1932

Abstract

Heart disease is the leading cause of morbidity and mortality worldwide, and regenerative therapies that replace damaged myocardium could benefit millions of patients annually. The many cell types in the heart, including cardiomyocytes, endothelial cells, vascular smooth muscle cells, pericytes, and cardiac fibroblasts, communicate via intercellular signaling and modulate each other's function. Although much progress has been made in generating cells of the cardiovascular lineage from human pluripotent stem cells, a major challenge now is creating the tissue architecture to integrate a microvascular circulation and afferent arterioles into such an engineered tissue. Recent advances in cardiac and vascular tissue engineering will move us closer to the goal of generating functionally mature tissue. Using the biology of the myocardium as the foundation for designing engineered tissue and addressing the challenges to implantation and integration, we can bridge the gap from bench to bedside for a clinically tractable engineered cardiac tissue.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071812-152344
2014-07-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071812-152344.html?itemId=/content/journals/10.1146/annurev-bioeng-071812-152344&mimeType=html&fmt=ahah

Literature Cited

  1. Laflamme MA, Murry CE. 1.  2011. Heart regeneration. Nature 473:326–35 [Google Scholar]
  2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K. 2.  et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–128 [Google Scholar]
  3. Murry CE, Reinecke H, Pabon LM. 3.  2006. Regeneration gaps: observations on stem cells and cardiac repair. J. Am. Coll. Cardiol. 47:1777–85 [Google Scholar]
  4. Sacks MS, Schoen FJ, Mayer JE. 4.  2009. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313 [Google Scholar]
  5. Adler CP, Friedburg H. 5.  1986. Myocardial DNA content, ploidy level and cell number in geriatric hearts: post-mortem examinations of human myocardium in old age. J. Mol. Cell. Cardiol. 18:39–53 [Google Scholar]
  6. Rodeheffer RJ, Gerstenblith G, Becker LC, Fleg JL, Weisfeldt ML, Lakatta EG. 6.  1984. Exercise cardiac output is maintained with advancing age in healthy human subjects: Cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation 69:203–13 [Google Scholar]
  7. Young AA, Cowan BR. 7.  2012. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14:49 [Google Scholar]
  8. Ausoni S, Sartore S. 8.  2009. The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol. Med. 15:543–52 [Google Scholar]
  9. Nees S, Weiss DR, Juchem G. 9.  2013. Focus on cardiac pericytes. Pflügers Arch. 465:779–87 [Google Scholar]
  10. Kaneko N, Matsuda R, Toda M, Shimamoto K. 10.  2011. Three-dimensional reconstruction of the human capillary network and the intramyocardial micronecrosis. Am. J. Physiol. Heart Circ. Physiol. 300:H754–61 [Google Scholar]
  11. Stratman AN, Davis GE. 11.  2012. Endothelial cell–pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc. Microanal. 18:68–80 [Google Scholar]
  12. Murry CE, Keller G. 12.  2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–80 [Google Scholar]
  13. Srivastava D. 13.  2006. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126:1037–48 [Google Scholar]
  14. Buckingham M, Meilhac S, Zaffran S. 14.  2005. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6:826–35 [Google Scholar]
  15. Perez-Pomares JM, de la Pompa JL. 15.  2011. Signaling during epicardium and coronary vessel development. Circ. Res. 109:1429–42 [Google Scholar]
  16. Tian X, Hu T, Zhang H, He L, Huang X. 16.  et al. 2013. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 23:1075–90 [Google Scholar]
  17. Cossette S, Misra R. 17.  2011. The identification of different endothelial cell populations within the mouse proepicardium. Dev. Dyn. 240:2344–53 [Google Scholar]
  18. Tomanek RJ. 18.  1996. Formation of the coronary vasculature: a brief review. Cardiovasc. Res. 31:E46–51 [Google Scholar]
  19. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M. 19.  et al. 2011. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–40 [Google Scholar]
  20. Ye L, Zimmermann WH, Garry DJ, Zhang J. 20.  2013. Patching the heart: cardiac repair from within and outside. Circ. Res. 113:922–32 [Google Scholar]
  21. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. 21.  1999. Survival and function of bioengineered cardiac grafts. Circulation 100II63–69
