1932

Abstract

Osteoarthritis (OA) affects millions of people and results in weakened hyaline cartilage due to overloading. During joint articulation, hyaline cartilage must withstand high loads while maintaining low friction to prevent wear and tissue loss. Thus, cartilage compressive stiffness and the coefficient of friction are important indicators of the tissue's functional performance. These mechanical properties are often measured ex vivo using mechanical testing regimens, but arthroscopic handheld probes (e.g., for indentation testing, ultrasound, and optical coherence tomography) and noninvasive imaging modalities (e.g., magnetic resonance imaging and computed tomography) provide opportunities for either direct or indirect in vivo assessment of cartilage mechanical properties. In this review, we examine the application of these techniques for evaluating cartilage, with a focus on measuring mechanical properties for early-stage OA diagnosis. For each approach, we discuss the advantages, disadvantages, current and potential clinical utility, and promising technological improvement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071516-044525
2017-06-21
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/19/1/annurev-bioeng-071516-044525.html?itemId=/content/journals/10.1146/annurev-bioeng-071516-044525&mimeType=html&fmt=ahah

Literature Cited

  1. Mow VC, Huiskes R. 1.  2005. Basic Orthopedic Biomechanics and Mechanobiology Philadelphia: Lippincott Williams & Wilkins
  2. Zehbe R, Riesemeier H, Kirkpatrick CJ, Brochhausen C. 2.  2012. Imaging of articular cartilage—data matching using X-ray tomography, SEM, FIB slicing and conventional histology. Micron 43:1060–67 [Google Scholar]
  3. Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC. 3.  1991. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9:330–40 [Google Scholar]
  4. Maroudas AI. 4.  1976. Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–9 [Google Scholar]
  5. Heinegård D. 5.  2009. Proteoglycans and more—from molecules to biology. Int. J. Exp. Pathol. 90:575–86 [Google Scholar]
  6. Katta J, Stapleton T, Ingham E, Jin ZM, Fisher J. 6.  2008. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc. Inst. Mech. Eng. H 222:1–11 [Google Scholar]
  7. Krishnan R, Kopacz M, Ateshian GA. 7.  2004. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22:565–70 [Google Scholar]
  8. Hunziker E. 8.  2002. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–63 [Google Scholar]
  9. Squires GR, Okouneff S, Ionescu M, Poole AR. 9.  2003. The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum 48:1261–70 [Google Scholar]
  10. Kempson G, Muir H, Swanson S, Freeman M. 10.  1970. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochim. Biophys. Acta 215:70–77 [Google Scholar]
  11. Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. 11.  2000. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18:739–48 [Google Scholar]
  12. Bansal PN, Joshi NS, Entezari V, Grinstaff MW, Snyder BD. 12.  2010. Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthr. Cartil. 18:184–91 [Google Scholar]
  13. Basalo IM, Raj D, Krishnan R, Chen FH, Hung CT, Ateshian GA. 13.  2005. Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation. J. Biomech. 38:1343–49 [Google Scholar]
  14. Inoue H. 14.  1981. Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int. Orthop. 5:47–52 [Google Scholar]
  15. Setton L, Mow V, Muller F, Pita J, Howell D. 15.  1992. Altered structure–function relationships for articular cartilage in human osteoarthritis and an experimental canine model. Agents Actions Suppl 39:27–48 [Google Scholar]
  16. Korhonen R, Laasanen M, Töyräs J, Rieppo J, Hirvonen J. 16.  et al. 2002. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35:903–9 [Google Scholar]
