imaging of chemical and physical state of individual cellular lipid droplets using multiplex CARS microscopy. J. Raman Spectrosc. 40:763–69 [Google Scholar]
  62. Bégin S, Burgoyne B, Mercier V, Villeneuve A, Vallée R, Côté D. 62.  2011. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system. Biomed. Opt. Express 2:1296–306 [Google Scholar]
  63. Garbacik ET, Herek JL, Otto C, Offerhaus HL. 63.  2012. Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging. J. Raman Spectrosc. 43:651–55 [Google Scholar]
  64. Hellerer T, Enejder AMK, Zumbusch A. 64.  2004. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 85:25–27 [Google Scholar]
  65. Rocha-Mendoza I, Langbein W, Borri P. 65.  2008. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion. Appl. Phys. Lett. 93:201103 [Google Scholar]
  66. Langbein W, Rocha-Mendoza I, Borri P. 66.  2009. Coherent anti-Stokes Raman micro-spectroscopy using spectral focusing: theory and experiment. J. Raman Spectrosc. 40:800–8 [Google Scholar]
  67. Pegoraro AF, Ridsdale A, Moffatt DJ, Jia Y, Pezacki JP, Stolow A. 67.  2009. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt. Express 17:2984–96 [Google Scholar]
  68. Chen B-C, Sung J, Wu X, Lim S-H. 68.  2011. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering. J. Biomed. Opt. 16:021112 [Google Scholar]
  69. Masia F, Glen A, Stephens P, Borri P, Langbein W. 69.  2013. Quantitative chemical imaging and unsupervised analysis using hyperspectral coherent anti-Stokes Raman scattering microscopy. Anal. Chem. 85:10820–28 [Google Scholar]
  70. Volkmer A, Book LD, Xie XS. 70.  2002. Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay. Appl. Phys. Lett. 80:1505–7 [Google Scholar]
  71. Ogilvie JP, Beaurepaire E, Alexandrou A, Joffre M. 71.  2006. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31:480–82 [Google Scholar]
  72. Vartiainen EM, Rinia HA, Müller M, Bonn M. 72.  2006. Direct extraction of Raman line-shapes from congested CARS spectra. Opt. Express 14:3622–30 [Google Scholar]
  73. Liu Y, Lee YJ, Cicerone MT. 73.  2009. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt. Lett. 34:1363–65 [Google Scholar]
  74. Marks DL, Boppart SA. 74.  2004. Nonlinear interferometric vibrational imaging. Phys. Rev. Lett. 92:123905 [Google Scholar]
  75. Slipchenko MN, Oglesbee RA, Zhang D, Wu W, Cheng J-X. 75.  2012. Heterodyne detected nonlinear optical imaging in a lock-in free manner. J. Biophotonics 5:801–7 [Google Scholar]
  76. Wang K, Zhang D, Charan K, Slipchenko MN, Wang P. 76.  et al. 2013. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. J. Biophotonics 6:815–20 [Google Scholar]
  77. Wang P, Li J, Wang P, Hu CR, Zhang D. 77.  et al. 2013. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 52:13042–46 [Google Scholar]
  78. Fu D, Zhou J, Zhu WS, Manley PW, Wang YK. 78.  et al. 2014. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 6:614–22 [Google Scholar]
  79. Fu D, Lu F-K, Zhang X, Freudiger C, Pernik DR. 79.  et al. 2012. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134:3623–26 [Google Scholar]
  80. Marx B, Czerwinski L, Light R, Somekh M, Gilch P. 80.  2014. Multichannel detectors for femtosecond stimulated Raman microscopy—ideal and real ones. J. Raman Spectrosc. 45:521–27 [Google Scholar]
  81. Rock W, Bonn M, Parekh SH. 81.  2013. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array. Opt. Express 21:15113–20 [Google Scholar]
  82. Seto K, Okuda Y, Tokunaga E, Kobayashi T. 82.  2013. Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection. Rev. Sci. Instrum. 84:083705 [Google Scholar]
