1932

Abstract

Sulfation is a dynamic and complex posttranslational modification process. It can occur at various positions within the glycosaminoglycan (GAG) backbone and modulates extracellular signals such as cell–cell and cell–matrix interactions; different sulfation patterns have been identified for the same organs and cells during their development. Because of their high specificity in relation to function, GAG sulfation patterns are referred to as the sulfation code. This review explores the role of GAG sulfation in different biological processes at the cell, tissue, and organism levels. We address the connection between the sulfation patterns of GAGs and several physiological processes and discuss the misregulation of GAG sulfation and its involvement in several genetic and metabolic disorders. Finally, we present the therapeutic potential of GAGs and their synthetic mimics in the biomedical field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071516-044610
2017-06-21
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/19/1/annurev-bioeng-071516-044610.html?itemId=/content/journals/10.1146/annurev-bioeng-071516-044610&mimeType=html&fmt=ahah

Literature Cited

  1. Capila I, Linhardt RJ. 1.  2002. Heparin–protein interactions. Angew. Chem. Int. Ed. 41:391–412 [Google Scholar]
  2. Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M. 2.  et al. 2006. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat. Chem. Biol. 2:467–73 [Google Scholar]
  3. Habuchi H, Habuchi O, Kimata K. 3.  2004. Sulfation pattern in glycosaminoglycan: Does it have a code?. Glycoconj. J. 21:47–52 [Google Scholar]
  4. Farooqui AA. 4.  1980. 3′-Phosphoadenosine 5′-phosphosulfate metabolism in mammalian tissues. Int. J. Biochem. 12:529–36 [Google Scholar]
  5. Venkatachalam KV. 5.  2003. Human 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase: biochemistry, molecular biology and genetic deficiency. IUBMB Life 55:1–11 [Google Scholar]
  6. Ozeran JD, Westley J, Schwartz NB. 6.  1996. Identification and partial purification of PAPS translocase. Biochemistry 35:3695–703 [Google Scholar]
  7. Kusche-Gullberg M, Kjellén L. 7.  2003. Sulfotransferases in glycosaminoglycan biosynthesis. Curr. Opin. Struct. Biol. 13:605–11 [Google Scholar]
  8. Bowman KG, Bertozzi CR. 8.  1999. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6:R9–22 [Google Scholar]
  9. Mikami T, Kitagawa H. 9.  2013. Biosynthesis and function of chondroitin sulfate. Biochim. Biophys. Acta 1830:4719–33 [Google Scholar]
  10. Kobayashi M, Sugumaran G, Liu JA, Shworak NW, Silbert JE, Rosenberg RD. 10.  1999. Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan chondroitin sulfate. J. Biol. Chem. 274:10474–80 [Google Scholar]
  11. Thelin MA, Bartolini B, Axelsson J, Gustafsson R, Tykesson E. 11.  et al. 2013. Biological functions of iduronic acid in chondroitin/dermatan sulfate. FEBS J 280:2431–46 [Google Scholar]
  12. Lindahl U, Hook M. 12.  1978. Glycosaminoglycans and their binding to biological macromolecules. Annu. Rev. Biochem. 47:385–417 [Google Scholar]
  13. Pacheco B, Maccarana M, Malmström A. 13.  2009. Dermatan 4-O-sulfotransferase 1 is pivotal in the formation of iduronic acid blocks in dermatan sulfate. Glycobiology 19:1197–203 [Google Scholar]
  14. Funderburgh JL. 14.  2002. Keratan sulfate biosynthesis. IUBMB Life 54:187–94 [Google Scholar]
  15. Fukuta M, Inazawa J, Torii T, Tsuzuki K, Shimada E, Habuchi O. 15.  1997. Molecular cloning and characterization of human keratan sulfate Gal-6-sulfotransferase. J. Biol. Chem. 272:32321–28 [Google Scholar]
  16. Bishop JR, Schuksz M, Esko JD. 16.  2007. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–37 [Google Scholar]
  17. Esko JD, Selleck SB. 17.  2002. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71:435–71 [Google Scholar]
  18. Mulloy B, Linhardt RJ. 18.  2001. Order out of complexity—protein structures that interact with heparin. Curr. Opin. Struct. Biol. 11:623–28 [Google Scholar]
  19. Linhardt RJ, Toida T. 19.  2004. Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37:431–38 [Google Scholar]