  17. Lakin BA, Grasso DJ, Shah SS, Stewart RC, Bansal PN. 17.  et al. 2013. Cationic agent contrast-enhanced computed tomography imaging of cartilge correlates with the compressive modulus and coefficient of friction. Osteoarthr. Cartil. 21:60–68 [Google Scholar]
  18. Mow VC, Holmes MH, Lai MW. 18.  1984. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17:377–94 [Google Scholar]
  19. Cao L, Youn I, Guilak F, Setton LA. 19.  2006. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J. Biomech. Eng. 128:766–71 [Google Scholar]
  20. Lakin BA, Ellis DJ, Shelofsky JS, Freedman JD, Grinstaff MW, Snyder BD. 20.  2015. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthr. Cartil. 23:2158–66 [Google Scholar]
  21. Lakin BA, Patel H, Holland C, Freedman JD, Shelofsky JS. 21.  et al. 2016. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J. Orthop. Res. 34:1130–38 [Google Scholar]
  22. Bae WC, Lewis CW, Levenston ME, Sah RL. 22.  2006. Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J. Biomech. 39:1039–47 [Google Scholar]
  23. Hyttinen MM, Töyräs J, Lapveteläinen T, Lindblom J, Prockop DJ. 23.  et al. 2001. Inactivation of one allele of the type II collagen gene alters the collagen network in murine articular cartilage and makes cartilage softer. Ann. Rheum. Dis. 60:262–68 [Google Scholar]
  24. Wang H, Ateshian GA. 24.  1997. The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J. Biomech. 30:771–76 [Google Scholar]
  25. Schmidt TA, Sah RL. 25.  2007. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15:35–47 [Google Scholar]
  26. Gleghorn JP, Bonassar LJ. 26.  2008. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41:1910–18 [Google Scholar]
  27. Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. 27.  2007. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum 56:882–91 [Google Scholar]
  28. Stanton TE. 28.  1923. Boundary lubrication in engineering practice. Engineer 135:678–80 [Google Scholar]
  29. Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM. 29.  et al. 2007. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum 56:3662–69 [Google Scholar]
  30. Akelman MR, Teeple E, Machan JT, Crisco JJ, Jay GD, Fleming BC. 30.  2013. Pendulum mass affects the measurement of articular friction coefficient. J. Biomech. 46:615–18 [Google Scholar]
  31. Drewniak EI, Jay GD, Fleming BC, Zhang L, Warman ML, Crisco JJ. 31.  2012. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees. Arthritis Rheum 64:465–73 [Google Scholar]
  32. Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I. 32.  1995. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 17:395–99 [Google Scholar]
  33. Lyyra T, Arokoski JP, Oksala N, Vihko A, Hyttinen M. 33.  et al. 1999. Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples. Phys. Med. Biol. 44:525–35 [Google Scholar]
  34. Lyyra-Laitinen T, Niinimäki M, Töyräs J, Lindgren R, Kiviranta I, Jurvelin JS. 34.  1999. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness. Phys. Med. Biol. 44:2511–24 [Google Scholar]
  35. Töyräs J, Lyyra-Laitinen T, Niinimäki M, Lindgren R, Nieminen MT. 35.  et al. 2001. Estimation of the Young's modulus of articular cartilage using an arthroscopic indentation instrument and ultrasonic measurement of tissue thickness. J. Biomech. 34:251–56 [Google Scholar]
  36. Vasara AI, Jurvelin JS, Peterson L, Kiviranta I. 36.  2005. Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament–deficient knees. Am. J. Sports Med. 33:408–14 [Google Scholar]
  37. Brommer H, Laasanen MS, Brama PAJ, van Weeren PR, Helminen HJ, Jurvelin JS. 37.  2006. In situ and ex vivo evaluation of an arthroscopic indentation instrument to estimate the health status of articular cartilage in the equine metacarpophalangeal joint. Vet. Surg. 35:259–66 [Google Scholar]
