1932

Abstract

Fibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues’ condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information. Recent advances in optical modalities can provide higher resolution, less invasive imaging capabilities, and more quantitative measurements. Here we describe contemporary optical imaging techniques with respect to their suitability in the imaging of tissue structure, with a focus on characterization and implementation into subsequent modeling efforts. We outline the applications and limitations of each modality and discuss the overall shortcomings and future directions for optical imaging of soft tissue structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040625
2016-07-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-071114-040625.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040625&mimeType=html&fmt=ahah

Literature Cited

  1. Cowin SC.1.  2004. Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6:77–107 [Google Scholar]
  2. Balas C.2.  2009. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol. 20:104020 [Google Scholar]
  3. Parry DA.3.  1988. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 29:195–209 [Google Scholar]
  4. Gelse K, Poschl E, Aigner T. 4.  2003. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–46 [Google Scholar]
  5. Petruska JA, Hodge AJ. 5.  1964. A subunit model for the tropocollagen macromolecule. PNAS 51:871–76 [Google Scholar]
  6. Sacks MS, Merryman WD, Schmidt DE. 6.  2009. On the biomechanics of heart valve function. J. Biomech. 42:1804–24 [Google Scholar]
  7. Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ. 7.  2008. Stress–strain experiments on individual collagen fibrils. Biophys. J. 95:3956–63 [Google Scholar]
  8. Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC. 8.  2003. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24:3805–13 [Google Scholar]
  9. Eppell SJ, Smith BN, Kahn H, Ballarini R. 9.  2006. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 3:117–21 [Google Scholar]
  10. Yang L, Fitié CFC, van der Werf KO, Bennink ML, Dijkstra PJ, Feijen J. 10.  2008. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 29:955–62 [Google Scholar]
  11. Lanir Y.11.  1983. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12 [Google Scholar]
  12. Sacks MS, Sun W. 12.  2003. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–84 [Google Scholar]
  13. Debelle L, Tamburro AM. 13.  1999. Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31:261–72 [Google Scholar]
  14. Debelle L, Alix AJ. 14.  1999. The structures of elastins and their function. Biochimie 81:981–94 [Google Scholar]
  15. Vesely I, Mako WJ. 15.  1998. Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium. J. Heart Valve Dis. 7:34–39 [Google Scholar]
  16. Scott M, Vesely I. 16.  1995. Aortic valve cusp microstructure: the role of elastin. Ann. Thorac. Surg. 60:S391–94 [Google Scholar]
  17. Lovekamp JJ, Simionescu DT, Mercuri JJ, Zubiate B, Sacks MS, Vyavahare NR. 17.  2006. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 27:1507–18 [Google Scholar]
  18. Eckert CE, Fan R, Mikulis B, Barron M, Carruthers CA. 18.  et al. 2013. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 9:4653–60 [Google Scholar]
  19. Hunter PJ, Nielsen PM, Smaill BH, LeGrice IJ, Hunter IW. 19.  1992. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Crit. Rev. Biomed. Eng. 20:403–26 [Google Scholar]
  20. Schultz DS.20.  2008. Structure–function relationships in soft tissue mechanics: examining how the micro-scale architecture of biochemical constituents effects health [sic]. PhD thesis, Dep. Eng. Mech. Eng., Univ. Mich., Ann Arbor
  21. Marshall GF, Stutz GE. 21.  2011. Handbook of Optical and Laser Scanning Boca Raton, FL: CRC, 2nd. ed.
  22. Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S. 22.  et al. 2010. Functional imaging and related techniques: an introduction for rehabilitation researchers. J. Rehabil. Res. Dev. 47:vii–xxxiv [Google Scholar]
  23. Wang X, Pang P, Ku G, Xie X, Stoica G, Wang LV. 23.  2003. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21:803–6 [Google Scholar]
  24. Kim D-H, Lipke EA, Kim P, Cheong R, Thompson S. 24.  et al. 2010. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. PNAS 107:565–70 [Google Scholar]
  25. Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. 25.  2001. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280:H168–78 [Google Scholar]
  26. Bloom W, Fawcett DW, Maximow AA. 26.  1962. Textbook of Histology Philadelphia: Saunders
  27. Hodgkin D, Lister J. 27.  1827. XXVI. Notice of some miscroscopic observations of the blood and animal tissues. Philos. Mag. Ann. Chem. Math. Astron. Nat. Hist. Gen. Sci. 2:130–38 [Google Scholar]