  20. Ganguly C, Thakurata GG, Mukherjee KL, Bhattacharya N. 20.  2016. Mucopolysaccharides, water and electrolytes of human fetal organs. Human Fetal Growth and Development N Bhattacharya, PG Stubblefield 99–120 Cham, Switz.: Springer [Google Scholar]
  21. Lensen JFM, Rops ALWMM, Wijnhoven TJM, Hafmans T, Feitz WFJ. 21.  et al. 2005. Localization and functional characterization of glycosaminoglycan domains in the normal human kidney as revealed by phage display–derived single chain antibodies. J. Am. Soc. Nephrol. 16:1279–88 [Google Scholar]
  22. Mizumoto S, Yamada S, Sugahara K. 22.  2015. Molecular interactions between chondroitin–dermatan sulfate and growth factors/receptors/matrix proteins. Curr. Opin. Struct. Biol. 34:35–42 [Google Scholar]
  23. Sasisekharan R, Raman R, Prabhakar V. 23.  2006. Glycomics approach to structure–function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng. 8:181–231 [Google Scholar]
  24. Amorim S, Pires RA, Soares da Costa D, Reis RL, Pashkuleva I. 24.  2013. Interactions between exogenous FGF-2 and sulfonic groups: in situ characterization and impact on the morphology of human adipose-derived stem cells. Langmuir 29:7983–92 [Google Scholar]
  25. Jemth P, Kreuger J, Kusche-Gullberg M, Sturiale L, Giménez-Gallego G, Lindahl U. 25.  2002. Biosynthetic oligosaccharide libraries for identification of protein-binding heparan sulfate motifs—exploring the structural diversity by screening for fibroblast growth factor (FGF)1 and FGF2 binding. J. Biol. Chem. 277:30567–73 [Google Scholar]
  26. Xu D, Esko JD. 26.  2014. Demystifying heparan sulfate–protein interactions. Annu. Rev. Biochem. 83:129–57 [Google Scholar]
  27. Flaumenhaft R, Moscatelli D, Rifkin DB. 27.  1990. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J. Cell Biol. 111:1651–59 [Google Scholar]
  28. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. 28.  1996. Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–20 [Google Scholar]
  29. Casu B, Oreste P, Torri G, Zoppetti G, Choay J. 29.  et al. 1981. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III–binding sequence. Chemical and C-13 nuclear-magnetic-resonance studies. Biochem. J. 197:599–609 [Google Scholar]
  30. Atha DH, Stephens AW, Rosenberg RD. 30.  1984. Evaluation of critical groups required for the binding of heparin to antithrombin. PNAS Biol. Sci. 811030–34
  31. Smith RAA, Meade K, Pickford CE, Holley RJ, Merry CLR. 31.  2011. Glycosaminoglycans as regulators of stem cell differentiation. Biochem. Soc. Trans. 39383–87
  32. Gasimli L, Hickey AM, Yang B, Li G, dela Rosa M. 32.  et al. 2014. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim. Biophys. Acta 1840:1993–2003 [Google Scholar]
  33. Pantazopoulos H, Murray EA, Berretta S. 33.  2008. Total number, distribution, and phenotype of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. Brain Res 1207:84–95 [Google Scholar]
  34. Soleman S, Filippov MA, Dityatev A, Fawcett JW. 34.  2013. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253:194–213 [Google Scholar]
  35. Baig S, Wilcock GK, Love S. 35.  2005. Loss of perineuronal net N-acetylgalactosamine in Alzheimer's disease. Acta Neuropathol 110:393–401 [Google Scholar]
  36. Lendvai D, Morawski M, Negyessy L, Gati G, Jager C. 36.  et al. 2013. Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's disease. Acta Neuropathol 125:215–29 [Google Scholar]
  37. McRae PA, Porter BE. 37.  2012. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem. Int. 61:963–72 [Google Scholar]
  38. Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET. 38.  2015. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr. Res. 167:18–27 [Google Scholar]
  39. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E. 39.  et al. 2013. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol. Psychiatry 74427–35
  40. Sugahara K, Mikami T. 40.  2007. Chondroitin/dermatan sulfate in the central nervous system. Curr. Opin. Struct. Biol. 17:536–45 [Google Scholar]
  41. Miao Q-L, Ye Q, Zhang X-H. 41.  2014. Perineuronal net, CSPG receptor and their regulation of neural plasticity. Acta Physiol. Sin. 66387–97
