1932

Abstract

In the past two decades, major advances have been made in the clinical evaluation and treatment of valvular heart disease owing to the advent of noninvasive cardiac imaging modalities. In clinical practice, valvular disease evaluation is typically performed on two-dimensional (2D) images, even though most imaging modalities offer three-dimensional (3D) volumetric, time-resolved data. Such 3D data offer researchers the possibility to reconstruct the 3D geometry of heart valves at a patient-specific level. When these data are integrated with computational models, native heart valve biomechanical function can be investigated, and preoperative planning tools can be developed. In this review, we outline the advances in valve geometry reconstruction, tissue property modeling, and loading and boundary definitions for the purpose of realistic computational structural analysis of cardiac valve function and intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104517
2014-07-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-104517.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104517&mimeType=html&fmt=ahah

Literature Cited

  1. Thubrikar M. 1.  1990. The Aortic Valve Boca Raton, FL: CRC
  2. Stella JA, Sacks MS. 2.  2007. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129:757–66 [Google Scholar]
  3. Jermihov PN, Jia L, Sacks MS, Gorman RC, Gorman JH III, Chandran KB. 3.  2011. Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2:48–56 [Google Scholar]
  4. Conti C, Della Corte A, Votta E, Del Viscovo L, Bancone C. 4.  et al. 2010. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140:890–96 [Google Scholar]
  5. Katayama S, Umetani N, Sugiura S, Hisada T. 5.  2008. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J. Thorac. Cardiovasc. Surg. 136:1528–35, 1535.e1 [Google Scholar]
  6. Katayama S, Umetani N, Hisada T, Sugiura S. 6.  2013. Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J. Thorac. Cardiovasc. Surg. 145:1570–76 [Google Scholar]
  7. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. 7.  2000. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69:1851–57 [Google Scholar]
  8. Cataloglu A, Clark RE, Gould PL. 8.  1977. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 10:153–58 [Google Scholar]
  9. Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. 9.  2001. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122:946–54 [Google Scholar]
  10. Grande-Allen K, Cochran R, Reinhall P, Kunzelman K. 10.  2001. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans. Biomed. Eng. 48:647–59 [Google Scholar]
  11. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. 11.  2003. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36:103–12 [Google Scholar]
  12. Marom G, Haj-Ali R, Raanani E, Schafers H-J, Rosenfeld M. 12.  2012. A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med. Biol. Eng. Comput. 50:173–82 [Google Scholar]
  13. Chandra S, Rajamannan N, Sucosky P. 13.  2012. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11:1085–96 [Google Scholar]
  14. Martin C, Pham T, Sun W. 14.  2011. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardiothorac. Surg. 40:28–34 [Google Scholar]
  15. Gundiah N, Matthews PB, Karimi R, Azadani A, Guccione J. 15.  et al. 2008. Significant material property differences between the porcine ascending aorta and aortic sinuses. J. Heart Valve Dis. 17:606–13 [Google Scholar]
  16. Martin C, Sun W. 16.  2012. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. Part A 100A:1591–99 [Google Scholar]
  17. Kunzelman KS, Einstein DR, Cochran RP. 17.  2007. Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. B Biol. Sci. 362:1393–406 [Google Scholar]
  18. Prot V, Skallerud B, Sommer G, Holzapfel GA. 18.  2010. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3:167–77 [Google Scholar]
  19. Wang Q, Sun W. 19.  2013. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–53 [Google Scholar]
  20. Lam JH, Ranganathan N, Wigle ED, Silver MD. 20.  1970. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation 41:449–58 [Google Scholar]
  21. Timek TA, Green GR, Tibayan FA, Lai DT, Rodriguez F. 21.  et al. 2003. Aorto-mitral annular dynamics. Ann. Thorac. Surg. 76:1944–50 [Google Scholar]
