1932

Abstract

As the future of health care diagnostics moves toward more portable and personalized techniques, there is immense potential to harness the power of electrical signals for biological sensing and diagnostic applications at the point of care. Electrical biochips can be used to both manipulate and sense biological entities, as they can have several inherent advantages, including on-chip sample preparation, label-free detection, reduced cost and complexity, decreased sample volumes, increased portability, and large-scale multiplexing. The advantages of fully integrated electrical biochip platforms are particularly attractive for point-of-care systems. This review summarizes these electrical lab-on-a-chip technologies and highlights opportunities to accelerate the transition from academic publications to commercial success.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104643
2016-07-11
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-071813-104643.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104643&mimeType=html&fmt=ahah

Literature Cited

  1. Bard AJ, Faulkner LR. 1.  2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  2. Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR. 2.  2006. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128:16323–31 [Google Scholar]
  3. Sato N.3.  1998. Electrochemistry at Metal and Semiconductor Electrodes Amsterdam: Elsevier
  4. Luo X, Davis JJ. 4.  2013. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 42:5944–62 [Google Scholar]
  5. Roy S, Gao Z. 5.  2009. Nanostructure-based electrical biosensors. Nano Today 4:318–34 [Google Scholar]
  6. Wang J.6.  2005. Nanomaterial-based electrochemical biosensors. Analyst 130:421–26 [Google Scholar]
  7. Ritzi-Lehnert M.7.  2012. Development of chip-compatible sample preparation for diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 12:189–206 [Google Scholar]
  8. Kim J, Johnson M, Hill P, Gale BK. 8.  2009. Microfluidic sample preparation: cell lysis and nucleic acidpurification. Integr. Biol. 1:574–86 [Google Scholar]
  9. Wang X, Wang S, Gendhar B, Cheng C, Byun CK. 9.  et al. 2009. Electroosmotic pumps for microflow analysis. Trends Anal. Chem. 28:64–74 [Google Scholar]
  10. García-Sánchez P, Ramos A, Green NG, Morgan H. 10.  2006. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans. Dielectr. Electr. Insul. 13:670–77 [Google Scholar]
  11. Ng WY, Goh S, Lam YC, Yang C, Rodríguez I. 11.  2009. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9:802–9 [Google Scholar]
  12. Ramos A, Morgan H, Green NG, Castellanos A. 12.  1999. AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217:420–22 [Google Scholar]
  13. Cho SK, Moon H, Kim CJ. 13.  2003. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12:70–80 [Google Scholar]
  14. Gong J, Kim CJ. 14.  2008. All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906 [Google Scholar]
  15. Malic L, Brassard D, Veres T, Tabrizian M. 15.  2010. Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–31 [Google Scholar]
  16. Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B. 16.  et al. 2011. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J. Micromech. Microeng. 21:5 [Google Scholar]
  17. Rubinsky B.17.  2009. Irreversible Electroporation Berlin: Springer
  18. Geng T, Lu C. 18.  2013. Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13:3803–21 [Google Scholar]
  19. Santra TS, Tseng FG. 19.  2013. Recent trends on micro/nanofluidic single cell electroporation. Micromachines 4:333–56 [Google Scholar]
  20. Jokilaakso N, Salm E, Chen A, Millet L, Guevara CD. 20.  et al. 2013. Ultra-localized single cell electroporation using silicon nanowires. Lab Chip 13:336–39 [Google Scholar]
  21. Bao N, Le TT, Cheng J-X, Lu C. 21.  2010. Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr. Biol. 2:113–20 [Google Scholar]
  22. Kim J, Hong JW, Kim D-P, Shin JH, Park I. 22.  2012. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis. Lab Chip 12:2914–21 [Google Scholar]
  23. Neumann E.23.  1992. Membrane electroporation and direct gene transfer. Bioelectrochem. Bioenerg. 28:247–67 [Google Scholar]