  38. Lyyra T, Kiviranta I, Väätäinen U, Helminen HJ, Jurvelin JS. 38.  1999. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J. Biomed. Mater. Res. 48:482–87 [Google Scholar]
  39. Kiviranta P, Lammentausta E, Töyräs J, Kiviranta I, Jurvelin JS. 39.  2008. Indentation diagnostics of cartilage degeneration. Osteoarthr. Cartil. 16:796–804 [Google Scholar]
  40. Kiviranta P, Töyräs J, Nieminen MT, Laasanen MS, Saarakkala S. 40.  et al. 2007. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. Eur. Cells Mater. 13:46–55 [Google Scholar]
  41. Laasanen MS, Töyräs J, Hirvonen J, Saarakkala S, Korhonen RK. 41.  et al. 2002. Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol. Meas. 23:491–503 [Google Scholar]
  42. Zheng YP, Mak AF. 42.  1996. An ultrasound indentation system for biomechanical properties assessment of soft tissues in vivo. IEEE Trans. Biomed. Eng. 43:912–18 [Google Scholar]
  43. Huang YP, Zheng YP. 43.  2013. Development of an arthroscopic ultrasound probe for assessment of articular cartilage degeneration. IEEE Eng. Med. Biol. Soc. Conf. 2013:144–47 [Google Scholar]
  44. Lötjönen P, Julkunen P, Tiitu V, Jurvelin JS, Töyräs J. 44.  2011. Ultrasound speed varies in articular cartilage under indentation loading. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58:2772–80 [Google Scholar]
  45. Abedian R, Willbold E, Becher C, Hurschler C. 45.  2013. In vitro electro-mechanical characterization of human knee articular cartilage of different degeneration levels: a comparison with ICRS and Mankin scores. J. Biomech. 46:1328–34 [Google Scholar]
  46. Garon M, Légaré A, Guardo R, Savard P, Buschmann MD. 46.  2002. Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant [sic] responses of articular cartilage to load. J. Biomech. 35:207–16 [Google Scholar]
  47. Légaré A, Garon M, Guardo R, Savard P, Poole AR, Buschmann MD. 47.  2002. Detection and analysis of cartilage degeneration by spatially resolved streaming potentials. J. Orthop. Res. 20:819–26 [Google Scholar]
  48. Sim S, Chevrier A, Garon M, Quenneville E, Yaroshinsky A. 48.  et al. 2014. Non-destructive electromechanical assessment (arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties. Osteoarthr. Cartil. 22:1926–35 [Google Scholar]
  49. Virén T, Saarakkala S, Tiitu V, Puhakka J, Kiviranta I. 49.  et al. 2011. Ultrasound evaluation of mechanical injury of bovine knee articular cartilage under arthroscopic control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58:148–55 [Google Scholar]
  50. Virén T, Saarakkala S, Kaleva E, Nieminen HJ, Jurvelin JS, Töyräs J. 50.  2009. Minimally invasive ultrasound method for intra-articular diagnostics of cartilage degeneration. Ultrasound Med. Biol. 35:1546–54 [Google Scholar]
  51. Laasanen MS, Töyräs J, Vasara AI, Hyttinen MM, Saarakkala S. 51.  et al. 2003. Mechano-acoustic diagnosis of cartilage degeneration and repair. J. Bone Joint Surg. Am. 85A:suppl. 278–84 [Google Scholar]
  52. Männicke N, Schöne M, Oelze M, Raum K. 52.  2014. Articular cartilage degeneration classification by means of high-frequency ultrasound. Osteoarthr. Cartil. 22:1577–82 [Google Scholar]
  53. Virén T, Huang YP, Saarakkala S, Pulkkinen H, Tiitu V. 53.  et al. 2012. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage. J. Med. Eng. Technol. 36:185–92 [Google Scholar]
  54. Kaleva E, Saarakkala S, Jurvelin JS, Virén T, Töyräs J. 54.  2009. Effects of ultrasound beam angle and surface roughness on the quantitative ultrasound parameters of articular cartilage. Ultrasound Med. Biol. 35:1344–51 [Google Scholar]
  55. Liukkonen J, Hirvasniemi J, Joukainen A, Penttilä P, Virén T. 55.  et al. 2013. Arthroscopic ultrasound technique for simultaneous quantitative assessment of articular cartilage and subchondral bone: an in vitro and in vivo feasibility study. Ultrasound Med. Biol. 39:1460–8 [Google Scholar]