  22. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA. 22.  et al. 2007. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25:1015–24 [Google Scholar]
  23. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ. 23.  et al. 2008. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–28 [Google Scholar]
  24. Burridge PW, Keller G, Gold JD, Wu JC. 24.  2012. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28 [Google Scholar]
  25. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. 25.  2010. Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS ONE 5:e11134 [Google Scholar]
  26. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL. 26.  et al. 2007. Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:9685–90 [Google Scholar]
  27. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T. 27.  et al. 2006. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl. Acad. Sci. USA 103:19812–17 [Google Scholar]
  28. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB. 28.  et al. 2012. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109:E1848–57 [Google Scholar]
  29. Kim C, Majdi M, Xia P, Wei KA, Talantova M. 29.  et al. 2010. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev. 19:783–95 [Google Scholar]
  30. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG. 30.  et al. 2011. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29:1011–18 [Google Scholar]
  31. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N. 31.  et al. 2011. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE 6:e23657 [Google Scholar]
  32. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS. 32.  et al. 2010. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7:61–66 [Google Scholar]
  33. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y. 33.  et al. 2013. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell–derived cardiomyocytes. Cell Stem Cell 12:127–37 [Google Scholar]
  34. Fernandes S, Naumova AV, Zhu WZ, Laflamme MA, Gold J, Murry CE. 34.  2010. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J. Mol. Cell. Cardiol. 49:941–49 [Google Scholar]
  35. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V. 35.  et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–98 [Google Scholar]
  36. Song K, Nam YJ, Luo X, Qi X, Tan W. 36.  et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604 [Google Scholar]
  37. Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M. 37.  et al. 2012. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ. Res. 111:50–55 [Google Scholar]
  38. Addis RC, Epstein JA. 38.  2013. Induced regeneration—the progress and promise of direct reprogramming for heart repair. Nat. Med. 19:829–36 [Google Scholar]
  39. Wang L, Li L, Shojaei F, Levac K, Cerdan C. 39.  et al. 2004. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21:31–41 [Google Scholar]
  40. Kennedy M, D'Souza SL, Lynch-Kattman M, Schwantz S, Keller G. 40.  2007. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109:2679–87 [Google Scholar]
  41. White MP, Rufaihah AJ, Liu L, Ghebremariam YT, Ivey KN. 41.  et al. 2013. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells 31:92–103 [Google Scholar]
  42. Li Z, Wilson KD, Smith B, Kraft DL, Jia F. 42.  et al. 2009. Functional and transcriptional characterization of human embryonic stem cell-derived endothelial cells for treatment of myocardial infarction. PLoS ONE 4:e8443 [Google Scholar]
  43. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL. 43.  et al. 2010. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler. Thromb. Vasc. Biol. 30:80–89 [Google Scholar]
  44. Kane NM, Meloni M, Spencer HL, Craig MA, Strehl R. 44.  et al. 2010. Derivation of endothelial cells from human embryonic stem cells by directed differentiation: analysis of microRNA and angiogenesis in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 30:1389–97 [Google Scholar]
  45. Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG. 45.  et al. 2013. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26:204–19 [Google Scholar]
  46. Kreutziger KL, Muskheli V, Johnson P, Braun K, Wight TN, Murry CE. 46.  2011. Developing vasculature and stroma in engineered human myocardium. Tissue Eng. Part A 17:1219–28 [Google Scholar]
  47. Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M. 47.  et al. 2009. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Natl. Acad. Sci. USA 106:16568–73 [Google Scholar]
  48. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G. 48.  et al. 2007. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100:263–72 [Google Scholar]