  42. Rhodes KE, Fawcett JW. 42.  2004. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS?. J. Anat. 204:33–48 [Google Scholar]
  43. Bovolenta P, Fernaud-Espinosa I. 43.  2000. Nervous system proteoglycans as modulators of neurite outgrowth. Prog. Neurobiol. 61:113–32 [Google Scholar]
  44. Hartmann U, Maurer P. 44.  2001. Proteoglycans in the nervous system—the quest for functional roles in vivo. Matrix Biol 20:23–35 [Google Scholar]
  45. Zhang FM, Zhang ZQ, Lin XF, Beenken A, Eliseenkova AV. 45.  et al. 2009. Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor·fibroblast growth factor receptor complexes. Biochemistry 48:8379–86 [Google Scholar]
  46. Cardin AD, Weintraub HJR. 46.  1989. Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 9:21–32 [Google Scholar]
  47. Björk I, Lindahl U. 47.  1982. Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem. 48:161–82 [Google Scholar]
  48. Rosenber RD, Damus PS. 48.  1973. Purification and mechanism of action of human antithrombin–heparin cofactor. J. Biol. Chem. 248:6490–505 [Google Scholar]
  49. Mitsi M, Hong ZN, Costello CE, Nugent MA. 49.  2006. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry 45:10319–28 [Google Scholar]
  50. Martino MM, Hubbell JA. 50.  2010. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor–binding domain. FASEB J 24:4711–21 [Google Scholar]
  51. Morgan MR, Humphries MJ, Bass MD. 51.  2007. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8:957–69 [Google Scholar]
  52. Kirkbride KC, Ray BN, Blobe GC. 52.  2005. Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem. Sci. 30:611–21 [Google Scholar]
  53. Mythreye K, Blobe GC. 53.  2009. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell. Signal. 21:1548–58 [Google Scholar]
  54. Yamada S, Sugahara K, Ozbek S. 54.  2011. Evolution of glycosaminoglycans: comparative biochemical study. Commun. Integr. Biol. 4:150–58 [Google Scholar]
  55. Dyck SM, Karimi-Abdolrezaee S. 55.  2015. Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp. Neurol. 269:169–87 [Google Scholar]
  56. Rowlands D, Sugahara K, Kwok JCF. 56.  2015. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules 20:3527–48 [Google Scholar]
  57. Bandtlow CE, Zimmermann DR. 57.  2000. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 801267–90
  58. Kostović I, Jovanov-Milošević N, Radoš M, Sedmak G, Benjak V. 58.  et al. 2014. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct. Funct. 219:231–53 [Google Scholar]
  59. Bertolotto A, Rocca G, Schiffer D. 59.  1990. Chondroitin-4-sulfate proteoglycan forms an extracellular network in human and rat central nervous system. J. Neurol. Sci. 100:113–23 [Google Scholar]
  60. Smith PD, Coulson-Thomas VJ, Foscarin S, Kwok JCF, Fawcett JW. 60.  2015. “GAG-ing with the neuron”: the role of glycosaminoglycan patterning in the central nervous system. Exp. Neurol. 274:100–14 [Google Scholar]
  61. Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P. 61.  et al. 2008. Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J. Cell Sci. 121:3083–91 [Google Scholar]
  62. Bayliss MT, Osborne D, Woodhouse S, Davidson C. 62.  1999. Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274:15892–900 [Google Scholar]
  63. Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JCW, Pitsillides AA. 63.  2003. Age-related changes in the response of human articular cartilage to IL-1α and transforming growth factor-β (TGF-β). Chondrocytes exhibit a diminished sensitivity to TGF-β. J. Biol. Chem. 278:53063–71 [Google Scholar]
  64. Mania VM, Kallivokas AG, Malavaki C, Asimakopoulou AP, Kanakis J. 64.  et al. 2009. A comparative biochemical analysis of glycosaminoglycans and proteoglycans in human orthotopic and heterotopic bone. IUBMB Life 61:447–52 [Google Scholar]
  65. Smith AJ, Singhrao SK, Newman GR, Waddington RJ, Embery G. 65.  1997. A biochemical and immuno-electron microscopical analysis of chondroitin sulphate–rich proteoglycans in human alveolar bone. Histochem. J. 29:1–9 [Google Scholar]
  66. Schachter H, Freeze HH. 66.  2009. Glycosylation diseases: Quo vadis?. Biochim. Biophys. Acta 1792:925–30 [Google Scholar]