  28. Keller E, Goldman R. 28.  2006. Light Microscopy 8 Woodbury, NY: Cold Spring Harbor Lab.
  29. Françon M.29.  1961. Progress in Microscopy New York: Harper & Row
  30. Shung KK, Thieme GA. 30.  1992. Ultrasonic Scattering in Biological Tissues Boca Raton, FL: CRC.
  31. Tranquart F, Grenier N, Eder V, Pourcelot L. 31.  1999. Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 25:889–94 [Google Scholar]
  32. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. 32.  1991. Clinical use of ultrasound biomicroscopy. Ophthalmology 98:287–95 [Google Scholar]
  33. Riente L, Delle Sedie A, Filippucci E, Iagnocco A, Meenagh G. 33.  et al. 2007. Ultrasound imaging for the rheumatologist. XIV. Ultrasound imaging in connective tissue diseases. Clin. Exp. Rheumatol. 26:230–33 [Google Scholar]
  34. Lauterbur PC.34.  1973. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–91 [Google Scholar]
  35. Haacke EM, Brown RW, Thompson MR, Venkatesan R. 35.  1999. Signal, contrast, and noise. Magnetic Resonance Imaging: Physical Principles and Sequence Design RW Brown, Y-CN Cheng, EM Haacke, MR Thompson, R Venkatesan 378–79 New York: Wiley [Google Scholar]
  36. Prasad PV.36.  2006. Magnetic Resonance Imaging: Methods and Biologic Applications Berlin: Springer
  37. Degen C, Poggio M, Mamin H, Rettner C, Rugar D. 37.  2009. Nanoscale magnetic resonance imaging. PNAS 106:1313–17 [Google Scholar]
  38. Vedrine P, Aubert G, Beaudet F, Belorgey J, Beltramelli J. 38.  et al. 2008. The whole body 11.7 T MRI magnet for Iseult/INUMAC project. Appl. Supercond. IEEE Trans. 18:868–73 [Google Scholar]
  39. Flannery BP, Deckman HW, Roberge WG, d'Amico KL. 39.  1987. Three-dimensional X-ray microtomography. Science 237:1439–44 [Google Scholar]
  40. Hsieh J.40.  2009. Computed Tomography: Principles, Design, Artifacts, and Recent Advances Bellingham, WA: SPIE
  41. Brenner DJ, Elliston CD. 41.  2004. Estimated radiation risks potentially associated with full-body CT screening. Radiology 232:735–38 [Google Scholar]
  42. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M. 42.  et al. 2009. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169:2078–86 [Google Scholar]
  43. Minsky M.43.  1961. Microscopy apparatus. US patent 3,013,467
  44. Wilson T.44.  1990. Chapter 1: Confocal microscopy. Confocal Microscopy T Wilson 1–64 San Diego: Academic [Google Scholar]
  45. Murray JM.45.  2005. Confocal microscopy, deconvolution, and structured illumination methods. Live Cell Imaging—A Laboratory Manual RD Goldman, DL Spector 239–79 Cold Spring Harbor, NY: Cold Spring Harbor Lab. [Google Scholar]