  49. Vrancken Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, Poelmann RE. 49.  1999. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat. Embryol. 199:367–78 [Google Scholar]
  50. Descamps B, Emanueli C. 50.  2012. Vascular differentiation from embryonic stem cells: novel technologies and therapeutic promises. Vasc. Pharmacol. 56:267–79 [Google Scholar]
  51. Cheung C, Sinha S. 51.  2011. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J. Mol. Cell. Cardiol. 51:651–64 [Google Scholar]
  52. Bajpai VK, Mistriotis P, Loh YH, Daley GQ, Andreadis ST. 52.  2012. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovasc. Res. 96:391–400 [Google Scholar]
  53. El-Mounayri O, Mihic A, Shikatani EA, Gagliardi M, Steinbach SK. 53.  et al. 2013. Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovasc. Res. 98:125–35 [Google Scholar]
  54. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. 54.  2012. Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nat. Biotechnol. 30:165–73 [Google Scholar]
  55. Paul JD, Coulombe KL, Toth PT, Zhang Y, Marsboom G. 55.  et al. 2013. SLIT3–ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J. Mol. Cell. Cardiol. 64:124–31 [Google Scholar]
  56. Zeisberg EM, Kalluri R. 56.  2010. Origins of cardiac fibroblasts. Circ. Res. 107:1304–12 [Google Scholar]
  57. Leask A. 57.  2010. Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 106:1675–80 [Google Scholar]
  58. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. 58.  2009. Origin of cardiac fibroblasts and the role of periostin. Circ. Res. 105:934–47 [Google Scholar]
  59. Challa AA, Vukmirovic M, Blackmon J, Stefanovic B. 59.  2012. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo. PLoS ONE 7:e42989 [Google Scholar]
  60. Cotton JM, Kearney MT, MacCarthy PA, Grocott-Mason RM, McClean DR. 60.  et al. 2001. Effects of nitric oxide synthase inhibition on basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation 104:2318–23 [Google Scholar]
  61. Paulus WJ, Vantrimpont PJ, Shah AM. 61.  1995. Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–26 [Google Scholar]
  62. Mohan P, Brutsaert DL, Sys SU. 62.  1995. Myocardial performance is modulated by interaction of cardiac endothelium derived nitric oxide and prostaglandins. Cardiovasc. Res. 29:637–40 [Google Scholar]
  63. Dostal DE, Baker KM. 63.  1999. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function?. Circ. Res. 85:643–50 [Google Scholar]
  64. Meulemans AL, Andries LJ, Brutsaert DL. 64.  1990. Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II?. Circ. Res. 66:1591–601 [Google Scholar]
  65. Chua BH, Chua CC, Diglio CA, Siu BB. 65.  1993. Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim. Biophys. Acta 1178:201–6 [Google Scholar]
  66. Kusaka Y, Kelly RA, Williams GH, Kifor I. 66.  2000. Coronary microvascular endothelial cells cosecrete angiotensin II and endothelin-1 via a regulated pathway. Am. J. Physiol. Heart Circ. Physiol. 279:H1087–96 [Google Scholar]
  67. McClellan G, Weisberg A, Rose D, Winegrad S. 67.  1994. Endothelial cell storage and release of endothelin as a cardioregulatory mechanism. Circ. Res. 75:85–96 [Google Scholar]
  68. Li K, Stewart DJ, Rouleau JL. 68.  1991. Myocardial contractile actions of endothelin-1 in rat and rabbit papillary muscles: role of endocardial endothelium. Circ. Res. 69:301–12 [Google Scholar]
  69. Drawnel FM, Archer CR, Roderick HL. 69.  2013. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br. J. Pharmacol. 168:296–317 [Google Scholar]
  70. Kakkar R, Lee RT. 70.  2009. Intramyocardial fibroblast myocyte communication. Circ. Res. 106:47–57 [Google Scholar]
  71. Zhang Y, Kanter EM, Laing JG, Aprhys C, Johns DC. 71.  et al. 2008. Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun. Adhes. 15:289–303 [Google Scholar]
  72. Hilenski LL, Terracio L, Borg TK. 72.  1991. Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen. Cell Tissue Res. 264:577–87 [Google Scholar]
  73. Li YY, McTiernan CF, Feldman AM. 73.  2000. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc. Res. 46:214–24 [Google Scholar]
  74. Vlodavsky I, Fuks Z, Ishai-Michaeli R, Bashkin P, Levi E. 74.  et al. 1991. Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J. Cell. Biochem. 45:167–76 [Google Scholar]
  75. Cote GM, Miller TA, Lebrasseur NK, Kuramochi Y, Sawyer DB. 75.  2005. Neuregulin-1α and β isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Exp. Cell Res. 311:135–46 [Google Scholar]