  56. Adrian A, Barrett M, Werpy N, Kawcak C, Chapman P, Goodrich L. 56.  2016. A comparison of arthroscopy to ultrasonography for identification of pathology of the equine stifle. Equine Vet. J. In press. http://dx.doi.org/10.1111/evj.12541 [Crossref]
  57. Puhakka P, te Moller N, Afara I, Mäkelä J, Tiitu V. 57.  et al. 2015. Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography signal. Osteoarthr. Cartil. 23:2206–13 [Google Scholar]
  58. Martinho AC Jr., Freitas AZ, Raele MP, Santin SP, Soares FAN. 58.  et al. 2013. Dependence of optical attenuation coefficient and mechanical tension of irradiated human cartilage measured by optical coherence tomography. Cell Tissue Bank. 15:337 [Google Scholar]
  59. Pan Y, Li Z, Xie T, Chu CR. 59.  2003. Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Opt. 8:648–54 [Google Scholar]
  60. Adams SB Jr, Herz PR, Stamper DL, Roberts MJ, Bourquin S. 60.  et al. 2006. High-resolution imaging of progressive articular cartilage degeneration. J. Orthop. Res. 24:708–15 [Google Scholar]
  61. Li X, Martin S, Pitris C, Ghanta R, Stamper DL. 61.  et al. 2005. High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res. Ther. 7:R318–23 [Google Scholar]
  62. Chu CR, Izzo NJ, Irrgang JJ, Ferretti M, Studer RK. 62.  2007. Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J. Biomed. Opt. 12:051703 [Google Scholar]
  63. Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno S 3rd, Irrgang JJ. 63.  2010. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum 62:1412–20 [Google Scholar]
  64. Zheng K, Martin SD, Rashidifard CH, Liu B, Brezinski ME. 64.  2010. In vivo micron-scale arthroscopic imaging of human knee osteoarthritis with optical coherence tomography: comparison with magnetic resonance imaging and arthroscopy. Am. J. Orthop. 39:122–25 [Google Scholar]
  65. Huang Y-P, Wang S-Z, Saarakkala S, Zheng Y-P. 65.  2011. Quantification of stiffness change in degenerated articular cartilage using optical coherence tomography–based air-jet indentation. Connect. Tissue Res. 52:433–43 [Google Scholar]
  66. Matzat SJ, Kogan F, Fong GW, Gold GE. 66.  2014. Imaging strategies for assessing cartilage composition in osteoarthritis. Curr. Rheumatol. Rep. 16:462 [Google Scholar]
  67. Neu CP. 67.  2014. Functional imaging in OA: role of imaging in the evaluation of tissue biomechanics. Osteoarthr. Cartil. 22:1349–59 [Google Scholar]
  68. Kneeland JB, Reddy R. 68.  2007. Frontiers in musculoskeletal MRI: articular cartilage. J. Magn. Reson. Imaging 25:339–44 [Google Scholar]
  69. Paunipagar BK, Rasalkar D. 69.  2014. Imaging of articular cartilage. Indian J. Radiol. Imaging 24:237–48 [Google Scholar]
  70. Eckstein F, Glaser C. 70.  2004. Measuring cartilage morphology with quantitative magnetic resonance imaging. Proc. Semin. Musculoskelet. Radiol. 8:329–53 [Google Scholar]
  71. Jaremko JL, Maciejewski CM, Cheng RWT, Ronsky JL, Thompson RB. 71.  et al. 2007. Accuracy and reliability of MRI versus laboratory measurements in an ex vivo porcine model of arthritic cartilage loss. J. Magn. Reson. Imaging 26:992–1000 [Google Scholar]
  72. Masi JN, Sell CA, Phan C, Han E, Newitt D. 72.  et al. 2005. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 236:140–50 [Google Scholar]
  73. McKeag D, Smith BW, Edminster R, Laird T, Clark J, Herron S. 73.  1992. Estimating the severity of osteoarthritis with magnetic resonance spectroscopy. Semin. Arthritis Rheum. 21:227–38 [Google Scholar]
  74. Nissi MJ, Rieppo J, Töyräs J, Laasanen MS, Kiviranta I. 74.  et al. 2007. Estimation of mechanical properties of articular cartilage with MRI—dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation. Osteoarthr. Cartil. 15:1141–48 [Google Scholar]