  83. Liao C-S, Slipchenko MN, Wang P, Li J, Lee S-Y. 83.  et al. 2015. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci. Appl. 4:e265 [Google Scholar]
  84. Le TT, Yue S, Cheng J-X. 84.  2010. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 51:3091–102 [Google Scholar]
  85. Yue S, Slipchenko MN, Cheng J-X. 85.  2011. Multimodal nonlinear optical microscopy. Laser Photonics Rev. 5:496–512 [Google Scholar]
  86. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R. 86.  2011. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7:137–45 [Google Scholar]
  87. Suhalim JL, Boik JC, Tromberg BJ, Potma EO. 87.  2012. The need for speed. J. Biophotonics 5:387–95 [Google Scholar]
  88. Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F. 88.  et al. 2012. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J. Biol. Chem. 287:11164–73 [Google Scholar]
  89. Fussell A, Garbacik E, Offerhaus H, Kleinebudde P, Strachan C. 89.  2013. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy. Eur. J. Pharm. Biopharm. 85:1141–47 [Google Scholar]
  90. Le TT, Huff TB, Cheng J-X. 90.  2009. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9:42 [Google Scholar]
  91. Mitra R, Chao O, Urasaki Y, Goodman OB, Le TT. 91.  2012. Detection of lipid-rich prostate circulating tumour cells with coherent anti-Stokes Raman scattering microscopy. BMC Cancer 12:540 [Google Scholar]
  92. Okuno M, Kano H, Fujii K, Bito K, Naito S. 92.  et al. 2014. Surfactant uptake dynamics in mammalian cells elucidated with quantitative coherent anti-Stokes Raman scattering microspectroscopy. PLOS ONE 9e93401
  93. Hellerer T, Axäng C, Brackmann C, Hillertz P, Pilon M, Enejder A. 93.  2007. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. PNAS 104:14658–63 [Google Scholar]
  94. Yen K, Le TT, Bansal A, Narasimhan SD, Cheng J-X, Tissenbaum HA. 94.  2010. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLOS ONE 5:e12810 [Google Scholar]
  95. Le TT, Duren HM, Slipchenko MN, Hu C-D, Cheng J-X. 95.  2010. Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. J. Lipid Res. 51:672–77 [Google Scholar]
  96. Fu Y, Wang H, Huff TB, Shi R, Cheng J-X. 96.  2007. Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in Lyso-PtdCho-induced demyelination. J. Neurosci. Res. 85:2870–81 [Google Scholar]
  97. Shi Y, Kim S, Huff TB, Borgens RB, Park K. 97.  et al. 2010. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat. Nanotechnol. 5:80–87 [Google Scholar]
  98. Huff TB, Cheng J-X. 98.  2007. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue. J. Microsc. 225:175–82 [Google Scholar]
  99. Jung Y, Ng JH, Keating CP, Senthil-Kumar P, Zhao J. 99.  et al. 2014. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLOS ONE 9:e94054 [Google Scholar]
  100. Lim RS, Suhalim JL, Miyazaki-Anzai S, Miyazaki M, Levi M. 100.  et al. 2011. Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J. Lipid Res. 52:2177–86 [Google Scholar]
  101. Meyer T, Chemnitz M, Baumgartl M, Gottschall T, Pascher TR. 101.  et al. 2013. Expanding multimodal microscopy by high spectral resolution coherent anti-Stokes Raman scattering imaging for clinical disease diagnostics. Anal. Chem. 85:6703–15 [Google Scholar]
  102. Breunig HG, Weinigel M, Bückle R, Kellner-Höfer M, Lademann J. 102.  et al. 2013. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber. Laser Phys. Lett. 10:025604 [Google Scholar]