  76. Cote GM, Sawyer DB, Chabner BA. 76.  2012. ERBB2 inhibition and heart failure. N. Engl. J. Med. 367:2150–53 [Google Scholar]
  77. Kreutziger KL, Murry CE. 77.  2011. Engineered human cardiac tissue. Pediatr. Cardiol. 32:334–41 [Google Scholar]
  78. Thompson JA, Anderson KD, DiPietro JM, Zwiebel JA, Zametta M. 78.  et al. 1988. Site-directed neovessel formation in vivo. Science 241:1349–52 [Google Scholar]
  79. Wake MC, Patrick CW Jr, Mikos AG. 79.  1994. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3:339–43 [Google Scholar]
  80. Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R. 80.  1993. Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42:716–23 [Google Scholar]
  81. Peters MC, Polverini PJ, Mooney DJ. 81.  2002. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60:668–78 [Google Scholar]
  82. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. 82.  2001. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33:907–21 [Google Scholar]
  83. Muschler GF, Nakamoto C, Griffith LG. 83.  2004. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 86:1541–58 [Google Scholar]
  84. Giraud MN, Armbruster C, Carrel T, Tevaearai HT. 84.  2007. Current state of the art in myocardial tissue engineering. Tissue Eng. 13:1825–36 [Google Scholar]
  85. Pessanha MG, Mandarim-de-Lacerda CA. 85.  2000. Influence of the chronic nitric oxide synthesis inhibition on cardiomyocytes number. Virchows Arch. 437:667–74 [Google Scholar]
  86. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T. 86.  et al. 2007. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204:3037–47 [Google Scholar]
  87. Trial J, Rossen RD, Rubio J, Knowlton AA. 87.  2004. Inflammation and ischemia: Macrophages activated by fibronectin fragments enhance the survival of injured cardiac myocytes. Exp. Biol. Med.(Maywood) 229:538–45 [Google Scholar]
  88. Troidl C, Möllmann H, Nef H, Masseli F, Voss S. 88.  et al. 2009. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med. 13:3485–96 [Google Scholar]
  89. Freytes DO, Santambrogio L, Vunjak-Novakovic G. 89.  2012. Optimizing dynamic interactions between a cardiac patch and inflammatory host cells. Cells Tissues Organs 195:171–82 [Google Scholar]
  90. Robey TE, Saiget MK, Reinecke H, Murry CE. 90.  2008. Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell. Cardiol. 45:567–81 [Google Scholar]
  91. Nakamura Y, Yasuda T, Weisel RD, Li RK. 91.  2006. Enhanced cell transplantation: Preventing apoptosis increases cell survival and ventricular function. Am. J. Physiol. Heart Circ. Physiol. 291:H939–47 [Google Scholar]
  92. Weyers JJ, Schwartz SM, Minami E, Carlson DD, Dupras SK. 92.  et al. 2013. Effects of cell grafting on coronary remodeling after myocardial infarction. J. Am. Heart Assoc. 2:e000202 [Google Scholar]
  93. Cassell OC, Hofer SO, Morrison WA, Knight KR. 93.  2002. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br. J. Plast. Surg. 55:603–10 [Google Scholar]
  94. Arkudas A, Tjiawi J, Saumweber A, Beier JP, Polykandriotis E. 94.  et al. 2009. Evaluation of blood vessel ingrowth in fibrin gel subject to type and concentration of growth factors. J. Cell. Mol. Med. 13:2864–74 [Google Scholar]
  95. Liu ZC, Chang TM. 95.  2010. Artificial cell microencapsulated stem cells in regenerative medicine, tissue engineering and cell therapy. Adv. Exp. Med. Biol. 670:68–79 [Google Scholar]
  96. Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP. 96.  1999. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng. 5:525–32 [Google Scholar]
  97. Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I. 97.  et al. 2009. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proc. Natl. Acad. Sci. USA 106:14990–95 [Google Scholar]
  98. Laschke MW, Rucker M, Jensen G, Carvalho C, Mulhaupt R. 98.  et al. 2008. Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann. Surg. 248:939–48 [Google Scholar]
  99. Amir G, Miller L, Shachar M, Feinberg MS, Holbova R. 99.  et al. 2009. Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transplant. 18:275–82 [Google Scholar]
  100. Erol OO, Spira M. 100.  1979. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg. Forum 30:530–31 [Google Scholar]
  101. Khouri RK, Upton J, Shaw WW. 101.  1991. Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast. Reconstr. Surg. 87:108–15 [Google Scholar]
  102. Morrison WA, Penington AJ, Kumta SK, Callan P. 102.  1997. Clinical applications and technical limitations of prefabricated flaps. Plast. Reconstr. Surg. 99:378–85 [Google Scholar]