  46. Pawley J. 46.  2006. Handbook of Biological Confocal Microscopy Berlin: Springer, 3rd. ed.
  47. Dunn AK, Smithpeter C, Welch AJ, Richards-Kortum R. 47.  1996. Sources of contrast in confocal reflectance imaging. Appl. Opt. 35:3441–46 [Google Scholar]
  48. Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. 48.  1995. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J. Investig. Dermatol. 104:946–52 [Google Scholar]
  49. Brakenhoff G, Voort H, Spronsen E, Nanninga N. 49.  1989. Three-dimensional imaging in fluorescence by confocal scanning microscopy. J. Microsc. 153:151–59 [Google Scholar]
  50. Lichtman JW, Sunderland WJ, Wilkinson RS. 50.  1989. High-resolution imaging of synaptic structure with a simple confocal microscope. New Biol. 1:75–82 [Google Scholar]
  51. Rajadhyaksha M, Anderson R, Webb RH. 51.  1999. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl. Opt. 38:2105–15 [Google Scholar]
  52. Smithpeter CL, Dunn AK, Welch A, Richards-Kortum R. 52.  1998. Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37:2749–54 [Google Scholar]
  53. Nehal KS, Gareau D, Rajadhyaksha M. 53.  2008. Skin imaging with reflectance confocal microscopy. Proc. Semin. Cutan. Med. Surg. 27:37–43 [Google Scholar]
  54. Amos W, White J. 54.  2003. How the confocal laser scanning microscope entered biological research. Biol. Cell 95:335–42 [Google Scholar]
  55. Amos WB, White J, Fordham M. 55.  1987. Use of confocal imaging in the study of biological structures. Appl. Opt. 26:3239–43 [Google Scholar]
  56. White J, Amos W, Fordham M. 56.  1987. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105:41–48 [Google Scholar]
  57. Göppert-Mayer M.57.  1931. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401:273–94 [Google Scholar]
  58. Kaiser W, Garrett C. 58.  1961. Two-photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 7:229–31 [Google Scholar]
  59. Budnev V, Ginzburg I, Meledin G, Serbo V. 59.  1975. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. 15:181–282 [Google Scholar]
  60. Prasad PN, Williams DJ. 60.  1991. Introduction to Nonlinear Optical Effects in Molecules and Polymers New York: Wiley
  61. Denk W, Strickler JH, Webb WW. 61.  1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76 [Google Scholar]
  62. Denk W, Svoboda K. 62.  1997. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–57 [Google Scholar]
  63. Helmchen F, Denk W. 63.  2005. Deep tissue two-photon microscopy. Nat. Methods 2:932–40 [Google Scholar]
  64. So PT, Dong CY, Masters BR, Berland KM. 64.  2000. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2:399–429 [Google Scholar]
  65. Patterson GH, Piston DW. 65.  2000. Photobleaching in two-photon excitation microscopy. Biophys. J. 78:2159–62 [Google Scholar]
  66. Denk W, Piston DW, Webb WW. 66.  1995. Two-photon molecular excitation in laser-scanning microscopy. Handbook of Biological Confocal Microscopy J Pauley 445–58 Berlin: Springer, 1st. ed. [Google Scholar]
  67. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. 67.  2003. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. PNAS 100:7075–80 [Google Scholar]
  68. Dickinson M, Bearman G, Tille S, Lansford R, Fraser S. 68.  2001. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31:1272–79 [Google Scholar]
  69. Rubart M.69.  2004. Two-photon microscopy of cells and tissue. Circ. Res. 95:1154–66 [Google Scholar]
  70. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S. 70.  2001. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111:29–37 [Google Scholar]
  71. Kim KH, Buehler C, So PTC. 71.  1999. High-speed, two-photon scanning microscope. Appl. Opt. 38:6004–9 [Google Scholar]
  72. Zoumi A, Yeh A, Tromberg BJ. 72.  2002. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. PNAS 99:11014–19 [Google Scholar]
  73. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG. 73.  et al. 1991. Optical coherence tomography. Science 254:1178–81 [Google Scholar]
  74. Brezinski ME.74.  2006. Optical Coherence Tomography: Principles and Applications San Diego: Academic
  75. Izatt J, Choma M. 75.  2008. Theory of optical coherence tomography. Optical Coherence Tomography W Drexler, JC Fujimoto 47–72 Berlin: Springer [Google Scholar]
  76. Ding Z, Ren H, Zhao Y, Nelson JS, Chen Z. 76.  2002. High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27:243–45 [Google Scholar]
  77. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C. 77.  et al. 1997. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276:2037–39 [Google Scholar]
  78. Drexler W, Morgner U, Kärtner F, Pitris C, Boppart S. 78.  et al. 1999. In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24:1221–23 [Google Scholar]