  22. Marzilli M, Sabbah HN, Lee T, Stein PD. 22.  1980. Role of the papillary muscle in opening and closure of the mitral valve. Am. J. Physiol. 238:H348–54 [Google Scholar]
  23. Madu EC, D'Cruz IA. 23.  1997. The vital role of papillary muscles in mitral and ventricular function: echocardiographic insights. Clin. Cardiol. 20:93–98 [Google Scholar]
  24. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S. 24.  2010. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–215 [Google Scholar]
  25. Webb JG, Wood DA. 25.  2012. Current status of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 60:483–92 [Google Scholar]
  26. Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C. 26.  et al. 2002. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–8 [Google Scholar]
  27. Leon MB, Smith CR, Mack M, Miller DC, Moses JW. 27.  et al. 2010. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363:1597–607 [Google Scholar]
  28. Carpentier A. 28.  1983. Cardiac valve surgery—the “French correction.”. J. Thorac. Cardiovasc. Surg. 86:323–37 [Google Scholar]
  29. Privitera S, Butany J, Silversides C, Leask RL, David TE. 29.  2005. Artificial chordae tendinae: long-term changes. J. Card. Surg. 20:90–92 [Google Scholar]
  30. Feldman T, Foster E, Glower DG, Kar S, Rinaldi MJ. 30.  et al. 2011. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 364:1395–406 [Google Scholar]
  31. Mahmood F, Karthik S, Subramaniam B, Panzica PJ, Mitchell J. 31.  et al. 2008. Intraoperative application of geometric three-dimensional mitral valve assessment package: a feasibility study. J. Cardiothorac. Vasc. Anesth. 22:292–98 [Google Scholar]
  32. Chauvel C, Bogino E, Clerc P, Fernandez G, Vernhet JC. 32.  et al. 2000. Usefulness of three-dimensional echocardiography for the evaluation of mitral valve prolapse: an intraoperative study. J. Heart Valve Dis. 9:341–49 [Google Scholar]
  33. Ahmed S, Nanda NC, Miller AP. 33.  2003. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography 20:203–9 [Google Scholar]
  34. Jabbour A, Barker S, Davies S, Prasad SK, Rubens M, Mohiaddin RH. 34.  2011. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation: comparison among cardiovascular magnetic resonance, cardiac computed tomography, and echocardiography. J. Am. Coll. Cardiol. 58:2165–73 [Google Scholar]
  35. Sacks MS, Yoganathan AP. 35.  2007. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B Biol. Sci. 362:1369–91 [Google Scholar]
  36. Sacks MS, Merryman WD, Schmidt DE. 36.  2009. On the biomechanics of heart valve function. J. Biomech. 42:1804–24 [Google Scholar]
  37. Chandran KB. 37.  2010. Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovasc. Eng. Technol. 1:18–38 [Google Scholar]
  38. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG. 38.  et al. 2013. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46:217–28 [Google Scholar]
  39. Swanson M, Clark RE. 39.  1974. Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ. Res. 35:871–82 [Google Scholar]
  40. Howard IC, Patterson EA, Yoxall A. 40.  2003. On the opening mechanism of the aortic valve: some observations from simulations. J. Med. Eng. Technol. 27:259–66 [Google Scholar]
  41. Labrosse MR, Boodhwani M, Sohmer B, Beller CJ. 41.  2011. Modeling leaflet correction techniques in aortic valve repair: a finite element study. J. Biomech. 44:2292–98 [Google Scholar]
  42. Labrosse MR, Lobo K, Beller CJ. 42.  2010. Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43:1916–22 [Google Scholar]
  43. Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. 43.  2006. Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J. Biomech. 39:2665–72 [Google Scholar]
  44. Kunzelman KS, Cochran RP, Verrier ED, Eberhart RC. 44.  1994. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3:491–96 [Google Scholar]
  45. Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD. 45.  1993. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–40 [Google Scholar]
  46. Einstein DR, Kunzelman KS, Reinhall PG, Cochran RP, Nicosia MA. 46.  2004. Haemodynamic determinants of the mitral valve closure sound: a finite element study. Med. Biol. Eng. Comput. 42:832–46 [Google Scholar]
  47. Prot V, Skallerud B, Holzapfel GA. 47.  2007. Transversely isotropic membrane shells with application to mitral valve mechanics: constitutive modelling and finite element implementation. Int. J. Numer. Methods Eng. 71:987–1008 [Google Scholar]