  103. Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. 103.  2003. Tissue engineering skin flaps: Which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?. Plast. Reconstr. Surg. 112:1636–44 [Google Scholar]
  104. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H. 104.  et al. 2004. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–70 [Google Scholar]
  105. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM. 105.  2007. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J. 21:511–22 [Google Scholar]
  106. Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R. 106.  et al. 2000. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 6:595–603 [Google Scholar]
  107. Tanaka Y, Tsutsumi A, Crowe DM, Tajima S, Morrison WA. 107.  2000. Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br. J. Plast. Surg. 53:51–57 [Google Scholar]
  108. Lokmic Z, Thomas JL, Morrison WA, Thompson EW, Mitchell GM. 108.  2008. An endogenously deposited fibrin scaffold determines construct size in the surgically created arteriovenous loop chamber model of tissue engineering. J. Vasc. Surg. 48:974–85 [Google Scholar]
  109. Cassell OC, Morrison WA, Messina A, Penington AJ, Thompson EW. 109.  et al. 2001. The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann. N.Y. Acad. Sci. 944:429–42 [Google Scholar]
  110. Rophael JA, Craft RO, Palmer JA, Hussey AJ, Thomas GP. 110.  et al. 2007. Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am. J. Pathol. 171:2048–57 [Google Scholar]
  111. Arkudas A, Tjiawi J, Bleiziffer O, Grabinger L, Polykandriotis E. 111.  et al. 2007. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol. Med. 13:480–87 [Google Scholar]
  112. Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR. 112.  et al. 2007. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353–60 [Google Scholar]
  113. Birla RK, Borschel GH, Dennis RG, Brown DL. 113.  2005. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 11:803–13 [Google Scholar]
  114. Polykandriotis E, Horch RE, Arkudas A, Labanaris A, Brune K. 114.  et al. 2006. Intrinsic versus extrinsic vascularization in tissue engineering. Adv. Exp. Med. Biol. 585:311–26 [Google Scholar]
  115. Arkudas A, Pryymachuk G, Beier JP, Weigel L, Korner C. 115.  et al. 2012. Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast. Reconstr. Surg. 129:55e–65e [Google Scholar]
  116. Folkman J, Haudenschild C. 116.  1980. Angiogenesis in vitro. Nature 288:551–56 [Google Scholar]
  117. Montesano R, Orci L, Vassalli P. 117.  1983. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–52 [Google Scholar]
  118. Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. 118.  1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Investig. 66:536–47 [Google Scholar]
  119. Ilan N, Mahooti S, Madri JA. 119.  1998. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J. Cell Sci. 111:3621–31 [Google Scholar]
  120. Nor JE, Peters MC, Christensen JB, Sutorik MM, Linn S. 120.  et al. 2001. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab. Investig. 81:453–63 [Google Scholar]
  121. Orlidge A, D'Amore PA. 121.  1987. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455–62 [Google Scholar]
  122. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. 122.  2004. Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–39 [Google Scholar]
  123. Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC. 123.  et al. 2000. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc. Natl. Acad. Sci. USA 97:9191–96 [Google Scholar]
  124. Black AF, Berthod F, L'Heureux N, Germain L, Auger FA. 124.  1998. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 12:1331–40 [Google Scholar]
  125. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. 125.  2004. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110:962–68 [Google Scholar]
  126. Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J. 126.  et al. 2008. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:S145–52 [Google Scholar]
  127. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS. 127.  et al. 2005. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–84 [Google Scholar]
  128. Chang EI, Bonillas RG, El-ftesi S, Ceradini DJ, Vial IN. 128.  et al. 2009. Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J. 23:906–15 [Google Scholar]
  129. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM. 129.  et al. 2008. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14:213–21 [Google Scholar]
  130. Frame MD, Sarelius IH. 130.  1995. A system for culture of endothelial cells in 20–50-μm branching tubes. Microcirculation 2:377–85 [Google Scholar]
