1932

Abstract

When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104622
2014-07-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-104622.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104622&mimeType=html&fmt=ahah

Literature Cited

  1. Miklavčič D. 1.  2012. Network for development of electroporation-based technologies and treatments: COST TD1104. J. Membr. Biol. 245:591–98 [Google Scholar]
  2. Nollet JA. 2.  1754. Recherches sur les causes particulieres des phénoménes électriques Paris: Guerin & Delatour
  3. Noad HM. 3.  1849. Lectures on Electricity: Comprising Galvinism, Magnetism, Electromagnetism, Magneto- and Thermo-Electricity, and Electro-Physiology London: Knight, 3rd. ed.
  4. Frankenhaeuser B, Widén L. 4.  1956. Anode break excitation in desheathed frog nerve. J. Physiol. 131:243–47 [Google Scholar]
  5. Stampfli R, Willi M. 5.  1957. Membrane potential of a Ranvier node measured after electrical destruction of its membrane. Experientia 13:297–98 [Google Scholar]
  6. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. 6.  1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:841–45 [Google Scholar]
  7. Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B. 7.  et al. 1991. [Electrochemotherapy, a new antitumor treatment: first clinical trial]. C. R. Acad. Sci. III 313:613–18 [Google Scholar]
  8. Okino M, Mohri H. 8.  1987. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. Gann 78:1319–21 [Google Scholar]
  9. Orlowski S, Belehradek J Jr, Paoletti C, Mir LM. 9.  1988. Transient electropermeabilization of cells in culture: increase of the cytotoxicity of anticancer drugs. Biochem. Pharmacol. 37:4727–33 [Google Scholar]
  10. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI. 10.  et al. 2008. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26:5896–903 [Google Scholar]
  11. Titomirov AV, Sukharev S, Kistanova E. 11.  1991. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta 1088:131–34 [Google Scholar]
  12. Davalos R, Mir LM, Rubinsky B. 12.  2005. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–31 [Google Scholar]
  13. Golberg A, Yarmush ML. 13.  2013. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans. Biomed. Eng. 60:707–14 [Google Scholar]
  14. Michael DH, O'Neill ME. 14.  1970. Electrohydrodynamic instability in plane layers of fluid. J. Fluid Mech. 41:571–80 [Google Scholar]
  15. Crowley JM. 15.  1973. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys. J. 13:711–24 [Google Scholar]
  16. Steinchen A, Gallez D, Sanfeld A. 16.  1982. A viscoelastic approach to the hydrodynamic stability of membranes. J. Colloid Interface Sci. 85:5–15 [Google Scholar]
  17. Sugár IP. 17.  1979. A theory of the electric field-induced phase transition of phospholipid bilayers. Biochim. Biophys. Acta 556:72–85 [Google Scholar]
  18. Cruzeiro-Hansson L, Mouritsen OG. 18.  1988. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim. Biophys. Acta 944:63–72 [Google Scholar]
  19. Tsong TY. 19.  1991. Electroporation of cell membranes. Biophys. J. 60:297–306 [Google Scholar]
  20. Weaver JC, Chizmadzhev YA. 20.  1996. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–60 [Google Scholar]
  21. Spugnini EP, Arancia G, Porrello A, Colone M, Formisano G. 21.  et al. 2007. Ultrastructural modifications of cell membranes induced by electroporation on melanoma xenografts. Microsc. Res. Tech. 70:1041–50 [Google Scholar]
  22. Freeman SA, Wang MA, Weaver JC. 22.  1994. Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore-pore separation. Biophys. J. 67:42–56 [Google Scholar]
  23. Kotnik T, Kramar P, Pucihar G, Miklavčič D, Tarek M. 23.  2012. Cell membrane electroporation—part 1: the phenomenon. IEEE Electrical Insulation Mag. 28:14–23 [Google Scholar]
  24. Schoenbach K, Beebe S, Buescher E. 24.  2001. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–48 [Google Scholar]
  25. Kotnik T, Miklavčič D. 25.  2006. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90:480–91 [Google Scholar]
  26. Delemotte L, Tarek M. 26.  2012. Molecular dynamics simulations of lipid membrane electroporation. J. Membr. Biol. 245:531–43 [Google Scholar]
  27. Gimsa J, Wachner D. 27.  2001. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81:1888–96 [Google Scholar]
  28. Kotnik T, Bobanović F, Miklavčič D. 28.  1997. Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem. Bioenerg. 43:285–91 [Google Scholar]
  29. Kotnik T, Miklavčič D. 29.  2000. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–79 [Google Scholar]
  30. Kotnik T, Miklavčič D. 30.  2000. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans. Biomed. Eng. 47:1074–81 [Google Scholar]
  31. Kotnik T, Miklavčič D, Slivnik T. 31.  1998. Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem. Bioenerg. 45:3–16 [Google Scholar]
  32. Pucihar G, Kotnik T, Valič B, Miklavčič D. 32.  2006. Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann. Biomed. Eng. 34:642–52 [Google Scholar]