  79. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y. 79.  et al. 2011. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17:1010–14 [Google Scholar]
  80. Tearney G, Brezinski M, Fujimoto J, Weissman N, Boppart S. 80.  et al. 1996. Scanning single-mode fiber optic catheter—endoscope for optical coherence tomography. Opt. Lett. 21:543–45 [Google Scholar]
  81. Jacques SL, Ramella-Roman JC. 81.  2004. Polarized light imaging of tissues. Lasers and Current Optical Techniques in Biology G Palumbo, R Pratesi 4591–607 London: R. Soc. Chem. [Google Scholar]
  82. Alfano RR, Demos SG. 82.  1998. Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough. US patent 5,719,399 [Google Scholar]
  83. Demos S, Alfano R. 83.  1997. Optical polarization imaging. Appl. Opt. 36:150–55 [Google Scholar]
  84. De Boer JF, Milner TE, van Gemert MJ, Nelson JS. 84.  1997. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22:934–36 [Google Scholar]
  85. Sokolov K, Drezek R, Gossage K, Richards-Kortum R. 85.  1999. Reflectance spectroscopy with polarized light: Is it sensitive to cellular and nuclear morphology?. Opt. Express 5:302–17 [Google Scholar]
  86. Yang B, Lesicko J, Sharma M, Hill M, Sacks M, Tunnell JW. 86.  2014. Collagen fiber orientation mapping with top layer discrimination using polarized light spatial frequency domain imaging (pSFDI) on native heart tissue. Proc. Biomed. Opt. 5:BM4B [Google Scholar]
  87. Jacques SL, Roman JR, Lee K. 87.  2000. Imaging superficial tissues with polarized light. Lasers Surg. Med. 26:119–29 [Google Scholar]
  88. Pauzauskie PJ, Talaga D, Seo K, Yang P, Lagugné-Labarthet F. 88.  2005. Polarized Raman confocal microscopy of single gallium nitride nanowires. J. Am. Chem. Soc. 127:17146–47 [Google Scholar]
  89. Kuok M, Lim H, Ng S, Liu N, Wang Z. 89.  2003. Brillouin study of the quantization of acoustic modes in nanospheres. Phys. Rev. Lett. 90:255502 [Google Scholar]
  90. Wang H, Huff TB, Zweifel DA, He W, Low PS. 90.  et al. 2005. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. PNAS 102:15752–56 [Google Scholar]
  91. Samuels RJ.91.  1966. Small angle light scattering from deformed spherulites. Theory and its experimental verification. Proc. J. Polymer Sci. C 13:37–53 [Google Scholar]
  92. Sacks MS, Smith DB, Hiester ED. 92.  1997. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25:678–89 [Google Scholar]
  93. Sacks MS.93.  2003. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–87 [Google Scholar]
  94. Cheong W-F, Prahl SA, Welch AJ. 94.  1990. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26:2166–85 [Google Scholar]
  95. Doornbos R, Lang R, Aalders M, Cross F, Sterenborg H. 95.  1999. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys. Med. Biol. 44:967 [Google Scholar]
  96. Farrell TJ, Patterson MS, Wilson B. 96.  1992. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo. Med. Phys. 19:879–88 [Google Scholar]
  97. Kinsey JL.97.  1977. Laser-induced fluorescence. Annu. Rev. Phys. Chem. 28:349–72 [Google Scholar]
  98. Cothren R, Richards-Kortum R, Sivak M Jr, Fitzmaurice M, Rava R. 98.  et al. 1990. Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy. Gastrointest. Endosc. 36:105–11 [Google Scholar]
  99. Long DA, Long D. 99.  1977. Raman Spectroscopy New York: McGraw-Hill
  100. Nie S, Emory SR. 100.  1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6 [Google Scholar]
  101. Movasaghi Z, Rehman S, Rehman IU. 101.  2007. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42:493–541 [Google Scholar]
  102. Cuccia DJ, Bevilacqua F, Durkin AJ, Tromberg BJ. 102.  2004. Depth-sectioned imaging and quantitative analysis in turbid media using spatially modulated illumination. Proc. Biomed. Top. Meet. 2004:FF5 [Google Scholar]
  103. Cuccia DJ, Bevilacqua F, Durkin AJ, Tromberg BJ. 103.  2005. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt. Lett. 30:1354–56 [Google Scholar]
  104. Konecky SD, Mazhar A, Cuccia D, Durkin AJ, Schotland JC, Tromberg BJ. 104.  2009. Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light. Opt. Express 17:14780–90 [Google Scholar]
  105. Cuccia DJ, Bevilacqua F, Durkin AJ, Ayers FR, Tromberg BJ. 105.  2009. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 14:024012 [Google Scholar]
  106. Zhang HF, Maslov K, Stoica G, Wang LV. 106.  2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24:848–51 [Google Scholar]
  107. Hajjarian Z, Nadkarni SK. 107.  2012. Evaluating the viscoelastic properties of tissue from laser speckle fluctuations. Sci. Rep. 2:316 [Google Scholar]