  48. Lau KD, Diaz V, Scambler P, Burriesci G. 48.  2010. Mitral valve dynamics in structural and fluid–structure interaction models. Med. Eng. Phys. 32:1057–64 [Google Scholar]
  49. Kunzelman KS, Reimink MS, Cochran RP. 49.  1997. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–34 [Google Scholar]
  50. Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A. 50.  2008. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366:3411–34 [Google Scholar]
  51. Xu C, Brinster CJ, Jassar AS, Vergnat M, Eperjesi TJ. 51.  et al. 2010. A novel approach to in vivo mitral valve stress analysis. Am. J. Physiol. Heart Circ. Physiol. 299:H1790–94 [Google Scholar]
  52. Verhey JF, Nathan NS, Rienhoff O, Kikinis R, Rakebrandt F, D'Ambra MN. 52.  2006. Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed. Eng. Online 5:17 [Google Scholar]
  53. Ryan LP, Jackson BM, Eperjesi TJ, Plappert TJ, St. John-Sutton M. 53.  et al. 2008. A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136:726–34 [Google Scholar]
  54. Wenk JF, Zhang Z, Cheng G, Malhotra D, Acevedo-Bolton G. 54.  et al. 2010. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89:1546–53 [Google Scholar]
  55. Stevanella M, Krishnamurthy G, Votta E, Swanson JC, Redaelli A, Ingels NB Jr. 55.  2011. Mitral leaflet modeling: importance of in vivo shape and material properties. J. Biomech. 44:2229–35 [Google Scholar]
  56. Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A. 56.  et al. 2011. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76 [Google Scholar]
  57. Wang Q, Book G, Contreras Ortiz S, Primiano C, McKay R. 57.  et al. 2011. Dimensional analysis of aortic root geometry during diastole using 3D models reconstructed from clinical 64-slice computed tomography images. Cardiovasc. Eng. Technol. 2:324–33 [Google Scholar]
  58. Wang Q, Sirois E, Sun W. 58.  2012. Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45:1965–71 [Google Scholar]
  59. Sirois E, Wang Q, Sun W. 59.  2011. Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc. Eng. Technol. 2:186–95 [Google Scholar]
  60. Capelli C, Bosi GM, Cerri E, Nordmeyer J, Odenwald T. 60.  et al. 2012. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–92 [Google Scholar]
  61. Pouch AM, Xu C, Yushkevich PA, Jassar AS, Vergnat M. 61.  et al. 2012. Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J. Biomech. 45:903–7 [Google Scholar]
  62. Pouch A, Wang H, Takabe M, Jackson B, Sehgal C. 62.  et al. 2013. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013 K Mori, I Sakuma, Y Sato, C Barillot, N Navab, LNCS 8149485–92 Berlin: Springer [Google Scholar]
  63. Zheng Y, John M, Liao R, Nöttling A, Boese J. 63.  et al. 2012. Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation. IEEE Trans. Med. Imaging 31:2307–21 [Google Scholar]
  64. Nie Y, Luo Z, Cai J, Gu L. 64.  2013. A novel aortic valve segmentation from ultrasound image using continuous max-flow approach. Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Osaka, Japan3311–14 [Google Scholar]
  65. Dong B, Guo Y, Wang B, Gu L. 65.  2013. Aortic valve segmentation from ultrasound images based on shape constraint CV model. Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Osaka, Japan1402–5 [Google Scholar]
  66. Ionasec RI, Voigt I, Georgescu B, Yang W, Houle H. 66.  et al. 2010. Patient-specific modeling and quantification of the aortic and mitral valves from 4D cardiac CT and TEE. IEEE Trans. Med. Imaging 29:1636–51 [Google Scholar]
  67. Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani EG. 67.  et al. 2009. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ. Cardiovasc. Imaging 2:24–31 [Google Scholar]
  68. May-Newman K, Yin FC. 68.  1995. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269:H1319–27 [Google Scholar]
  69. Kunzelman KS, Cochran RP. 69.  1992. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78 [Google Scholar]
  70. Grashow JS, Yoganathan AP, Sacks MS. 70.  2006. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34:315–25 [Google Scholar]
  71. He Z, Ritchie J, Grashow JS, Sacks MS, Yoganathan AP. 71.  2005. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127:504–11 [Google Scholar]
  72. He Z, Sacks MS, Baijens L, Wanant S, Shah P, Yoganathan AP. 72.  2003. Effects of papillary muscle position on in-vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12:488–94 [Google Scholar]