  75. Fragonas E, Mlynárik V, Jellús V, Micali F, Piras A. 75.  et al. 1998. Correlation between biochemical composition and magnetic resonance appearance of articular cartilage. Osteoarthr. Cartil. 6:24–32 [Google Scholar]
  76. Watrin A, Ruaud JP, Olivier PT, Guingamp NC, Gonord PD. 76.  et al. 2001. T2 mapping of rat patellar cartilage. Radiology 219:395–402 [Google Scholar]
  77. Lüsse S, Claassen H, Gehrke T, Hassenpflug J, Schünke M. 77.  et al. 2000. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn. Reson. Imaging 18:423–30 [Google Scholar]
  78. Wayne JS, Kraft KA, Shields KJ, Yin C, Owen JR, Disler DG. 78.  2003. MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 228:493–99 [Google Scholar]
  79. Watrin-Pinzano A, Ruaud J-P, Olivier P, Grossin L, Gonord P. 79.  et al. 2005. Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage. Radiology 234:162–70 [Google Scholar]
  80. Nieminen MT, Töyräs J, Rieppo J, Hakumäki JM, Silvennoinen J. 80.  et al. 2000. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn. Reson. Med. 43:676–81 [Google Scholar]
  81. Nieminen MT, Töyräs J, Laasanen MS, Silvennoinen J, Helminen HJ, Jurvelin JS. 81.  2004. Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J. Biomech. 37:321–28 [Google Scholar]
  82. Nissi MJ, Töyräs J, Laasanen MS, Rieppo J, Saarakkala S. 82.  et al. 2004. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J. Orthop. Res. 22:557–64 [Google Scholar]
  83. Kurkijärvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT. 83.  2004. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn. Reson. Med. 52:41–46 [Google Scholar]
  84. Lammentausta E, Kiviranta P, Nissi MJ, Laasanen MS, Kiviranta I. 84.  et al. 2006. T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: relationships with tissue mechanical properties. J. Orthop. Res. 24:366–74 [Google Scholar]
  85. Juras V, Bittsansky M, Majdisova Z, Szomolanyi P, Sulzbacher I. 85.  et al. 2009. In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. J. Magn. Reson. Imaging 197:40–47 [Google Scholar]
  86. Laurent D, Wasvary J, Yin J, Rudin M, Pellas TC, O'Byrne E. 86.  2001. Quantitative and qualitative assessment of articular cartilage in the goat knee with magnetization transfer imaging. Magn. Reson. Imaging 19:1279–86 [Google Scholar]
  87. Watanabe A, Boesch C, Anderson SE, Brehm W, Mainil Varlet P. 87.  2009. Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study. Osteoarthr. Cartil. 17:1341–49 [Google Scholar]
  88. Nishioka H, Hirose J, Nakamura E, Oniki Y, Takada K. 88.  et al. 2012. T1ρ and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J. Magn. Reson. Imaging 35:147–55 [Google Scholar]
  89. Wheaton AJ, Dodge GR, Elliott DM, Nicoll SB, Reddy R. 89.  2005. Quantification of cartilage biomechanical and biochemical properties via T1ρ magnetic resonance imaging. Magn. Reson. Med. 54:1087–93 [Google Scholar]
  90. Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J. 90.  et al. 2011. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthr. Cartil. 19:171–79 [Google Scholar]
  91. Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. 91.  2005. Detection of changes in articular cartilage proteoglycan by T1ρ magnetic resonance imaging. J. Orthop. Res. 23:102–8 [Google Scholar]
  92. van Tiel J, Kotek G, Reijman M, Bos PK, Bron EE. 92.  et al. 2015. Is T1ρ mapping an alternative to delayed gadolinium-enhanced MR imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 279:523–31 [Google Scholar]
  93. Bashir A, Gray ML, Burstein D. 93.  1996. Gd-DTPA2− as a measure of cartilage degradation. Magn. Reson. Med. 36:665–73 [Google Scholar]
  94. Bashir A, Gray M, Hartke J, Burstein D. 94.  1999. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. Med. 41:857–65 [Google Scholar]
  95. Baldassarri M, Goodwin JSL, Farley ML, Bierbaum BE, Goldring SR. 95.  et al. 2007. Relationship between cartilage stiffness and dGEMRIC index: correlation and prediction. J. Orthop. Res. 25:904–12 [Google Scholar]
