1932

Abstract

The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071516-044539
2017-06-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/19/1/annurev-bioeng-071516-044539.html?itemId=/content/journals/10.1146/annurev-bioeng-071516-044539&mimeType=html&fmt=ahah

Literature Cited

  1. Chung I, Lip GYH. 1.  2003. Virchow's triad revisited: blood constituents. Pathophysiol. Haemost. Thromb. 33:449–54 [Google Scholar]
  2. Lowe GDO. 2.  2003. Virchow's triad revisited: abnormal flow. Pathophysiol. Haemost. Thromb. 33:455–57 [Google Scholar]
  3. Davies MJ, Thomas A. 3.  1985. Plaque fissuring: the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J. 53:363–73 [Google Scholar]
  4. Falk E. 4.  1983. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50:127–34 [Google Scholar]
  5. Davies MJ, Thomas T, McMichael J, Richardson PD. 5.  1981. The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos. Trans. R. Soc. B 294:225–29 [Google Scholar]
  6. Bark DL, Ku DN. 6.  2010. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43:2970–77 [Google Scholar]
  7. Davies MJ, Thomas A. 7.  1984. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 310:1137–40 [Google Scholar]
  8. Lefkowitz JB. 8.  2008. Coagulation pathway and physiology. An Algorithmic Approach to Hemostasis Testing K Kottke-Marchant 3–12 Northfield, IL: Coll. Am. Pathol. [Google Scholar]
  9. Davie EW, Fujikawa K, Kisiel W. 9.  1991. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 30:10363–70 [Google Scholar]
  10. Cadroy Y, Horbett TA, Hanson S. 10.  1989. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J. Lab. Clin. Med. 113:436–48 [Google Scholar]
  11. Colace T, Muthard R, Diamond SL. 11.  2012. Thrombus growth and embolism on tissue factor–bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arterioscler. Thromb. Vasc. Biol. 32:1466–76 [Google Scholar]
  12. Brown CH, Leverett LB, Lewis W, Alferey CP Jr., Hellums JD. 12.  1975. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med. 86:462–71 [Google Scholar]
  13. Ramstack J, Zuckerman L, Mockros L. 13.  1979. Shear-induced activation of platelets. J. Biomech. 12:113–25 [Google Scholar]
  14. Hellums JD, Peterson DM, Stathopoulos NA, Moake JL, Giorgio TD. 14.  1987. Studies on the mechanisms of shear-induced platelet activation. Cerebral Ischemisa and Hemorheology A Hartmann, W Kuschinsky 80–89 Berlin: Springer [Google Scholar]
  15. Sakariassen KS, Bolhuis PA, Sixma J. 15.  1979. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII–von Willebrand factor bound to the subendothelium. Nature 279:636–38 [Google Scholar]
  16. Savage B, Saldivar E, Ruggeri ZM. 16.  1996. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–97 [Google Scholar]
  17. Jackson SP. 17.  2007. The growing complexity of platelet aggregation. Blood 109:5087–95 [Google Scholar]
  18. Sakariassen KS. 18.  2007. Thrombus formation on apex of arterial stenoses: the need for a fluid high shear stenosis diagnostic device. Future Med 3:193–201 [Google Scholar]
  19. Ruggeri ZM. 19.  2007. Von Willebrand factor: looking back and looking forward. Thromb. Haemost. 98:55–62 [Google Scholar]
  20. Wootton DM, Ku DN. 20.  1999. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329 [Google Scholar]
  21. Ku DN, Flannery CJ. 21.  2007. Development of a flow-through system to create occluding thrombus. Biorheology 44:273–84 [Google Scholar]
  22. Bark DL, Para AN, Ku DN. 22.  2012. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–50 [Google Scholar]
  23. Mehrabadi M, Casa LDC, Aidun CK, Ku DN. 23.  2016. A predictive model of high shear thrombus growth. Ann. Biomed. Eng 44:2339–50 [Google Scholar]