  73. Sacks MS, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A. 73.  et al. 2006. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82:1369–77 [Google Scholar]
  74. Sacks MS, He Z, Baijens L, Wanant S, Shah P. 74.  et al. 2002. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30:1281–90 [Google Scholar]
  75. Chen L, Yin FCP, May-Newman K. 75.  2004. The structure and mechanical properties of the mitral valve leaflet-strut chordae transition zone. J. Biomech. Eng. 126:244–51 [Google Scholar]
  76. Lo D, Vesely I. 76.  1995. Biaxial strain analysis of the porcine aortic valve. Ann. Thorac. Surg. 69:S374–78 [Google Scholar]
  77. Billiar KL, Sacks MS. 77.  2000. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122:23–30 [Google Scholar]
  78. Stephens EH, Grande-Allen KJ. 78.  2007. Age-related changes in collagen synthesis and turnover in porcine heart valves. J. Heart Valve Dis. 16:672–82 [Google Scholar]
  79. Nicosia MA, Kasalko JS, Cochran RP, Einstein DR, Kunzelman KS. 79.  2002. Biaxial mechanical properties of porcine ascending aortic wall tissue. J. Heart Valve Dis. 11:680–87 [Google Scholar]
  80. Auricchio F, Conti M, Morganti S, Reali A. 80.  2014. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 171347–57
  81. Weinberg EJ, Kaazempur Mofrad MR. 81.  2007. A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J. Biomech. 40:705–11 [Google Scholar]
  82. Krishnamurthy G, Itoh A, Bothe W, Swanson JC, Kuhl E. 82.  et al. 2009. Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42:1909–16 [Google Scholar]
  83. Stevanella M, Votta E, Redaelli A. 83.  2009. Mitral valve finite element modeling: Implications of tissues' nonlinear response and annular motion. J. Biomech. Eng. 131:121010 [Google Scholar]
  84. Prot V, Haaverstad R, Skallerud B. 84.  2009. Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech. Model. Mechanobiol. 8:43–55 [Google Scholar]
  85. Rausch MK, Bothe W, Kvitting JPE, Göktepe S, Miller DC, Kuhl E. 85.  2011. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44:1149–57 [Google Scholar]
  86. Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson JC. 86.  et al. 2008. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–49 [Google Scholar]
  87. Clark RE. 87.  1973. Stress-strain characteristics of fresh and frozen human aortic and mitral leaflets and chordae tendineae: implications for clinical use. J. Thorac. Cardiovasc. Surg. 66:202–8 [Google Scholar]
  88. Pham T, Sun W. 88.  2013. Material properties of aged human mitral valve leaflets. J. Biomed. Mater. Res. Part A. In press. doi: 10.1002/jbm.a.34939
  89. Pham T, Sun W. 89.  2012. Comparison of biaxial mechanical properties of coronary sinus tissues from porcine, ovine and aged human species. J. Mech. Behav. Biomed. Mater. 6:21–29 [Google Scholar]
  90. Mummert J, Sirois E, Sun W. 90.  2013. Quantification of biomechanical interaction of transcatheter aortic valve stent deployed in porcine and ovine hearts. Ann. Biomed. Eng. 41:577–86 [Google Scholar]
  91. Votta E, Maisano F, Bolling SF, Alfieri O, Montevecchi FM, Redaelli A. 91.  2007. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84:92–101 [Google Scholar]
  92. Fung YC. 92.  1993. Biomechanics: Mechanical Properties of Living Tissues New York: Springer
  93. Humphrey JD. 93.  2002. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs New York: Springer
  94. Sun W, Abad A, Sacks MS. 94.  2005. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127:905–14 [Google Scholar]
  95. Sacks MS, Sun W. 95.  2003. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–84 [Google Scholar]
  96. Sun W, Sacks MS. 96.  2005. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4:190–99 [Google Scholar]
  97. Weiss JA, Maker BN, Govindjee S. 97.  1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135:107–28 [Google Scholar]
  98. Holzapfel GA, Gasser TC, Ogden RW. 98.  2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48 [Google Scholar]
  99. May-Newman K, Yin FC. 99.  1998. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120:38–47 [Google Scholar]
  100. Conti CA, Votta E, Della Corte A, Del Viscovo L, Bancone C. 100.  et al. 2010. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32:212–21 [Google Scholar]