  24. Geiger M, Hogerton AL, Bowser MT. 24.  2011. Capillary electrophoresis. Anal. Chem. 84:577–96 [Google Scholar]
  25. Vandaveer WR IV, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM. 25.  2004. Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–49 [Google Scholar]
  26. Sinville R, Soper SA. 26.  2007. High resolution DNA separations using microchip electrophoresis. J. Sep. Sci. 30:1714–28 [Google Scholar]
  27. Liu J, Lee ML. 27.  2006. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27:3533–46 [Google Scholar]
  28. Vázquez M, Frankenfeld C, Coltro WKT, Carrilho E, Diamond D, Lunte SM. 28.  2010. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst 135:96–103 [Google Scholar]
  29. Pohl HA, Hawk I. 29.  1966. Separation of living and dead cells by dielectrophoresis. Science 152:647–49 [Google Scholar]
  30. Millet LJ, Park K, Watkins NN, Hsia KJ, Bashir R. 30.  2011. Separating beads and cells in multi-channel microfluidic devices using dielectrophoresis and laminar flow. J. Vis. Exp. 48:2545 [Google Scholar]
  31. Bhattacharya S, Salamat S, Morisette D, Banada P, Akin D. 31.  et al. 2008. PCR-based detection in a micro-fabricated platform. Lab Chip 8:1130–36 [Google Scholar]
  32. Yang L, Banada PP, Chatni MR, Seop Lim K, Bhunia AK. 32.  et al. 2006. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip 6:896–905 [Google Scholar]
  33. Bajaj P, Marchwiany D, Duarte C, Bashir R. 33.  2013. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography. Adv. Healthc. Mater. 2:450–58 [Google Scholar]
  34. An J, Lee J, Lee SH, Park J, Kim B. 34.  2009. Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal. Bioanal. Chem. 394:801–9 [Google Scholar]
  35. Kim U, Shu CW, Dane KY, Daugherty PS, Wang JYJ, Soh HT. 35.  2007. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. PNAS 104:20708–12 [Google Scholar]
  36. Kohlheyer D, Eijkel JCT, van den Berg A, Schasfoort RBM. 36.  2008. Miniaturizing free-flow electrophoresis—a critical review. Electrophoresis 29:977–93 [Google Scholar]
  37. Liu Y-S, Walter TM, Chang W-J, Lim K-S, Yang L. 37.  et al. 2007. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips. Lab Chip 7:603–10 [Google Scholar]
  38. Cheng X, Liu YS, Irimia D, Demirci U, Yang LJ. 38.  et al. 2007. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–55 [Google Scholar]
  39. Watkins NN, Sridhar S, Cheng XH, Chen GD, Toner M. 39.  et al. 2011. A microfabricated electrical differential counter for the selective enumeration of CD4+ T lymphocytes. Lab Chip 11:1437–47 [Google Scholar]
  40. van Berkel C, Gwyer JD, Deane S, Green N, Holloway J. 40.  et al. 2011. Integrated systems for rapid point of care (PoC) blood cell analysis. Lab Chip 11:1249–55 [Google Scholar]
  41. Deamer D.41.  2010. Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu. Rev. Biophys. 39:79–90 [Google Scholar]
  42. Venkatesan BM, Bashir R. 42.  2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6:615–24 [Google Scholar]
  43. Dudko OK, Mathe J, Meller A. 43.  2010. Nanopore force spectroscopy tools for analyzing single biomolecular complexes. Methods Enzymol. 475:565–89 [Google Scholar]
  44. Dekker C.44.  2007. Solid-state nanopores. Nat. Nanotechnol. 2:209–15 [Google Scholar]
  45. Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE. 45.  et al. 2011. Stacked graphene–Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6:441–50 [Google Scholar]
  46. Shim J, Humphreys GI, Venkatesan BM, Munz JM, Zou X. 46.  et al. 2013. Detection and quantification of methylation in DNA using solid-state nanopores. Sci. Rep. 3:1389 [Google Scholar]
  47. Venkatesan BM, Bashir R. 47.  2011. Nanopore sensors for nucleic acid analysis. Nat. Nano 6:615–24 [Google Scholar]
  48. Maitra RD, Kim J, Dunbar WB. 48.  2012. Recent advances in nanopore sequencing. Electrophoresis 33:3418–28 [Google Scholar]
  49. Iqbal SM, Akin D, Bashir R. 49.  2007. Solid-state nanopore channels with DNA selectivity. Nat. Nanotechnol. 2:243–48 [Google Scholar]