  24. Para AN, Bark DL, Lin A, Ku DN. 24.  2011. Rapid platelet accumulation leading to thrombotic occlusion. Ann. Biomed. Eng 39:1961–71 [Google Scholar]
  25. Neeves KB, Onasoga AA, Hansen RR, Lilly JS, Venckuaite D. 25.  et al. 2013. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays. PLOS ONE 8:e54680 [Google Scholar]
  26. Para AN, Ku DN. 26.  2013. A low-volume, single pass in-vitro system of high shear thrombosis in a stenosis. Thromb. Res. 131:418–24 [Google Scholar]
  27. Casa LDC, Ku DN. 27.  2014. High shear thrombus formation under pulsatile and steady flow. Cardiovasc. Eng. Tech. 5:154–63 [Google Scholar]
  28. Kobayashi S, Sekar K, Ku DN. 28.  2016. Occlusive thrombus growth at high shear rates: comparison of whole blood and platelet rich plasma at constant pressure. J. Thromb. Haemost. 14:Suppl. 1BR02 [Google Scholar]
  29. Zydney A, Colton C. 29.  1988. Augmented solute transport in the shear flow of a concentrated suspension. Physiochem. Hydrodyn. 10:77–96 [Google Scholar]
  30. Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A. 30.  et al. 2007. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. PNAS 104:7899–903 [Google Scholar]
  31. Holme PA, Ørvim U, Hamers MJAG, Solum NO, Brosstad FR. 31.  et al. 1997. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler. Thromb. Vasc. Biol. 17:646–53 [Google Scholar]
  32. Jordan A, David T, Homer-Vanniasinkam S, Graham A, Walker P. 32.  2004. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow. Biorheology 41:641–53 [Google Scholar]
  33. McCarty O, Ku DN, Sugimoto M, King M, Cosemans J, Neeves K. 33.  2016. Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH. J. Thromb. Haemost. 14:619–22 [Google Scholar]
  34. Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. 34.  1988. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler. Thromb. Vasc. Biol. 8:819–24 [Google Scholar]
  35. Tilles A, Eckstein E. 35.  1987. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:211–23 [Google Scholar]
  36. Eckstein E, Tilles A, Milero F. 36.  1988. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39 [Google Scholar]
  37. Reasor DA, Mehrabadi M, Ku DN, Aidun CK. 37.  2013. Determination of critical parameters in platelet margination. Ann. Biomed. Eng 41:238–49 [Google Scholar]
  38. Mehrabadi M. 38.  2014. Effects of red blood cells and shear rate on thrombus growth PhD thesis, Sch. Mech. Eng., Ga. Inst. Technol Atlanta:
  39. Siedlecki C, Lestini B, Kotte-Marchant K, Eppell S, Wilson D, Marchant R. 39.  1996. Shear-dependent change in the three-dimensional structure of human von Willebrand factor. Blood 88:2939–50 [Google Scholar]
  40. Jansson J, Kilsson T, Johnson O. 40.  1991. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br. Heart J. 66:351–55 [Google Scholar]
  41. Bongers T, de Maat M, van Goor M, Bhagwanbali V, van Vliet H. 41.  et al. 2006. High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 37:2671–77 [Google Scholar]
  42. Sadler J. 42.  1998. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67:395–424 [Google Scholar]
  43. Springer TA. 43.  2011. Biology and physics of von Willebrand factor concatamers. J. Thromb. Haemost. 9:Suppl. 1130–43 [Google Scholar]
  44. Dayananda KM, Singh I, Mondal N, Neelamegham S. 44.  2010. von Willebrand factor self-association on platelet GpIbα under hydrodynamic shear: effect on shear-induced platelet activation. Blood 116:3990–98 [Google Scholar]
  45. Ruggeri ZM, Orje J, Haberman R, Federici A, Reininger AJ. 45.  2006. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108:1903–10 [Google Scholar]