  103. Galli R, Uckermann O, Koch E, Schackert G, Kirsch M, Steiner G. 103.  2014. Effects of tissue fixation on coherent anti-Stokes Raman scattering images of brain. J. Biomed. Opt. 19:071402 [Google Scholar]
  104. Cheng J-X, Pautot S, Weitz DA, Xie XS. 104.  2003. Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. PNAS 100:9826–30 [Google Scholar]
  105. Zimmerley M, Younger R, Valenton T, Oertel DC, Ward JL, Potma EO. 105.  2010. Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study. J. Phys. Chem. B 114:10200–8 [Google Scholar]
  106. Kennedy AP, Sutcliffe J, Cheng J-X. 106.  2005. Molecular composition and orientation in myelin figures characterized by coherent anti-Stokes Raman scattering microscopy. Langmuir 21:6478–86 [Google Scholar]
  107. de Vito G, Bifone A, Piazza V. 107.  2012. Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity. Opt. Express 20:29369–77 [Google Scholar]
  108. Dou W, Zhang D, Jung Y, Cheng J-X, Umulis DM. 108.  2012. Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys. J. 102:1666–75 [Google Scholar]
  109. Wang MC, Min W, Freudiger CW, Ruvkun G, Xie XS. 109.  2011. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8:135–38 [Google Scholar]
  110. Zhang X, Roeffaers MBJ, Basu S, Daniele JR, Fu D. 110.  et al. 2012. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. ChemPhysChem 13:1054–59 [Google Scholar]
  111. Saar BG, Zeng Y, Freudiger CW, Liu Y-S, Himmel ME. 111.  et al. 2010. Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 49:5476–79 [Google Scholar]
  112. Wei L, Yu Y, Shen Y, Wang MC, Min W. 112.  2013. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. PNAS 110:11226–31 [Google Scholar]
  113. Wei L, Hu F, Shen Y, Chen Z, Yu Y. 113.  et al. 2014. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11:410–12 [Google Scholar]
  114. Hong S, Chen T, Zhu Y, Li A, Huang Y, Chen X. 114.  2014. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew. Chem. Int. Ed. 126:5937–41 [Google Scholar]
  115. Shen Y, Xu F, Wei L, Hu F, Min W. 115.  2014. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew. Chem. Int. Ed. 53:5596–99 [Google Scholar]
  116. Hu F, Wei L, Zheng C, Shen Y, Min W. 116.  2014. Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling. Analyst 139:2312–17 [Google Scholar]
  117. Wei L, Shen Y, Xu F, Hu F, Harrington JK. 117.  et al. 2015. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10:901–8 [Google Scholar]
  118. Chen Z, Paley DW, Wei L, Weisman AL, Friesner RA. 118.  et al. 2014. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J. Am. Chem. Soc. 136:8027–33 [Google Scholar]
  119. Lee HJ, Zhang W, Zhang D, Yang Y, Liu B. 119.  et al. 2015. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-diyne cholesterol. Sci. Rep. 5:7930 [Google Scholar]
  120. Hu C-R, Zhang D, Slipchenko MN, Cheng J-X, Hu B. 120.  2014. Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. J. Biomed. Opt. 19:086005 [Google Scholar]
  121. Wang P, Liu B, Zhang D, Belew MY, Tissenbaum HA, Cheng J-X. 121.  2014. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew. Chem. Int. Ed. 53:11787–92 [Google Scholar]
  122. Yue S, Li J, Lee S-Y, Lee HJ, Shao T. 122.  et al. 2014. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19:393–406 [Google Scholar]
  123. Ji M, Orringer DA, Freudiger CW, Ramkissoon S, Liu X. 123.  et al. 2013. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5:201ra119 [Google Scholar]
  124. Freudiger CW, Pfannl R, Orringer DA, Saar BG, Ji M. 124.  et al. 2012. Multicolored stain-free histopathology with coherent Raman imaging. Lab. Investig. 92:1492–502 [Google Scholar]