  50. Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL. 50.  2012. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9:487–92 [Google Scholar]
  51. Venkatesan BM, Shah AB, Zuo JM, Bashir R. 51.  2010. DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv. Funct. Mater. 20:1266–75 [Google Scholar]
  52. Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. 52.  2009. Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Adv. Mater. 21:2771–76 [Google Scholar]
  53. Rogers KR.53.  2000. Principles of affinity-based biosensors. Mol. Biotechnol. 14:109–29 [Google Scholar]
  54. Daniels JS, Pourmand N. 54.  2007. Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19:1239–57 [Google Scholar]
  55. Liu JY, Tian SJ, Nielsen PE, Knoll W. 55.  2005. In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chem. Commun. 2005:2969–71 [Google Scholar]
  56. Xu DK, Xu DW, Yu XB, Liu ZH, He W, Ma ZQ. 56.  2005. Label-free electrochemical detection for aptamer-based array electrodes. Anal. Chem. 77:5107–13 [Google Scholar]
  57. Cai H, Lee TMH, Hsing IM. 57.  2006. Label-free protein recognition using an aptamer-based impedance measurement assay. Sens. Actuators B 114:433–37 [Google Scholar]
  58. Gao ZQ, Deng HM, Shen W, Ren YQ. 58.  2013. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem. 85:1624–30 [Google Scholar]
  59. Tsouti V, Boutopoulos C, Zergioti I, Chatzandroulis S. 59.  2011. Capacitive microsystems for biological sensing. Biosens. Bioelectron. 27:1–11 [Google Scholar]
  60. Liu YS, Banada PP, Bhattacharya S, Bhunia AK, Bashir R. 60.  2008. Electrical characterization of DNA molecules in solution using impedance measurements. Appl. Phys. Lett. 92:143902 [Google Scholar]
  61. Berdat D, Martin Rodríguez AC, Herrera F, Gijs MAM. 61.  2008. Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. Lab Chip 8:302–8 [Google Scholar]
  62. Qureshi A, Gurbuz Y, Niazi JH. 62.  2011. Probing chemical induced cellular stress by non-Faradaic electrochemical impedance spectroscopy using an Escherichia coli capacitive biochip. Analyst 136:2726–34 [Google Scholar]
  63. Ebrahimi A, Dak P, Salm E, Dash S, Garimella SV. 63.  et al. 2013. Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-Faradaic impedance spectroscopy. Lab Chip 13:4248–56 [Google Scholar]
  64. Poghossian A, Abouzar MH, Schoning MJ. 64.  2008. Capacitance–voltage and impedance characteristics of field-effect EIS sensors functionalised with polyelectrolyte multilayers. IRBM 29:149–54 [Google Scholar]
  65. Poghossian A, Abouzar MH, Amberger F, Mayer D, Han Y. 65.  et al. 2007. Field-effect sensors with charged macromolecules: characterisation by capacitance-voltage, constant-capacitance, impedance spectroscopy and atomic-force microscopy methods. Biosens. Bioelectron. 22:2100–7 [Google Scholar]
  66. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR. 66.  2002. Electronic detection of DNA by its intrinsic molecular charge. PNAS 99:14142–46 [Google Scholar]
  67. Penner RM.67.  2012. Chemical sensing with nanowires. Annu. Rev. Anal. Chem. 5:461–85 [Google Scholar]
  68. Patolsky F, Zheng G, Lieber CM. 68.  2006. Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65 [Google Scholar]
  69. Makowski MS, Ivanisevic A. 69.  2011. Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small 7:1863–75 [Google Scholar]
  70. Cui Y, Wei QQ, Park HK, Lieber CM. 70.  2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–92 [Google Scholar]
  71. Hahm J, Lieber CM. 71.  2004. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4:51–54 [Google Scholar]
  72. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM. 72.  2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23:1294–301 [Google Scholar]
  73. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB. 73.  et al. 2007. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–22 [Google Scholar]
  74. Zhang G-J, Chua JH, Chee RE, Agarwal A, Wong SM. 74.  2009. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24:2504–8 [Google Scholar]
  75. Zhang G-J, Chai KTC, Luo HZH, Huang JM, Tay IGK. 75.  et al. 2012. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens. Bioelectron. 35:218–23 [Google Scholar]