  96. Laurent D, Wasvary J, Rudin M, O'Byrne E, Pellas T. 96.  2003. In vivo assessment of macromolecular content in articular cartilage of the goat knee. Magn. Reson. Med. 49:1037–46 [Google Scholar]
  97. Watanabe A, Wada Y, Obata T, Ueda T, Tamura M. 97.  et al. 2006. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 239:201–8 [Google Scholar]
  98. Lusic H, Grinstaff MW. 98.  2013. X-ray–computed tomography contrast agents. Chem. Rev. 113:1641–66 [Google Scholar]
  99. Nishii T, Tanaka H, Nakanishi K, Sugano N, Miki H, Yoshikawa H. 99.  2005. Fat-suppressed 3D spoiled gradient-echo MRI and MDCT arthrography of articular cartilage in patients with hip dysplasia. Am. J. Roentgenol. 185:379–85 [Google Scholar]
  100. Marenzana M, Hagen CK, Das Neves Borges P, Endrizzi M, Szafraniec MB. 100.  et al. 2012. Visualization of small lesions in rat cartilage by means of laboratory-based X-ray phase contrast imaging. Phys. Med. Biol. 57:8173–84 [Google Scholar]
  101. Marenzana M, Hagen CK, Das Neves Borges P, Endrizzi M, Szafraniec MB. 101.  et al. 2014. Synchrotron- and laboratory-based X-ray phase-contrast imaging for imaging mouse articular cartilage in the absence of radiopaque contrast agents. Philos. Trans. A 372:20130127 [Google Scholar]
  102. Ruan MZC, Dawson B, Jiang M-M, Gannon F, Heggeness M, Lee BHL. 102.  2013. Quantitative imaging of murine osteoarthritic cartilage by phase-contrast micro-computed tomography. Arthritis Rheum 65:388–96 [Google Scholar]
  103. Coan P, Bamberg F, Diemoz PC, Bravin A, Timpert K. 103.  et al. 2010. Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study. Investig. Radiol. 45:437–44 [Google Scholar]
  104. Lee YS, Heo E-A, Jun HY, Kang SH, Kim HS. 104.  et al. 2010. Articular cartilage imaging by the use of phase-contrast tomography in a collagen-induced arthritis mouse model. Acad. Radiol. 17:244–50 [Google Scholar]
  105. Nagarajan MB, Coan P, Huber MB, Diemoz PC, Glaser C, Wismüller A. 105.  2013. Computer-aided diagnosis in phase contrast imaging X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage. IEEE Trans. Biomed. Eng. 60:2896–903 [Google Scholar]
  106. Nagarajan MB, Coan P, Huber MB, Diemoz PC, Glaser C, Wismüller A. 106.  2014. Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features. J. Digit. Imaging 27:98–107 [Google Scholar]
  107. Coan P, Wagner A, Bravin A, Diemoz PC, Keyriläinen J, Mollenhauer J. 107.  2010. In vivo X-ray phase contrast analyzer–based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys. Med. Biol. 55:7649–62 [Google Scholar]
  108. Tanaka J, Nagashima M, Kido K, Hoshino Y, Kiyohara J. 108.  et al. 2013. Cadaveric and in vivo human joint imaging based on differential phase contrast by X-ray Talbot–Lau interferometry. Z. Med. Phys. 23:222–27 [Google Scholar]
  109. Lin ASP, Salazar-Noratto GE, Guldberg RE. 109.  2015. EPIC-μCT imaging of articular cartilage. Methods Mol. Biol. 1226:131–40 [Google Scholar]
  110. Stok KS, Besler BA, Steiner TH, Escudero AVV, Zulliger MA. 110.  et al. 2016. Three-dimensional quantitative morphometric analysis (QMA) for in situ joint and tissue assessment of osteoarthritis in a preclinical rabbit disease model. PLOS ONE 11:e0147564 [Google Scholar]
  111. Palmer AW, Guldberg RE, Levenston ME. 111.  2006. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. PNAS 103:19255–60 [Google Scholar]
  112. Bansal PN, Joshi NS, Entezari V, Malone BC, Stewart RC. 112.  et al. 2011. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J. Orthop. Res. 29:704–9 [Google Scholar]
  113. Kallioniemi AS, Jurvelin JS, Nieminen MT, Lammi MJ, Töyräs J. 113.  2007. Contrast agent enhanced pQCT of articular cartilage. Phys. Med. Biol. 52:1209–19 [Google Scholar]