  125. Huff TB, Shi Y, Fu Y, Wang H, Cheng J-X. 125.  2008. Multimodal nonlinear optical microscopy and applications to central nervous system imaging. IEEE J. Sel. Top. Quantum Electron. 14:4–9 [Google Scholar]
  126. Chen H, Wang H, Slipchenko MN, Jung Y, Shi Y. 126.  et al. 2009. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt. Express 17:1282–90 [Google Scholar]
  127. Zhai Y-H, Goulart C, Sharping JE, Wei H, Chen S. 127.  et al. 2011. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Appl. Phys. Lett. 98:191106 [Google Scholar]
  128. Meyer T, Baumgartl M, Gottschall T, Pascher T, Wuttig A. 128.  et al. 2013. A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst 138:4048–57 [Google Scholar]
  129. Le TT, Rehrer CW, Huff TB, Nichols MB, Camarillo IG, Cheng J-X. 129.  2007. Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma. Mol. Imaging 6:205 [Google Scholar]
  130. Wang H-W, Langohr IM, Sturek M, Cheng J-X. 130.  2009. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscler. Thromb. Vasc. Biol. 29:1342–48 [Google Scholar]
  131. Mansfield J, Yu J, Attenburrow D, Moger J, Tirlapur U. 131.  et al. 2009. The elastin network: its relationship with collagen and cells in articular cartilage as visualized by multiphoton microscopy. J. Anat. 215:682–91 [Google Scholar]
  132. Vogler N, Medyukhina A, Latka I, Kemper S, Böhm M. 132.  et al. 2011. Towards multimodal nonlinear optical tomography—experimental methodology. Laser Phys. Lett. 8:617–24 [Google Scholar]
  133. Mouras R, Bagnaninchi PO, Downes AR, Elfick AP. 133.  2012. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy. J. Biomed. Opt. 17:116011 [Google Scholar]
  134. Mortati L, Divieto C, Sassi MP. 134.  2012. CARS and SHG microscopy to follow collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin hydrogel 3D cultures. J. Raman Spectrosc. 43:675–80 [Google Scholar]
  135. Segawa H, Okuno M, Kano H, Leproux P, Couderc V, Hamaguchi H-O. 135.  2012. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation). Opt. Express 20:9551–57 [Google Scholar]
  136. Garrett NL, Lalatsa A, Uchegbu I, Schätzlein A, Moger J. 136.  2012. Exploring uptake mechanisms of oral nanomedicines using multimodal nonlinear optical microscopy. J. Biophotonics 5:458–68 [Google Scholar]
  137. Hoover EE, Squier JA. 137.  2013. Advances in multiphoton microscopy technology. Nat. Photonics 7:93–101 [Google Scholar]
  138. Jung Y, Slipchenko MN, Liu CH, Ribbe AE, Zhong Z. 138.  et al. 2010. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. Phys. Rev. Lett. 105:217401 [Google Scholar]
  139. Tong L, Liu Y, Dolash BD, Jung Y, Slipchenko MN. 139.  et al. 2012. Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. Nat. Nanotechnol. 7:56–61 [Google Scholar]
  140. Wang H, Huff TB, Zweifel DA, He W, Low PS. 140.  et al. 2005. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. PNAS 102:15752–56 [Google Scholar]
  141. Tong L, Cobley CM, Chen J, Xia Y, Cheng J-X. 141.  2010. Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. Angew. Chem. Int. Ed. 49:3485–88 [Google Scholar]
  142. Kim H, Sheps T, Collins PG, Potma EO. 142.  2009. Nonlinear optical imaging of individual carbon nanotubes with four-wave-mixing microscopy. Nano Lett. 9:2991–95 [Google Scholar]
  143. Min W, Lu S, Chong S, Roy R, Holtom GR, Xie XS. 143.  2009. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461:1105–9 [Google Scholar]