  76. Zhang G-J, Huang JM, Ang JAJ, Yao Q, Ning Y. 76.  2013. Label-free detection of carbohydrate–protein interactions using nanoscale field-effect transistor biosensors. Anal. Chem. 85:4392–97 [Google Scholar]
  77. Dorvel BR, Reddy B, Go J, Duarte Guevara C, Salm E. 77.  et al. 2012. Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6:6150–64 [Google Scholar]
  78. McAlpine MC, Ahmad H, Wang DW, Heath JR. 78.  2007. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6:379–84 [Google Scholar]
  79. Allen BL, Kichambare PD, Star A. 79.  2007. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19:1439–51 [Google Scholar]
  80. Stine R, Mulvaney SP, Robinson JT, Tamanaha CR, Sheehan PE. 80.  2012. Fabrication, optimization, and use of graphene field effect sensors. Anal. Chem. 85:509–21 [Google Scholar]
  81. Dorvel B, Reddy B, Block I, Mathias P, Clare SE. 81.  et al. 2010. Vapor-phase deposition of monofunctional alkoxysilanes for sub-nanometer-level biointerfacing on silicon oxide surfaces. Adv. Funct. Mater. 20:87–95 [Google Scholar]
  82. Tarasov A, Wipf M, Stoop RL, Bedner K, Fu W. 82.  et al. 2012. Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. ACS Nano 6:9291–98 [Google Scholar]
  83. Stern E, Vacic A, Rajan NK, Criscione JM, Park J. 83.  et al. 2010. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5:138–42 [Google Scholar]
  84. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W. 84.  et al. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–52 [Google Scholar]
  85. Toumazou C, Shepherd LM, Reed SC, Chen GI, Patel A. 85.  et al. 2013. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Meth. 10:641–46 [Google Scholar]
  86. Poghossian A, Cherstvy A, Ingebrandt S, Offenhausser A, Schoning MJ. 86.  2005. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 111:470–80 [Google Scholar]
  87. Nair PR, Alam MA. 87.  2006. Performance limits of nanobiosensors. Appl. Phys. Lett. 88:233120 [Google Scholar]
  88. Go J, Alam MA. 88.  2009. Statistical interpretation of “femtomolar” detection. Appl. Phys. Lett. 95:03310 [Google Scholar]
  89. Nair PR, Alam MA. 89.  2007. Design considerations of silicon nanowire biosensors. IEEE Trans. Electron. Dev. 54:3400–8 [Google Scholar]
  90. Nair PR, Alam MA. 90.  2008. Screening-limited response of nanobiosensors. Nano Lett. 8:1281–85 [Google Scholar]
  91. Shalev G, Landman G, Amit I, Rosenwaks Y, Levy I. 91.  2013. Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor. NPG Asia Mater. 5:341 [Google Scholar]
  92. Gao AR, Lu N, Dai PF, Li T, Pei H. 92.  et al. 2011. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 11:3974–78 [Google Scholar]
  93. Nakazato K.93.  2009. An integrated ISFET sensor array. Sensors 9:8831–51 [Google Scholar]
  94. Goda T, Miyahara Y. 94.  2010. Detection of microenvironmental changes induced by protein adsorption onto self-assembled monolayers using an extended gate-field effect transistor. Anal. Chem. 82:1803–10 [Google Scholar]
  95. Clark LC Jr, Lyons C. 95.  1962. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 102:29–45 [Google Scholar]
  96. Borgmann S, Schulte A, Neugebauer S, Schuhmann W. 96.  2011. Amperometric biosensors. Advances in Electrochemical Science and Engineering RC Alkire, DM Kolb, J Lipkowski 1–83 New York: Wiley [Google Scholar]
  97. Hecht HJ, Schomburg D, Kalisz H, Schmid RD. 97.  1993. The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosens. Bioelectron. 8:197–203 [Google Scholar]
  98. Wang J, Yau ST. 98.  2011. Field-effect amperometric immuno-detection of protein biomarker. Biosens. Bioelectron. 29:210–14 [Google Scholar]
  99. Jiang LC, Zhang WD. 99.  2010. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles–modified carbon nanotube electrode. Biosens. Bioelectron. 25:1402–7 [Google Scholar]
  100. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ. 100.  2010. A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim. Acta 168:259–65 [Google Scholar]
  101. Goran JM, Lyon JL, Stevenson KJ. 101.  2011. Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal. Chem. 83:8123–29 [Google Scholar]