  131. Kaihara S, Borenstein J, Koka R, Lalan S, Ochoa ER. 131.  et al. 2000. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng. 6:105–17 [Google Scholar]
  132. Neumann T, Nicholson BS, Sanders JE. 132.  2003. Tissue engineering of perfused microvessels. Microvasc. Res. 66:59–67 [Google Scholar]
  133. Ko IK, Iwata H. 133.  2001. An approach to constructing three-dimensional tissue. Ann. N.Y. Acad. Sci. 944:443–55 [Google Scholar]
  134. Golden AP, Tien J. 134.  2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–25 [Google Scholar]
  135. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. 135.  2007. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6:908–15 [Google Scholar]
  136. Zheng Y, Chen J, Craven M, Choi NW, Totorica S. 136.  et al. 2012. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. USA 109:9342–47 [Google Scholar]
  137. Yang S, Leong KF, Du Z, Chua CK. 137.  2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7:679–89 [Google Scholar]
  138. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA. 138.  et al. 2010. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. USA 107:15211–16 [Google Scholar]
  139. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y. 139.  et al. 2006. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 12:2077–91 [Google Scholar]
  140. Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M. 140.  et al. 2004. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 68:10–18 [Google Scholar]
  141. Hollister SJ. 141.  2005. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–24 [Google Scholar]
  142. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. 142.  2012. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–41 [Google Scholar]
  143. Cui X, Boland T. 143.  2009. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–27 [Google Scholar]
  144. Testa U, Pannitteri G, Condorelli GL. 144.  2008. Vascular endothelial growth factors in cardiovascular medicine. J. Cardiovasc. Med.(Hagerstown) 9:1190–221 [Google Scholar]
  145. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. 145.  2000. Vascular-specific growth factors and blood vessel formation. Nature 407:242–48 [Google Scholar]
  146. Gurdon JB, Bourillot PY. 146.  2001. Morphogen gradient interpretation. Nature 413:797–803 [Google Scholar]
  147. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML. 147.  et al. 2004. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Investig. 113:516–27 [Google Scholar]
  148. Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R. 148.  2001. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc. Res. 49:532–42 [Google Scholar]
  149. Post MJ, Laham R, Sellke FW, Simons M. 149.  2001. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc. Res. 49:522–31 [Google Scholar]
  150. Ruel M, Laham RJ, Parker JA, Post MJ, Ware JA. 150.  et al. 2002. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J. Thorac. Cardiovasc. Surg. 124:28–34 [Google Scholar]
  151. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A. 151.  et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–77 [Google Scholar]
  152. Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA. 152.  2005. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102:15779–84 [Google Scholar]
  153. Yang J, Zhou W, Zheng W, Ma Y, Lin L. 153.  et al. 2007. Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 107:17–29 [Google Scholar]
  154. Ye L, Haider H, Tan R, Su L, Law PK. 154.  et al. 2008. Angiomyogenesis using liposome based vascular endothelial growth factor-165 transfection with skeletal myoblast for cardiac repair. Biomaterials 29:2125–37 [Google Scholar]
  155. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. 155.  2001. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 104:I218–22 [Google Scholar]
  156. Richardson TP, Peters MC, Ennett AB, Mooney DJ. 156.  2001. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–34 [Google Scholar]
  157. Yau TM, Kim C, Li G, Zhang Y, Fazel S. 157.  et al. 2007. Enhanced angiogenesis with multimodal cell-based gene therapy. Ann. Thorac. Surg. 83:1110–19 [Google Scholar]
  158. Lee K, Silva EA, Mooney DJ. 158.  2011. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8:153–70 [Google Scholar]
  159. Zisch AH, Lutolf MP, Hubbell JA. 159.  2003. Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12:295–310 [Google Scholar]
  160. Lutolf MP, Hubbell JA. 160.  2005. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55 [Google Scholar]