  101. Gould PL, Cataloglu A. 101.  1973. Stress analysis of the human aortic valve. Comput. Struct. 3:377–78, IN1–2, 379–84 [Google Scholar]
  102. Cataloglu A, Gould PL, Clark RE. 102.  1975. Validation of a simplified mathematical model for the stress analysis of human aortic heart valves. J. Biomech. 8:347–48 [Google Scholar]
  103. Leat ME, Fisher J. 103.  1995. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209:65–69 [Google Scholar]
  104. Leat ME, Fisher J. 104.  1994. A synthetic leaflet heart valve with improved opening characteristics. Med. Eng. Phys. 16:470–76 [Google Scholar]
  105. Cacciola G, Peters GW, Baaijens FP. 105.  2000. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33:653–58 [Google Scholar]
  106. Cacciola G, Peters GW, Schreurs PJ. 106.  2000. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33:521–30 [Google Scholar]
  107. Krucinski S, Vesely I, Dokainish MA, Campbell G. 107.  1993. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26:929–43 [Google Scholar]
  108. Martin C, Sun W. 108.  2013. Simulation of long-term fatigue damage in bioprosthetic heart valves: effect of leaflet and stent elastic properties. Biomech. Model. Mechanobiol. doi: 10.1007/s10237-013-0532-x
  109. David TE, Feindel CM. 109.  1992. An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J. Thorac. Cardiovasc. Surg. 103:617–22 [Google Scholar]
  110. Soncini M, Votta E, Zinicchino S, Burrone V, Mangini A. 110.  et al. 2009. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31:234–43 [Google Scholar]
  111. Totaro P, Morganti S, Ngo Yon C, Dore R, Conti M. 111.  et al. 2012. Computational finite element analyses to optimize graft sizing during aortic valve-sparing procedure. J. Heart Valve Dis. 21:141–47 [Google Scholar]
  112. Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R. 112.  2006. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact. Cardiovasc. Thorac. Surg. 5:373–78 [Google Scholar]
  113. Beck A, Thubrikar M, Robicsek F. 113.  2001. Stress analysis of the aortic valve with and without the sinuses of Valsalva. J. Heart Valve Dis. 10:1–11 [Google Scholar]
  114. Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. 114.  2003. A coupled fluid-structure finite element model of the aortic valve and root. J. Heart Valve Dis. 12:781–89 [Google Scholar]
  115. Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E. 115.  et al. 2013. Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J. Biomech. Eng. 135:101001 [Google Scholar]
  116. Kunzelman KS, Quick DW, Cochran RP. 116.  1998. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66:S198–205 [Google Scholar]
  117. Reimink MS, Kunzelman KS, Verrier ED, Cochran RP. 117.  1995. The effect of anterior chordal replacement on mitral valve function and stresses: a finite element study. ASAIO J. 41:M754–62 [Google Scholar]
  118. Reimink MS, Kunzelman KS, Cochran RP. 118.  1996. The effect of chordal replacement suture length on function and stresses in repaired mitral valves: a finite element study. J. Heart Valve Dis. 5:365–75 [Google Scholar]
  119. Maisano F, Redaelli A, Soncini M, Votta E, Arcobasso L, Alfieri O. 119.  2005. An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann. Thorac. Surg. 79:1268–75 [Google Scholar]
  120. Wong VM, Wenk JF, Zhang Z, Cheng G, Acevedo-Bolton G. 120.  et al. 2012. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93:776–82 [Google Scholar]
  121. Xu C, Jassar AS, Nathan DP, Eperjesi TJ, Brinster CJ. 121.  et al. 2012. Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Ann. Thorac. Surg. 93:1141–45 [Google Scholar]
  122. Itoh A, Krishnamurthy G, Swanson JC, Ennis DB, Bothe W. 122.  et al. 2009. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296:H1766–73 [Google Scholar]
  123. Skallerud B, Prot V, Nordrum IS. 123.  2011. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10:11–26 [Google Scholar]
  124. Boekstegers P, Hausleiter J, Baldus S, Von Bardeleben RS, Beucher H. 124.  et al. 2013. Percutaneous interventional mitral regurgitation treatment using the Mitra-Clip system. Clin. Res. Cardiol. 103:85–96 [Google Scholar]
  125. Redaelli A, Guadagni G, Fumero R, Maisano F, Alfieri O. 125.  2001. A computational study of the hemodynamics after “edge-to-edge” mitral valve repair. J. Biomech. Eng. 123:565–70 [Google Scholar]