  102. Chakraborty S, Retna RC. 102.  2007. Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem. Commun. 9:1323–30 [Google Scholar]
  103. Gao W, Dong H, Lei J, Ji H, Ju H. 103.  2011. Signal amplification of streptavidin–horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem. Commun. 47:5220–22 [Google Scholar]
  104. Poorahong S, Thammakhet C, Thavarungkul P, Limbut W, Numnuam A, Kanatharana P. 104.  2012. Amperometric sensor for detection of bisphenol A using a pencil graphite electrode modified with polyaniline nanorods and multiwalled carbon nanotubes. Microchim. Acta 176:91–99 [Google Scholar]
  105. Zuo X, He S, Li D, Peng C, Huang Q. 105.  et al. 2010. Graphene oxide–facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–39 [Google Scholar]
  106. Wang J, Li M, Shi Z, Li N, Gu Z. 106.  2002. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74:1993–97 [Google Scholar]
  107. Liu Y, Zhu Y, Zeng Y, Xu F. 107.  2009. An effective amperometric biosensor based on gold nanoelectrode arrays. Nanoscale Res. Lett. 4:210–15 [Google Scholar]
  108. Claussen JC, Hengenius JB, Wickner MM, Fisher TS, Umulis DM, Porterfield DM. 108.  2011. Effects of carbon nanotube–tethered nanosphere density on amperometric biosensing: Simulation and experiment. J. Phys. Chem. C 115:20896–904 [Google Scholar]
  109. Pinho A, Viswanathan S, Ribeiro S, Pinto Oliveira MBP, Delerue-Matos C. 109.  2012. Electroanalysis of urinary l-dopa using tyrosinase immobilized on gold nanoelectrode ensembles. J. Appl. Electrochem. 42:131–37 [Google Scholar]
  110. Kim S, Na J, Lee SK, Song MJ, Kang P. 110.  et al. 2013. Geometrical effects of nanowire electrodes for amperometric enzyme biosensors. Sens. Actuators B 183:222–29 [Google Scholar]
  111. Meredith MT, Minson M, Hickey D, Artyushkova K, Glatzhofer DT, Minteer SD. 111.  2011. Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal. 1:1683–90 [Google Scholar]
  112. Gilardi G, Fantuzzi A. 112.  2001. Manipulating redox systems: application to nanotechnology. Trends Biotechnol. 19:468–76 [Google Scholar]
  113. Guo S, Dong S. 113.  2009. Biomolecule–nanoparticle hybrids for electrochemical biosensors. Trends Anal. Chem. 28:96–109 [Google Scholar]
  114. Badugu R, Lakowicz JR, Geddes CD. 114.  2004. Ophthalmic glucose monitoring using disposable contact lenses—a review. J. Fluoresc. 14:617–33 [Google Scholar]
  115. Jia W, Bandodkar AJ, Valdés-Ramírez G, Windmiller JR, Yang Z. 115.  et al. 2013. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85:6553–60 [Google Scholar]
  116. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. 116.  2011. Point of care diagnostics: status and future. Anal. Chem. 84:487–515 [Google Scholar]
  117. Elder M.117.  2012. Point of care diagnostics Report, BCC Research, Wellesley, MA
  118. Peeling RW, Mabey D. 118.  2010. Point-of-care tests for diagnosing infections in the developing world. Clin. Microbiol. Infect. 16:1062–69 [Google Scholar]
  119. Venge P, Ohberg C, Flodin M, Lindahl B. 119.  2010. Early and late outcome prediction of death in the emergency room setting by point-of-care and laboratory assays of cardiac troponin I. Am. Heart J. 160:835–41 [Google Scholar]
  120. Apple FS, Ler R, Chung AY, Berger MJ, Murakami MM. 120.  2006. Point-of-care i-STAT cardiac troponin I for assessment of patients with symptoms suggestive of acute coronary syndrome. Clin. Chem. 52:322–25 [Google Scholar]
  121. Luong JHT, Male KB, Glennon JD. 121.  2008. Biosensor technology: technology push versus market pull. Biotechnol. Adv. 26:492–500 [Google Scholar]
  122. Rapp BE, Gruhl FJ, Lange K. 122.  2010. Biosensors with label-free detection designed for diagnostic applications. Anal. Bioanal. Chem. 398:2403–12 [Google Scholar]
  123. Yager P, Domingo GJ, Gerdes J. 123.  2008. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10:107–44 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104643
Loading
/content/journals/10.1146/annurev-bioeng-071813-104643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error