  46. Colace T, Diamond SL. 46.  2013. Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arterioscler. Thromb. Vasc. Biol. 33:105–13 [Google Scholar]
  47. Wellings PJ, Ku DN. 47.  2012. Mechanisms of platelet capture under very high shear. Cardiovasc. Eng. Tech. 3:161–70 [Google Scholar]
  48. Dong J-F. 48.  2005. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J. Thromb. Haemost. 3:1710–16 [Google Scholar]
  49. Rodeghiero F, Castaman G, Dini E. 49.  1987. Epidemiological investigation of the prevalence of von Willebrand's disease. Blood 69:454–59 [Google Scholar]
  50. Sadler JE, Mannucci P, Berntorp E, Bochkov N, Boulyjenkov V. 50.  et al. 2000. Impact, diagnosis and treatment of von Willebrand disease. Thromb. Haemost. 84:160–74 [Google Scholar]
  51. Bianchi V, Robles R, Alberio L, Furlan M, Lämmle B. 51.  2002. Von Willebrand factor–cleaving protease (ADAMTS13) in thrombocytopenic disorders: A severely deficient activity is specific for thrombotic thrombocytopenic purpura. Blood 100:710–13 [Google Scholar]
  52. Casa LDC, Deaton DH, Ku DN. 52.  2015. Role of high shear rate in thrombosis. J. Vasc. Surg. 61:1068–80 [Google Scholar]
  53. Casa LDC. 53.  2015. Role of von Willebrand factor in high shear thrombosis in a microfluidic device PhD thesis, Sch. Mech. Eng., Ga. Inst. Technol. Atlanta:
  54. Ulrichts H, Silence K, Schoolmeester A, de Jaegere P, Rossenu S. 54.  et al. 2011. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 118:757–65 [Google Scholar]
  55. Jennings LK. 55.  2009. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb. Haemost. 102:248–57 [Google Scholar]
  56. Kroll MH, Harris TS, Moake JL, Handin RI, Schafer AI. 56.  1991. von Willebrand factor binding to platelet GpIb initiates signals for platelet activation. J. Clin. Investig. 88:1568–73 [Google Scholar]
  57. Hellums J. 57.  1994. 1993 Whitaker Lecture: Biorheology in thrombosis research. Ann. Biomed. Eng 22:445–55 [Google Scholar]
  58. Dumont K, Vierendeels J, Kaminsky R, van Nooten G, Verdonck P, Bluestein D. 58.  2007. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129:558–65 [Google Scholar]
  59. Soares JS, Sheriff J, Bluestein D. 59.  2013. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech. Model. Mechanobiol. 12:1127–41 [Google Scholar]
  60. Jesty J, Yin W, Perrotta P, Bluestein D. 60.  2003. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14:143–49 [Google Scholar]
  61. Folie B, McIntire LV. 61.  1989. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys. J. 56:1121–41 [Google Scholar]
  62. Bark DL, Ku DN. 62.  2013. Platelet transport rates and binding kinetics at high shear over a thrombus. Biophys. J. 105:502–11 [Google Scholar]
  63. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF. 63.  1999. Computational simulation of platelet deposition and activation. II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng 27:449–58 [Google Scholar]
  64. Sorensen EN, Burgreen GW, Wagner WR, Antaki JF. 64.  2002. Simulation of platelet deposition in disturbed flow. Proceedings of the 24th Annual Conference on Engineering in Medicine and Biology and the Annual Fall Meeting of the Biomedical Engineering Society (EMBS/BMES 2002) 1390–91 Piscataway, NJ: IEEE [Google Scholar]
  65. Weller FF. 65.  2008. Platelet deposition in non-parallel flow: influence of shear stress and changes in surface reactivity. J. Math. Biol. 57:333–59 [Google Scholar]
  66. Filipovic N, Kojic M, Tsuda A. 66.  2008. Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. A 366:3265–79 [Google Scholar]
  67. Chen H, Fallah MA, Huck V, Angerer JI, Reininger AJ. 67.  et al. 2013. Blood-clotting-inspired reversible polymer–colloid composite assembly in flow. Nat. Commun. 4:1333 [Google Scholar]