  126. Fiore GB, Guadagni G, Putignano G, Redaelli A, Fumero R. 126.  et al. 2001. Experimental and computational simulation of the haemodynamic conditions after edge-to-edge mitral valve repair. Proc. Bioengineering Conference, Snowbird, UT 50429–30 New York: Am. Soc. Mech. Eng., Bioeng. Div. [Google Scholar]
  127. Votta E, Maisano F, Soncini M, Redaelli A, Montevecchi FM, Alfieri O. 127.  2002. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11:810–22 [Google Scholar]
  128. Avanzini A. 128.  2008. A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130:031015 [Google Scholar]
  129. Lau KD, Díaz-Zuccarini V, Scambler P, Burriesci G. 129.  2011. Fluid–structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44:2409–17 [Google Scholar]
  130. Dal Pan F, Donzella G, Fucci C, Schreiber M. 130.  2005. Structural effects of an innovative surgical technique to repair heart valve defects. J. Biomech. 38:2460–71 [Google Scholar]
  131. Ma X, Gao H, Griffith BE, Berry C, Luo X. 131.  2013. Image-based fluid–structure interaction model of the human mitral valve. Comput. Fluids 71:417–25 [Google Scholar]
  132. Dahl SK, Vierendeels J, Degroote J, Annerel S, Hellevik LR, Skallerud B. 132.  2012. FSI simulation of asymmetric mitral valve dynamics during diastolic filling. Comput. Methods Biomech. Biomed. Eng. 15:121–30 [Google Scholar]
  133. Martin C, Sun W, Primiano C, McKay R, Elefteriades J. 133.  2013. Age-dependent ascending aorta mechanics assessed through multiphase CT. Ann. Biomed. Eng. 41:2565–74 [Google Scholar]
  134. Gee MW, Reeps C, Eckstein HH, Wall WA. 134.  2009. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 42:1732–39 [Google Scholar]
  135. Lu J, Zhou X, Raghavan ML. 135.  2008. Inverse method of stress analysis for cerebral aneurysms. Biomech. Model. Mechanobiol. 7:477–86 [Google Scholar]
  136. Zhou X, Raghavan ML, Harbaugh RE, Lu J. 136.  2010. Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model. Ann. Biomed. Eng. 38:478–89 [Google Scholar]
  137. Wang Q, Kodali S, Sun W. 137.  2013. Analysis of aortic root rupture during transcatheter aortic valve implantation using computational simulations Presented at 12th US Natl. Congr. Comput. Mech. (USNCCM12), July 22–25, Raleigh, NC
  138. Thacker BH, Riha DS, Fitch SHK, Huyse LJ, Pleming JB. 138.  2006. Probabilistic engineering analysis using the NESSUS software. Struct. Saf. 28:83–107 [Google Scholar]
  139. Baldwin MA, Laz PJ, Stowe JQ, Rullkoetter PJ. 139.  2009. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput. Methods Biomech. Biomed. Eng. 12:651–59 [Google Scholar]
  140. Laz PJ, Pal S, Fields A, Petrella AJ, Rullkoetter PJ. 140.  2006. Effects of knee simulator loading and alignment variability on predicted implant mechanics: a probabilistic study. J. Orthop. Res. 24:2212–21 [Google Scholar]
  141. Laz PJ, Pal S, Halloran JP, Petrella AJ, Rullkoetter PJ. 141.  2006. Probabilistic finite element prediction of knee wear simulator mechanics. J. Biomech. 39:2303–10 [Google Scholar]
  142. Pal S, Langenderfer JE, Stowe JQ, Laz PJ, Petrella AJ, Rullkoetter PJ. 142.  2007. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann. Biomed. Eng. 35:1632–42 [Google Scholar]
  143. Li K, Sun W. 143.  2013. Probabilistic computational analysis of transcatheter aortic valve leaflet design. Proc. ASME 2013 Summer Bioeng. Conf., June 26–29, Sunriver, OR SBC2013-14418 [Google Scholar]
  144. Weinberg EJ, Shahmirzadi D, Mofrad MRK. 144.  2010. On the multiscale modeling of heart valve biomechanics in health and disease. Biomech. Model. Mechanobiol. 9:373–87 [Google Scholar]
  145. Huang HYS, Liao J, Sacks MS. 145.  2007. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129:880–89 [Google Scholar]
  146. Vesely I, Noseworthy R. 146.  1992. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25:101–13 [Google Scholar]
  147. Weinberg EJ, Mofrad MRK. 147.  2007. Three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7:140–55 [Google Scholar]
  148. Weinberg EJ, Kaazempur Mofrad MR. 148.  2008. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–87 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104517
Loading
/content/journals/10.1146/annurev-bioeng-071813-104517
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error