  67. Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A. 67.  et al. 2004. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. PNAS 101:10155–60 [Google Scholar]
  68. Hermanns P, Unger S, Rossi A, Perez-Aytes A, Cortina H. 68.  et al. 2008. Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am. J. Hum. Genet. 82:1368–74 [Google Scholar]
  69. Lewis D, Davies Y, Nieduszynski IA, Lawrence F, Quantock AJ. 69.  et al. 2000. Ultrastructural localization of sulfated and unsulfated keratan sulfate in normal and macular corneal dystrophy type I. Glycobiology 10:305–12 [Google Scholar]
  70. Saito T, Nishida K, Nakayama J, Akama TO, Fukuda MN. 70.  et al. 2008. Sulfation patterns of keratan sulfate in different macular corneal dystrophy immunophenotypes using three different probes. Br. J. Ophthalmol. 92:1434–36 [Google Scholar]
  71. Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K. 71.  et al. 2000. Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nat. Genet. 26:237–41 [Google Scholar]
  72. Cabral RM, Kurban M, Wajid M, Shimomura Y, Petukhova L, Christiano AM. 72.  2012. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome. Genomics 99202–8
  73. Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A. 73.  et al. 2010. Loss-of-function mutations of CHST14 in a new type of Ehlers–Danlos syndrome. Hum. Mutat. 31:966–74 [Google Scholar]
  74. Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S. 74.  et al. 2010. Musculocontractural Ehlers–Danlos syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum. Mutat. 311233–39
  75. Dundar M, Müller T, Zhang Q, Pan J, Steinmann B. 75.  et al. 2009. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb–clubfoot syndrome. Am. J. Hum. Genet. 85873–82
  76. Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X. 76.  et al. 2011. Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. PNAS 108:11524–29 [Google Scholar]
  77. Castillo GM, Lukito W, Wight TN, Snow AD. 77.  1999. The sulfate moieties of glycosaminoglycans are critical for the enhancement of β-amyloid protein fibril formation. J. Neurochem. 721681–87
  78. Iannuzzi C, Irace G, Sirangelo I. 78.  2015. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity. Molecules 20:2510–28 [Google Scholar]
  79. van Horssen J, Wesseling P, van den Heuvel LPWJ, de Waal RMW, Verbeek MM. 79.  2003. Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurol. 2:482–92 [Google Scholar]
  80. Díaz-Nido J, Wandosell F, Avila J. 80.  2002. Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23:1323–32 [Google Scholar]
  81. Lindahl B, Eriksson L, Lindahl U. 81.  1995. Structure of heparan sulfate from human brain, with special regard to Alzheimer's disease. Biochem. J. 306:177–84 [Google Scholar]
  82. Lindahl B, Westling C, Giménez-Gallego G, Lindahl U, Salmivirta M. 82.  1999. Common binding sites for β-amyloid fibrils and fibroblast growth factor 2 in heparan sulfate from human cerebral cortex. J. Biol. Chem. 274:30631–35 [Google Scholar]
  83. McLaurin J, Franklin T, Zhang XQ, Deng JP, Fraser PE. 83.  1999. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans. Effects on fibril nucleation and growth. Eur. J. Biochem. 266:1101–10 [Google Scholar]
  84. Morawski M, Brückner MK, Riederer P, Brückner G, Arendt T. 84.  2004. Perineuronal nets potentially protect against oxidative stress. Exp. Neurol. 188:309–15 [Google Scholar]
  85. Viapiano MS, Matthews RT. 85.  2006. From barriers to bridges: chondroitin sulfate proteoglycans in neuropathology. Trends Mol. Med. 12:488–96 [Google Scholar]
  86. Fernández-Vega I, García O, Crespo A, Castañón S, Menéndez P. 86.  et al. 2013. Specific genes involved in synthesis and editing of heparan sulfate proteoglycans show altered expression patterns in breast cancer. Breast Cancer Res. 13:R58 [Google Scholar]
  87. Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T. 87.  et al. 2011. Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast Cancer Res. 13:R58 [Google Scholar]
  88. Backen AC, Cole CL, Lau SC, Clamp AR, McVey R. 88.  et al. 2007. Heparan sulphate synthetic and editing enzymes in ovarian cancer. Br. J. Cancer 961544–48