  108. Khalil AS, Chan RC, Chau AH, Bouma BE, Mofrad MRK. 108.  2005. Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann. Biomed. Eng. 33:1631–39 [Google Scholar]
  109. Maslov K, Zhang HF, Hu S, Wang LV. 109.  2008. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33:929–31 [Google Scholar]
  110. Wang LV.110.  2009. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3:503–9 [Google Scholar]
  111. Brillouin L.111.  1922. Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l'agitation thermique. Ann. Phys. 17:88–122 [Google Scholar]
  112. Dil J.112.  1982. Brillouin scattering in condensed matter. Rep. Prog. Phys. 45:285 [Google Scholar]
  113. Koski K, Yarger J. 113.  2005. Brillouin imaging. Appl. Phys. Lett. 87:061903 [Google Scholar]
  114. Chiao R, Townes C, Stoicheff B. 114.  1964. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12:592 [Google Scholar]
  115. Scarcelli G, Yun SH. 115.  2007. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2:39–43 [Google Scholar]
  116. Scarcelli G, Yun SH. 116.  2012. In vivo Brillouin optical microscopy of the human eye. Opt. Express 20:9197–202 [Google Scholar]
  117. Scarcelli G, Pineda R, Yun SH. 117.  2012. Brillouin optical microscopy for corneal biomechanics. Investig. Ophthalmol. Vis. Sci. 53:185–90 [Google Scholar]
  118. Aherne WA, Dunnill MS. 118.  1982. Morphometry London: Arnold
  119. Konofagou EE, D'hooge J, Ophir J. 119.  2002. Myocardial elastography—a feasibility study in vivo. Ultrasound Med. Biol. 28:475–82 [Google Scholar]
  120. Hu X, Parrish T. 120.  1994. Reduction of field of view for dynamic imaging. Magn. Reson. Med. 31:691–94 [Google Scholar]
  121. Kuhl CK, Schild HH, Morakkabati N. 121.  2005. Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. 1. Radiology 236:789–800 [Google Scholar]
  122. Sun W, Lal P. 122.  2002. Recent development on computer aided tissue engineering—a review. Comput. Methods Progr. Biomed. 67:85–103 [Google Scholar]
  123. Fung Y-C.123.  1990. Biomechanics Berlin: Springer
  124. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. 124.  2006. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–38 [Google Scholar]
  125. Humphrey J, Rajagopal K. 125.  2002. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12:407–30 [Google Scholar]
  126. Fung Y-C.126.  1995. Stress, strain, growth, and remodeling of living organisms. Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids J Carey, MJ Crochet 469–82 Berlin: Birkhäuser [Google Scholar]
  127. Bonser GM, Orr J. 127.  1939. The morphology of 160 tumours induced by carcinogenic hydrocarbons in the subcutaneous tissues of mice. J. Pathol. Bacteriol. 49:171–83 [Google Scholar]
  128. Boyce R.128.  1892. The morphology of tumours. BMJ 2:678–81 [Google Scholar]
  129. Petticrew M, Sowden A, Lister-Sharp D, Wright K. 129.  1999. False-negative results in screening programmes: systematic review of impact and implications. Health Technol. Assess. 4:1–120 [Google Scholar]
  130. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR. 130.  1998. Incidence and clinical significance of false-negative sextant prostate biopsies. J. Urol. 159:1247–50 [Google Scholar]
  131. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD III. 131.  et al. 2005. Image-guided tumor ablation: standardization of terminology and reporting criteria. J. Vasc. Interv. Radiol. 16:765–78 [Google Scholar]
  132. Vannier MW, Marsh JL. 132.  1996. Three-dimensional imaging, surgical planning, and image-guided therapy. Radiol. Clin. N. Am. 34:545–63 [Google Scholar]
  133. Xing L, Thorndyke B, Schreibmann E, Yang Y, Li T-F. 133.  et al. 2006. Overview of image-guided radiation therapy. Med. Dosim. 31:91–112 [Google Scholar]
  134. Sacks MS.134.  2003. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–87 [Google Scholar]
  135. Aggarwal A, Aguilar VS, Lee C-H, Ferrari G, Gorman JH. 135.  et al. 2013. Patient-specific modeling of heart valves: from image to simulation. Functional Imaging and Modeling of the Heart S Ourselin, D Rueckert, N Smith 141–49 Berlin: Springer [Google Scholar]
  136. Lee CH, Carruthers CA, Ayoub S, Gorman RC, Gorman JH 3rd, Sacks MS. 136.  2015. Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading. J. Theor. Biol. 373:26–39 [Google Scholar]
  137. Lee CH, Rabbah JP, Yoganathan AP, Gorman RC, Gorman JH 3rd, Sacks MS. 137.  2015. On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomech. Model. Mechanobiol. 14:1281–302 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040625
Loading
/content/journals/10.1146/annurev-bioeng-071114-040625
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error