  161. Geer DJ, Swartz DD, Andreadis ST. 161.  2005. Biomimetic delivery of keratinocyte growth factor upon cellular demand for accelerated wound healing in vitro and in vivo. Am. J. Pathol. 167:1575–86 [Google Scholar]
  162. Liang MS, Andreadis ST. 162.  2011. Engineering fibrin-binding TGF-β1 for sustained signaling and contractile function of MSC based vascular constructs. Biomaterials 32:8684–93 [Google Scholar]
  163. Murphy WL, Peters MC, Kohn DH, Mooney DJ. 163.  2000. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521–27 [Google Scholar]
  164. Lee KY, Peters MC, Anderson KW, Mooney DJ. 164.  2000. Controlled growth factor release from synthetic extracellular matrices. Nature 408:998–1000 [Google Scholar]
  165. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. 165.  2003. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A 65:489–97 [Google Scholar]
  166. Chen RR, Silva EA, Yuen WW, Brock AA, Fischbach C. 166.  et al. 2007. Integrated approach to designing growth factor delivery systems. FASEB J. 21:3896–903 [Google Scholar]
  167. DeLong SA, Moon JJ, West JL. 167.  2005. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26:3227–34 [Google Scholar]
  168. Burdick JA, Khademhosseini A, Langer R. 168.  2004. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–56 [Google Scholar]
  169. Borselli C, Oliviero O, Battista S, Ambrosio L, Netti PA. 169.  2007. Induction of directional sprouting angiogenesis by matrix gradients. J. Biomed. Mater. Res. A 80:297–305 [Google Scholar]
  170. Liang MS, Koobatian M, Lei P, Swartz DD, Andreadis ST. 170.  2013. Differential and synergistic effects of mechanical stimulation and growth factor presentation on vascular wall function. Biomaterials 34:7281–91 [Google Scholar]
  171. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE. 171.  et al. 2003. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 100:5413–18 [Google Scholar]
  172. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC. 172.  et al. 2003. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–62 [Google Scholar]
  173. Phelps EA, Landazuri N, Thule PM, Taylor WR, Garcia AJ. 173.  2010. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. USA 107:3323–28 [Google Scholar]
  174. Gospodarowicz D, Cheng J. 174.  1986. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128:475–84 [Google Scholar]
  175. Sommer A, Rifkin DB. 175.  1989. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 138:215–20 [Google Scholar]
  176. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I. 176.  1989. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–43 [Google Scholar]
  177. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S. 177.  et al. 2002. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16:2684–98 [Google Scholar]
  178. Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T. 178.  et al. 2000. Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J. Control. Release 64:103–14 [Google Scholar]
  179. Cai S, Liu Y, Zheng Shu X, Prestwich GD. 179.  2005. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–67 [Google Scholar]
  180. Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ. 180.  et al. 2006. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27:5242–51 [Google Scholar]
  181. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, Van Kuppevelt TH. 181.  2007. Increased angiogenesis and blood vessel maturation in acellular collagen–heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–31 [Google Scholar]
  182. Al-Lamki RS, Bradley JR, Pober JS. 182.  2008. Endothelial cells in allograft rejection. Transplantation 86:1340–48 [Google Scholar]
  183. Riolobos L, Hirata RK, Turtle CJ, Wang PR, Gornalusse GG. 183.  et al. 2013. HLA engineering of human pluripotent stem cells. Mol. Ther. 21:1232–41 [Google Scholar]
  184. Parent AV, Russ HA, Khan IS, Laflam TN, Metzger TC. 184.  et al. 2013. Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13:219–29 [Google Scholar]
  185. Sun X, Xu J, Lu H, Liu W, Miao Z. 185.  et al. 2013. Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13:230–36 [Google Scholar]
  186. Laflamme MA, Zbinden S, Epstein SE, Murry CE. 186.  2007. Cell-based therapy for myocardial ischemia and infarction: pathophysiological mechanisms. Annu. Rev. Pathol. 2:307–39 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071812-152344
Loading
/content/journals/10.1146/annurev-bioeng-071812-152344
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error