  89. Vallen MJE, Massuger LFAG, ten Dam GB, Bulten J, van Kuppevelt TH. 89.  2012. Highly sulfated chondroitin sulfates, a novel class of prognostic biomarkers in ovarian cancer tissue. Gynecol. Oncol. 127:202–09 [Google Scholar]
  90. Kalathas D, Theocharis DA, Bounias D, Kyriakopoulou D, Papageorgakopoulou N. 90.  et al. 2009. Alterations of glycosaminoglycan disaccharide content and composition in colorectal cancer: structural and expressional studies. Oncol. Rep. 22:369–75 [Google Scholar]
  91. Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K. 91.  et al. 1997. Elevated stromal chondroitin sulfate glycosaminoglycan predicts progression in early-stage prostate cancer. Clin. Cancer Res. 3983–92
  92. Ricciardelli C, Sakko AJ, Stahl J, Tilley WD, Marshall VR, Horsfall DJ. 92.  2009. Prostatic chondroitin sulfate is increased in patients with metastatic disease but does not predict survival outcome. Prostate 69761–69
  93. Teng YHF, Tan PH, Chia SJ, Zam NABM, Lau WKO. 93.  et al. 2008. Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer. Mod. Pathol. 21:893–901 [Google Scholar]
  94. Sakko AJ, Butler MS, Byers S, Reinboth BJ, Stahl J. 94.  et al. 2008. Immunohistochemical level of unsulfated chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse. Cancer Epidemiol. Biomark. Prev. 17:2488–97 [Google Scholar]
  95. Theocharis AD, Vynios DH, Papageorgakopoulou N, Skandalis SS, Theocharis DA. 95.  2003. Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int. J. Biochem. Cell Biol. 35:376–90 [Google Scholar]
  96. Weyers A, Yang B, Yoon DS, Park JH, Zhang F. 96.  et al. 2012. A structural analysis of glycosaminoglycans from lethal and nonlethal breast cancer tissues: toward a novel class of theragnostics for personalized medicine in oncology?. OMICS 16:79–89 [Google Scholar]
  97. Vynios DH, Theocharis DA, Papageorgakopoulou N, Papadas TA, Mastronikolis NS. 97.  et al. 2008. Biochemical changes of extracellular proteoglycans in squamous cell laryngeal carcinoma. Connect. Tissue Res. 49:239–43 [Google Scholar]
  98. Fuster MM, Esko JD. 98.  2005. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–42 [Google Scholar]
  99. Iozzo RV, Sanderson RD. 99.  2011. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 15:1013–31 [Google Scholar]
  100. ten Dam GB, van de Westerlo EMA, Purushothaman A, Stan RV, Bulten J. 100.  et al. 2007. Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding. Am. J. Pathol. 171:1324–33 [Google Scholar]
  101. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW. 101.  et al. 1998. The cell-surface heparan sulfate proteoglycan glypican 1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J. Clin. Investig. 102:1662–73 [Google Scholar]
  102. Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. 102.  2013. Proteoglycans and their roles in brain cancer. FEBS J 280:2399–417 [Google Scholar]
  103. Nurcombe V, Smart CE, Chipperfield H, Cool SM, Boilly B, Hondermarck H. 103.  2000. The proliferative and migratory activities of breast cancer cells can be differentially regulated by heparan sulfates. J. Biol. Chem. 275:30009–18 [Google Scholar]
  104. Sanderson RD. 104.  2001. Heparan sulfate proteoglycans in invasion and metastasis. Semin. Cell Dev. Biol. 12:89–98 [Google Scholar]
  105. Goldshmidt O, Zcharia E, Abramovitch R, Metzger S, Aingorn H. 105.  et al. 2002. Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis. PNAS 99:10031–36 [Google Scholar]
  106. Pashkuleva I, Reis RL. 106.  2010. Sugars: burden or biomaterials of the future?. J. Mater. Chem. 20:8803–18 [Google Scholar]
  107. Pomin VH. 107.  2015. A dilemma in the glycosaminoglycan-based therapy: synthetic or naturally unique molecules?. Med. Res. Rev 35:1195–219 [Google Scholar]
  108. Karst NA, Linhardt RJ. 108.  2003. Recent chemical and enzymatic approaches to the synthesis of glycosaminoglycan oligosaccharides. Curr. Med. Chem 10:1993–2031 [Google Scholar]
  109. Boltje TJ, Buskas T, Boons GJ. 109.  2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1:611–22 [Google Scholar]