  114. Silvast TS, Jurvelin JS, Aula AS, Lammi MJ, Töyräs J. 114.  2009. Contrast agent–enhanced computed tomography of articular cartilage: association with tissue composition and properties. Acta Radiol 50:78–85 [Google Scholar]
  115. Entezari V, Bansal PN, Stewart RC, Lakin BA, Grinstaff MW, Snyder BD. 115.  2014. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J. Orthop. Res. 32:1333–40 [Google Scholar]
  116. Bansal PN, Stewart RC, Entezari V, Snyder BD, Grinstaff MW. 116.  2011. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthr. Cartil. 19:970–76 [Google Scholar]
  117. Kulmala KM, Pulkkinen HJ, Rieppo L, Tiitu V, Kiviranta I. 117.  et al. 2012. Contrast-enhanced micro–computed tomography in evaluation of spontaneous repair of equine cartilage. Cartilage 3:235–44 [Google Scholar]
  118. Silvast TS, Jurvelin JS, Lammi MJ, Töyräs J. 118.  2009. pQCT study on diffusion and equilibrium distribution of iodinated anionic contrast agent in human articular cartilage—associations to matrix composition and integrity. Osteoarthr. Cartil. 17:26–32 [Google Scholar]
  119. Siebelt M, van Tiel J, Waarsing JH, Piscaer TM, van Straten M. 119.  et al. 2011. Clinically applied CT arthrography to measure the sulphated glycosaminoglycan content of cartilage. Osteoarthr. Cartil. 19:1183–89 [Google Scholar]
  120. Joshi NS, Bansal PN, Stewart RC, Snyder BD, Grinstaff MW. 120.  2009. Effect of contrast agent charge on visualization of articular cartilage using computed tomography: exploiting electrostatic interactions for improved sensitivity. J. Am. Chem. Soc. 131:13234–35 [Google Scholar]
  121. Aula AS, Jurvelin JS, Töyräs J. 121.  2009. Simultaneous computed tomography of articular cartilage and subchondral bone. Osteoarthr. Cartil. 17:1583–88 [Google Scholar]
  122. Piscaer TM, Waarsing JH, Kops N, Pavljasevic P, Verhaar JAN. 122.  et al. 2008. In vivo imaging of cartilage degeneration using μCT-arthrography. Osteoarthr. Cartil. 16:1011–17 [Google Scholar]
  123. Siebelt M, Waarsing JH, Kops N, Piscaer TM, Verhaar JAN. 123.  et al. 2011. Quantifying osteoarthritic cartilage changes accurately using in vivo μCT arthrography in three etiologically distinct rat models. J. Orthop. Res. 29:1788–94 [Google Scholar]
  124. Xie L, Lin ASP, Kundu K, Levenston ME, Murthy N, Guldberg RE. 124.  2012. Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis Rheum 64:1899–908 [Google Scholar]
  125. Piscaer TM, van Osch GJVM, Verhaar JAN, Weinans H. 125.  2008. Imaging of experimental osteoarthritis in small animal models. Biorheology 45:355–64 [Google Scholar]
  126. Stewart RC, Bansal PN, Entezari V, Lusic H, Nazarian RM. 126.  et al. 2013. Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–50 [Google Scholar]
  127. Henak CR, Abraham CL, Peters CL, Sanders RK, Weiss JA, Anderson AE. 127.  2014. Computed tomography arthrography with traction in the human hip for three-dimensional reconstruction of cartilage and the acetabular labrum. Clin. Radiol. 69:e381–91 [Google Scholar]
  128. Kokkonen HT, Suomalainen J-S, Joukainen A, Kröger H, Sirola J. 128.  et al. 2014. In vivo diagnostics of human knee cartilage lesions using delayed CBCT arthrography. J. Orthop. Res. 32:403–12 [Google Scholar]
  129. Halonen KS, Mononen ME, Jurvelin JS, Töyräs J, Salo J, Korhonen RK. 129.  2014. Deformation of articular cartilage during static loading of a knee joint: experimental and finite element analysis. J. Biomech. 47:2467–74 [Google Scholar]
  130. van Tiel J, Siebelt M, Reijman M, Bos P, Waarsing J. 130.  et al. 2016. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthr. Cartil. 24:1012–20 [Google Scholar]
  131. Brandt K, Radin E, Dieppe P, Van De Putte L. 131.  2006. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 65:1261–64 [Google Scholar]
  132. Radin EL. 132.  2005. Who gets osteoarthritis and why? An update. J. Rheumatol. 32:1136–38 [Google Scholar]