  144. Wei L, Min W. 144.  2012. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal. Bioanal. Chem. 403:2197–202 [Google Scholar]
  145. Min W, Lu S, Rueckel M, Holtom GR, Xie XS. 145.  2009. Near-degenerate four-wave-mixing microscopy. Nano Lett. 9:2423–26 [Google Scholar]
  146. Lu S, Min W, Chong S, Holtom GR, Xie XS. 146.  2010. Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy. Appl. Phys. Lett. 96:113701 [Google Scholar]
  147. Moger J, Garrett N, Begley D, Mihoreanu L, Lalatsa A. 147.  et al. 2012. Imaging cortical vasculature with stimulated Raman scattering and two-photon photothermal lensing microscopy. J. Raman Spectrosc. 43:668–74 [Google Scholar]
  148. Slepkov AD, Ridsdale A, Wan H-N, Wang M-H, Pegoraro AF. 148.  et al. 2011. Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 16:021103 [Google Scholar]
  149. Slipchenko MN, Le TT, Chen H, Cheng J-X. 149.  2009. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. J. Phys. Chem. B 113:7681–86 [Google Scholar]
  150. Slipchenko MN, Chen H, Ely DR, Jung Y, Carvajal MT, Cheng J-X. 150.  2010. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst 135:2613–19 [Google Scholar]
  151. Yue S, Cárdenas-Mora JM, Chaboub LS, Lelièvre SA, Cheng J-X. 151.  2012. Label-free analysis of breast tissue polarity by Raman imaging of lipid phase. Biophys. J. 102:1215–23 [Google Scholar]
  152. Galli R, Uckermann O, Winterhalder MJ, Sitoci-Ficici KH, Geiger KD. 152.  et al. 2012. Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury. Anal. Chem. 84:8707–14 [Google Scholar]
  153. Le TT, Ziemba A, Urasaki Y, Brotman S, Pizzorno G. 153.  2012. Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-Stokes Raman scattering microscopy. PLOS ONE 7:e51092 [Google Scholar]
  154. Chong A, Renninger WH, Wise FW. 154.  2007. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett. 32:2408–10 [Google Scholar]
  155. Kieu K, Renninger W, Chong A, Wise F. 155.  2009. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34:593–95 [Google Scholar]
  156. Chichkov NB, Hapke C, Neumann J, Kracht D, Wandt D, Morgner U. 156.  2012. Pulse duration and energy scaling of femtosecond all-normal dispersion fiber oscillators. Opt. Express 20:3844–52 [Google Scholar]
  157. Tang S, Liu J, Krasieva TB, Chen Z, Tromberg BJ. 157.  2009. Developing compact multiphoton systems using femtosecond fiber lasers. J. Biomed. Opt. 14:030508 [Google Scholar]
  158. Nie B, Saytashev I, Chong A, Liu H, Arkhipov SN. 158.  et al. 2012. Multimodal microscopy with sub-30 fs Yb fiber laser oscillator. Biomed. Opt. Express 3:1750–56 [Google Scholar]
  159. Baumgartl M, Lecaplain C, Hideur A, Limpert J, Tünnermann A. 159.  2012. 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Opt. Lett. 37:1640–42 [Google Scholar]
  160. Paulsen HN, Hilligse KM, Thøgersen J, Keiding SR, Larsen JJ. 160.  2003. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt. Lett. 28:1123–25 [Google Scholar]
  161. Krauss G, Hanke T, Sell A, Träutlein D, Leitenstorfer A. 161.  et al. 2009. Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system. Opt. Lett. 34:2847–49 [Google Scholar]
  162. Lefrancois S, Fu D, Holtom GR, Kong L, Wadsworth WJ. 162.  et al. 2012. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 37:1652–54 [Google Scholar]
  163. Lamb ES, Lefrancois S, Ji M, Wadsworth WJ, Sunney Xie X, Wise FW. 163.  2013. Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 38:4154–57 [Google Scholar]
  164. Nose K, Ozeki Y, Kishi T, Sumimura K, Nishizawa N. 164.  et al. 2012. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt. Express 20:13958–65 [Google Scholar]