  110. Petitou M, van Boeckel CAA. 110.  2004. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next?. Angew. Chem. Int. Ed. 433118–33
  111. Disney MD, Seeberger PH. 111.  2004. The use of carbohydrate microarrays to study carbohydrate–cell interactions and to detect pathogens. Chem. Biol. 11:1701–7 [Google Scholar]
  112. Soares da Costa D, Pires RA, Frias AM, Reis RL, Pashkuleva I. 112.  2012. Sulfonic groups induce formation of filopodia in mesenchymal stem cells. J. Mater. Chem. 22:7172–78 [Google Scholar]
  113. Araújo AR, Soares da Costa DP, Amorim S, Reis RL, Pires RA, Pashkuleva I. 113.  2016. Surfaces mimicking glycosaminoglycans trigger different response of stem cells via distinct fibronectin adsorption and reorganization. ACS Appl. Mater. Interfaces 828428–36
  114. Freudenberg U, Liang Y, Kiick KL, Werner C. 114.  2016. Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv. Mater. 288861–91
  115. Brockhausen I, Anastassiades TP. 115.  2008. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev. Clin. Immunol. 4:173–91 [Google Scholar]
  116. Altgarde N, Nileback E, de Battice L, Pashkuleva I, Reis RL. 116.  et al. 2013. Probing the biofunctionality of biotinylated hyaluronan and chondroitin sulfate by hyaluronidase degradation and aggrecan interaction. Acta Biomater 9:8158–66 [Google Scholar]
  117. Migliorini E, Thakar D, Sadir R, Pleiner T, Baleux F. 117.  et al. 2014. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials 35:8903–15 [Google Scholar]
  118. Thakar D, Migliorini E, Coche-Guerente L, Sadir R, Lortat-Jacob H. 118.  et al. 2014. A quartz crystal microbalance method to study the terminal functionalization of glycosaminoglycans. Chem. Commun. 50:15148–51 [Google Scholar]
  119. Novoa-Carballal R, Silva C, Möller S, Schnabelrauch M, Reis RL, Pashkuleva I. 119.  2014. Tunable nano-carriers from clicked glycosaminoglycan block copolymers. J. Mater. Chem. B 2:4177–84 [Google Scholar]
  120. Salbach-Hirsch J, Ziegler N, Thiele S, Möller S, Schnabelrauch M. 120.  et al. 2014. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J. Cell. Biochem. 115:1101–11 [Google Scholar]
  121. Hintze V, Samsonov SA, Anselmi M, Möller S, Becher J. 121.  et al. 2014. Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein 2 (BMP-2) and alter the interaction profile with its receptor. Biomacromolecules 15:3083–92 [Google Scholar]
  122. Mhanna RF, Voros J, Zenobi-Wong M. 122.  2011. Layer-by-layer films made from extracellular matrix macromolecules on silicone substrates. Biomacromolecules 12:609–16 [Google Scholar]
  123. Francesko A, Soares da Costa D, Lisboa P, Reis RL, Pashkuleva I, Tzanov T. 123.  2012. GAGs-thiolated chitosan assemblies for chronic wounds treatment: control of enzyme activity and cell attachment. J. Mater. Chem. 22:19438–46 [Google Scholar]
  124. Teixeira R, Reis RL, Pashkuleva I. 124.  2016. Influence of the sulfation degree of glycosaminoglycans on their multilayer assembly with poly-l-lysine. Colloids Surf. B 145:567–75 [Google Scholar]
  125. Salbach J, Kliemt S, Rauner M, Rachner TD, Goettsch C. 125.  et al. 2012. The effect of the degree of sulfation of glycosaminoglycans on osteoclast function and signaling pathways. Biomaterials 33:8418–29 [Google Scholar]
  126. van der Smissen A, Hintze V, Scharnweber D, Möller S, Schnabelrauch M. 126.  et al. 2011. Growth promoting substrates for human dermal fibroblasts provided by artificial extracellular matrices composed of collagen I and sulfated glycosaminoglycans. Biomaterials 32:8938–46 [Google Scholar]
  127. Azevedo HS, Pashkuleva I. 127.  2015. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv. Drug Deliv. Rev. 94:63–76 [Google Scholar]
  128. Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ. 128.  2014. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10:214–23 [Google Scholar]
  129. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S. 129.  et al. 2007. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 6:385–92 [Google Scholar]
  130. Grenier S, Donnelly PE, Gittens J, Torzilli PA. 130.  2015. Resurfacing damaged articular cartilage to restore compressive properties. J. Biomech. 48:122–29 [Google Scholar]