  68. Fogelson AL. 68.  1984. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 56:111–34 [Google Scholar]
  69. Pivkin IV, Richardson PD, Karniadakis G. 69.  2006. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS 103:17164–69 [Google Scholar]
  70. Kamada H, Tsubota K, Nakamura M, Wada S, Ishikawa T, Yamaguchi T. 70.  2011. Computational study on effect of stenosis on primary thrombus formation. Biorheology 48:99–114 [Google Scholar]
  71. Mori D, Yano K, Tsubota K, Ishikawa T, Wada S, Yamaguchi T. 71.  2008. Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor. Thromb. Haemost. 99:108–15 [Google Scholar]
  72. Tokarev A, Sirakov I, Panasenko G, Volpert V, Shnol E. 72.  et al. 2012. Continuous mathematical model of platelet thrombus formation in blood flow. Russ. J. Numer. Anal. Math. Model. 27:191–212 [Google Scholar]
  73. Xu Z, Chen N, Kamocka MM, Rosen ED, Alber M. 73.  2008. A multiscale model of thrombus development. J. R. Soc. Interface 5:705–22 [Google Scholar]
  74. Flamm MH, Colace TV, Chatterjee MS, Jing H, Zhou S. 74.  et al. 2012. Multiscale prediction of patient-specific platelet function under flow. Blood 120:190–98 [Google Scholar]
  75. Fogelson AL, Neeves KB. 75.  2015. Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47:377–403 [Google Scholar]
  76. Leuser C, Schlottmann S, Siekmann R, Heidt M, Moritz A. 76.  et al. 2012. Use of the platelet function analyser PFA-100™ in juvenile pigs. Comp. Clin. Pathol. 21:761–67 [Google Scholar]
  77. Escudero C, Santos M, Buján J, Fuente M, Honduvilla NG. 77.  et al. 2001. Optical aggregometry versus the PFA-100: experimental studies in pigs treated with propofol. Platelets 12:133–37 [Google Scholar]
  78. Li M, Ku D, Forest C. 78.  2012. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:1355–62 [Google Scholar]
  79. Tynngård N, Lindahl TL, Ramström S. 79.  2015. Assays of different aspects of haemostasis—what do they measure?. Thromb. J. 13:8 [Google Scholar]
  80. Rechner AR. 80.  2011. Platelet function testing in clinical diagnostics. Hamostaseologie 31:79–87 [Google Scholar]
  81. Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. 81.  1995. Description of an in vitro platelet function analyzer—PFA-100™. Semin. Thromb. Hemost. 21:106–12 [Google Scholar]
  82. Kundu SK, Heilmann EJ, Sio R, Garcia C, Ostgaard RA. 82.  1996. Characterization of an in vitro platelet function analyzer, PFA-100™. Clin. Appl. Thromb. Hemost. 2:241–49 [Google Scholar]
  83. Yamamoto J, Yamashita T, Ikarugi H, Taka T, Hashimoto M. 83.  et al. 2003. Görög thrombosis test: a global in-vitro test of platelet function and thrombolysis. Blood Coagul. Fibrinolysis 14:31–39 [Google Scholar]
  84. Otsui K, Gorog D, Yamamoto J, Yoshioka T, Iwata S. 84.  et al. 2015. Global thrombosis test—a possible monitoring system for the effects and safety of dabigatran. Thromb. J. 13:39 [Google Scholar]
  85. Lordkipanidzé M, Pharand C, Schampaert E, Turgeon J, Palisaitis DA, Diodati JG. 85.  2007. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur. Heart J. 28:1702–8 [Google Scholar]
  86. Zwaginga JJ, Sakariassen KS, Nash G, King MR, Heemskerk JW. 86.  et al. 2006. Flow-based assays for global assessment of hemostasis. Part 2: Current methods and considerations for the future. J. Thromb. Haemost. 4:2716–17 [Google Scholar]
  87. Badimon L, Vilahur G. 87.  2008. Coronary atherothrombotic disease: progress in antiplatelet therapy. Rev. Esp. Cardiol. Engl. 61:501–13 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071516-044539
Loading
/content/journals/10.1146/annurev-bioeng-071516-044539
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error