  165. Nose K, Kishi T, Ozeki Y, Kanematsu Y, Takata H. 165.  et al. 2014. Stimulated Raman spectral microscope using synchronized Er-and Yb-fiber lasers. Jpn. J. Appl. Phys. 53:052401 [Google Scholar]
  166. Freudiger CW, Yang W, Holtom GR, Peyghambarian N, Xie XS, Kieu KQ. 166.  2014. Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photonics 8:153–59 [Google Scholar]
  167. Masihzadeh O, Ammar DA, Kahook MY, Lei TC. 167.  2013. Coherent anti-Stokes Raman scattering (CARS) microscopy: a novel technique for imaging the retina. Investig. Ophthalmol. Vis. Sci. 54:3094–101 [Google Scholar]
  168. Wu Y-M, Chen H-C, Chang W-T, Jhan J-W, Lin H-L, Liau I. 168.  2009. Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-Stokes Raman scattering microscopy. Anal. Chem. 81:1496–504 [Google Scholar]
  169. Gao L, Zhou H, Thrall MJ, Li F, Yang Y. 169.  et al. 2011. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed. Opt. Express 2:915–26 [Google Scholar]
  170. Saar BG, Contreras-Rojas LR, Xie XS, Guy RH. 170.  2011. Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8:969–75 [Google Scholar]
  171. Belsey NA, Garrett NL, Contreras-Rojas LR, Pickup-Gerlaugh AJ, Price GJ. 171.  et al. 2014. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release 174:37–42 [Google Scholar]
  172. Breunig HG, Bückle R, Kellner-Höfer M, Weinigel M, Lademann J. 172.  et al. 2012. Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin. Microsc. Res. Tech. 75:492–98 [Google Scholar]
  173. Zimmerley M, McClure RA, Choi B, Potma EO. 173.  2009. Following dimethyl sulfoxide skin optical clearing dynamics with quantitative nonlinear multimodal microscopy. Appl. Opt. 48:D79–87 [Google Scholar]
  174. König K, Breunig H, Bückle R, Kellner-Höfer M, Weinigel M. 174.  et al. 2011. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography. Laser Phys. Lett. 8:465–68 [Google Scholar]
  175. Smith B, Naji M, Murugkar S, Alarcon E, Brideau C. 175.  et al. 2013. Portable, miniaturized, fibre delivered, multimodal CARS exoscope. Opt. Express 21:17161–75 [Google Scholar]
  176. Mittal R, Balu M, Krasieva T, Potma EO, Elkeeb L. 176.  et al. 2013. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin. Laser Surg. Med. 45:496–502 [Google Scholar]
  177. Drutis D, Hancewicz T, Pashkovski E, Feng L, Mihalov D. 177.  et al. 2014. Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy. J. Biomed. Opt. 19:111604 [Google Scholar]
  178. Rivera DR, Brown CM, Ouzounov DG, Pavlova I, Kobat D. 178.  et al. 2011. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue. PNAS 108:17598–603 [Google Scholar]
  179. Zhang Y, Akins ML, Murari K, Xi J, Li M-J. 179.  et al. 2012. A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy. PNAS 109:12878–83 [Google Scholar]
  180. Légaré F, Evans CL, Ganikhanov F, Xie XS. 180.  2006. Towards CARS endoscopy. Opt. Express 14:4427–32 [Google Scholar]
  181. Saar BG, Johnston RS, Freudiger CW, Xie XS, Seibel EJ. 181.  2011. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36:2396–98 [Google Scholar]
  182. Liu Z, Wang Z, Wang X, Xu X, Chen X. 182.  et al. 2013. Fiber bundle based probe with polarization for coherent anti-Stokes Raman scattering microendoscopy imaging. Proc. SPIE 8588:85880F doi: 10.1117/12.2004229 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040554
Loading
/content/journals/10.1146/annurev-bioeng-071114-040554
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error