  131. Conovaloff A, Panitch A. 131.  2011. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration. J. Neural Eng. 8:056003 [Google Scholar]
  132. Cai SS, Liu YC, Shu XZ, Prestwich GD. 132.  2005. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–67 [Google Scholar]
  133. Kim M, Lee JY, Jones CN, Revzin A, Tae G. 133.  2010. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 31:3596–603 [Google Scholar]
  134. Lee H, McKeon RJ, Bellamkonda RV. 134.  2010. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. PNAS 107:3340–45 [Google Scholar]
  135. Persiani S, Roda E, Rovati LC, Locatelli M, Giacovelli G, Roda A. 135.  2005. Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthr. Cartil. 13:1041–49 [Google Scholar]
  136. Dodge GR, Jimenez SA. 136.  2003. Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase 3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthr. Cartil. 11:424–32 [Google Scholar]
  137. Fransen M, Agaliotis M, Nairn L, Votrubec M, Bridgett L. 137.  et al. 2015. Glucosamine and chondroitin for knee osteoarthritis: a double-blind randomised placebo-controlled clinical trial evaluating single and combination regimens. Ann. Rheum. Dis. 74:851–58 [Google Scholar]
  138. Hochberg MC, Martel-Pelletier J, Monfort J, Möller I, Castillo JR. 138.  et al. 2016. Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann. Rheum. Dis. 75:37–44 [Google Scholar]
  139. Yamada S, Sugahara K. 139.  2008. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr. Drug Discov. Technol. 5:289–301 [Google Scholar]
  140. Salbach J, Rachner T, Rauner M, Hempel U, Anderegg U. 140.  et al. 2012. Regenerative potential of glycosaminoglycans for skin and bone. J. Mol. Med. 90:625–35 [Google Scholar]
  141. Ariga T, Miyatake T, Yu RK. 141.  2010. Role of proteoglycans and glycosaminoglycans in the pathogenesis of Alzheimer's disease and related disorders: amyloidogenesis and therapeutic strategies—a review. J. Neurosci. Res. 88:2303–15 [Google Scholar]
  142. Leveugle B, Scanameo A, Ding W, Fillit H. 142.  1994. Binding of heparan sulfate glycosaminoglycan to β-amyloid peptide: inhibition by potentially therapeutic polysulfated compounds. NeuroReport 5:1389–92 [Google Scholar]
  143. Aisen PS, Saumier D, Briand R, Laurin J, Gervais F. 143.  et al. 2006. A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology 67:1757–63 [Google Scholar]
  144. Santa-Maria I, Hernández F, Del Rio J, Moreno FJ, Avila J. 144.  2007. Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau. Mol. Neurodegener. 2:17 [Google Scholar]
  145. Dudas B, Rose M, Cornelli U, Pavlovich A, Hanin I. 145.  2008. Neuroprotective properties of glycosaminoglycans: potential treatment for neurodegenerative disorders. Neurodegener. Dis. 5:200–5 [Google Scholar]
  146. Kisilevsky R, Lemieux LJ, Fraser PE, Kong XQ, Hultin PG, Szarek WA. 146.  1995. Arresting amyloidosis in vivo using small-molecule anionic sulfonates or sulfates—implications for Alzheimer's disease. Nat. Med. 1:143–48 [Google Scholar]
  147. Lee AY, Levine MN, Baker RI, Bowden C, Kakkar AK. 147.  et al. 2003. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N. Engl. J. Med. 349:146–53 [Google Scholar]
  148. Schnoor R, Maas SLN, Broekman MLD. 148.  2015. Heparin in malignant glioma: review of preclinical studies and clinical results. J. Neuro-Oncol. 124:151–56 [Google Scholar]
  149. Varki NM, Varki A. 149.  2002. Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Semin. Thromb. Hemost. 28:53–66 [Google Scholar]
  150. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. 150.  2001. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. PNAS Biol. Sci. 98:3352–57 [Google Scholar]
  151. Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H. 151.  et al. 2005. Clinical significance of heparin-binding epidermal growth factor–like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clin. Cancer Res. 11:4783–92 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071516-044610
Loading
/content/journals/10.1146/annurev-bioeng-071516-044610
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error