  33. Ying WJ, Henriquez CS. 33.  2007. Hybrid finite element method for describing the electrical response of biological cells to applied fields. IEEE Trans. Biomed. Eng. 54:611–20 [Google Scholar]
  34. Pucihar G, Miklavčič D, Kotnik T. 34.  2009. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 56:1491–501 [Google Scholar]
  35. Loew LM. 35.  1992. Voltage sensitive dyes: measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics 13:179–89 [Google Scholar]
  36. Pucihar G, Kotnik T, Miklavčič D. 36.  2009. Measuring the induced membrane voltage with di-8-ANEPPS. J. Visualized Exp. 33:1659 [Google Scholar]
  37. Kotnik T, Pucihar G, Miklavčič D. 37.  2010. Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J. Membr. Biol. 236:3–13 [Google Scholar]
  38. Saulis G, Venslauskas MS, Naktinis J. 38.  1991. Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochem. Bioenerg. 26:1–13 [Google Scholar]
  39. Hibino M, Itoh H, Kinosita K. 39.  1993. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–800 [Google Scholar]
  40. Pucihar G, Kotnik T, Miklavčič D, Teissié J. 40.  2008. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys. J. 95:2837–48 [Google Scholar]
  41. Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissié J, Golzio M. 41.  2011. Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc. Natl. Acad. Sci. USA 108:10443–47 [Google Scholar]
  42. Golzio M, Teissié J, Rols M-P. 42.  2002. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl. Acad. Sci. USA 99:1292–97 [Google Scholar]
  43. Testori A, Tosti G, Martinoli C, Spadola G, Cataldo F. 43.  et al. 2010. Electrochemotherapy for cutaneous and subcutaneous tumor lesions: a novel therapeutic approach. Dermatol. Ther. 23:651–61 [Google Scholar]
  44. Čemažar M, Tamzali Y, Serša G, Tozon N, Mir LM. 44.  et al. 2008. Electrochemotherapy in veterinary oncology. J. Vet. Intern. Med. 22:826–31 [Google Scholar]
  45. Miklavčič D, Serša G, Brecelj E, Gehl J, Soden D. 45.  et al. 2012. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 50:1213–25 [Google Scholar]
  46. Mir LM, Orlowski S, Belehradek J Jr, Paoletti C. 46.  1991. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer 27:68–72 [Google Scholar]
  47. Serša G, Čemažar M, Miklavčič D. 47.  1995. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res. 55:3450–55 [Google Scholar]
  48. Gehl J, Skovsgaard T, Mir LM. 48.  1998. Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 9:319–25 [Google Scholar]
  49. Gehl J. 49.  2003. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 177:437–47 [Google Scholar]
  50. Čemažar M, Miklavčič D, Ščančar J, Dolžan V, Golouh R, Serša G. 50.  1999. Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. Br. J. Cancer 79:1386–91 [Google Scholar]
  51. Bellard E, Markelc B, Pelofy S, Le Guerroue F, Serša G. 51.  et al. 2012. Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization. J. Control. Release 163:396–403 [Google Scholar]
  52. Edhemović I, Gadžijev EM, Brecelj E, Miklavčič D, Kos B. 52.  et al. 2011. Electrochemotherapy: a new technological approach in treatment of metastases in the liver. Technol. Cancer Res. Treat. 10:475–85 [Google Scholar]
  53. Jarm T, Čemažar M, Miklavčič D, Serša G. 53.  2010. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev. Anticancer Ther. 10:729–46 [Google Scholar]
  54. Markelc B, Serša G, Čemažar M. 54.  2013. Differential mechanisms associated with vascular disrupting action of electrochemotherapy: intravital microscopy on the level of single normal and tumor blood vessels. PLoS ONE 8:e59557 [Google Scholar]
  55. Serša G, Jarm T, Kotnik T, Coer A, Podkrajšek M. 55.  et al. 2008. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer 98:388–98 [Google Scholar]
  56. Roux S, Bernat C, Al-Sakere B, Ghiringhelli F, Opolon P. 56.  et al. 2008. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol. Immunother. 57:1291–300 [Google Scholar]
  57. Sedlar A, Dolinšek T, Markelc B, Prosen L, Kranjc S. 57.  et al. 2012. Potentiation of electrochemotherapy by intramuscular IL-12 gene electrotransfer in murine sarcoma and carcinoma with different immunogenicity. Radiol. Oncol. 46:302–11 [Google Scholar]
  58. Serša G, Miklavčič D, Čemažar M, Belehradek J, Jarm T, Mir LM. 58.  1997. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem. Bioenerg. 43:279–83 [Google Scholar]
  59. Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R. 59.  2000. In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res. 10:577–83 [Google Scholar]
  60. Serša G, Čemažar M, Menart V, Gaberc-Porekar V, Miklavčič D. 60.  1997. Anti-tumor effectiveness of electrochemotherapy with bleomycin is increased by TNF-α on SA-1 tumors in mice. Cancer Lett. 116:85–92 [Google Scholar]
  61. Torrero MN, Henk WG, Li S. 61.  2006. Regression of high-grade malignancy in mice by bleomycin and interleukin-12 electrochemogenetherapy. Clin. Cancer Res. 12:257–63 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104622
Loading
/content/journals/10.1146/annurev-bioeng-071813-104622
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error