  133. Lin EC. 133.  2010. Radiation risk from medical imaging. Proc. Mayo Clin. Proc. 85:1142–46 [Google Scholar]
  134. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M. 134.  et al. 2009. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. Intern. Med. 169:2078–86 [Google Scholar]
  135. Gervaise A, Louis M, Batch T, Loeuille D, Noel A. 135.  et al. 2009. Dose reduction at CT of the lumbar spine using a 320-detector row scanner: initial results. J. Radiol. 91:779–85 [Google Scholar]
  136. Gleeson TG, Byrne B, Kenny P, Last J, Fitzpatrick P. 136.  et al. 2010. Image quality in low-dose multidetector computed tomography: a pilot study to assess feasibility and dose optimization in whole-body bone imaging. Can. Assoc. Radiol. J. 61:258–64 [Google Scholar]
  137. Freedman JD, Lusic H, Snyder BD, Grinstaff MW. 137.  2014. Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage. Angew. Chem. Int. Ed. Engl. 53:8406–10 [Google Scholar]
  138. Irie T, Oda K, Shiino A, Kubo M, Morikawa S. 138.  et al. 2013. Design, synthesis, and preliminary ex vivo and in vivo evaluation of cationic magnetic resonance contrast agent for rabbit articular cartilage imaging. Med. Chem. Commun. 4:1508–12 [Google Scholar]
  139. Freedman JD, Lusic H, Wiewiorski M, Farleye M, Snyder BD, Grinstaff MW. 139.  2015. A cationic gadolinium contrast agent for magnetic resonance imaging of cartilage. Chem. Commun. 51:11166–69 [Google Scholar]
  140. Nieminen H, Ylitalo T, Karhula S, Suuronen J-P, Kauppinen S. 140.  et al. 2015. Determining collagen distribution in articular cartilage using contrast-enhanced micro–computed tomography. Osteoarthr. Cartil. 23:1613–21 [Google Scholar]
  141. Leroux T, Ogilvie-Harris D, Dwyer T, Chahal J, Gandhi R. 141.  et al. 2014. The risk of knee arthroplasty following cruciate ligament reconstruction. J. Bone Joint Surg. 96:2–10 [Google Scholar]
  142. LaBella CR, Hennrikus W, Hewett TE, Brenner JS, Brookes MA. 142.  et al. 2014. Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics 133:1437–50e [Google Scholar]
  143. Dodwell ER, LaMont LE, Green DW, Pan TJ, Marx RG, Lyman S. 143.  2014. 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am. J. Sports Med. 42:675–80 [Google Scholar]
  144. Knutson K, Lewold S, Robertsson O, Lidgren L. 144.  1994. The Swedish knee arthroplasty register: a nation-wide study of 30,003 knees 1976–1992. Acta Orthop 65:375–86 [Google Scholar]
  145. Lohmander LS, Englund PM, Dahl LL, Roos EM. 145.  2007. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35:1756–69 [Google Scholar]
  146. Meunier A, Odensten M, Good L. 146.  2007. Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand. J. Med. Sci. Sports 17:230–37 [Google Scholar]
  147. Ferretti A, Conteduca F, De Carli A, Fontana M, Mariani P. 147.  1991. Osteoarthritis of the knee after ACL reconstruction. Int. Orthop. 15:367–71 [Google Scholar]
  148. Barenius B, Ponzer S, Shalabi A, Bujak R, Norlén L, Eriksson K. 148.  2014. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction a 14-year follow-up study of a randomized controlled trial. Am. J. Sports Med. 42:1049–57 [Google Scholar]
  149. Lohmander L, Östenberg A, Englund M, Roos H. 149.  2004. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–52 [Google Scholar]
  150. Wathier M, Lakin BA, Bansal PN, Stoddart SS, Snyder BD, Grinstaff MW. 150.  2013. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage. J. Am. Chem. Soc. 135:4930–33 [Google Scholar]
  151. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. 151.  2014. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11:21–34 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071516-044525
Loading
/content/journals/10.1146/annurev-bioeng-071516-044525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error