1932

Abstract

Epilepsy afflicts approximately 1–2% of the world's population. The mainstay therapy for treating the chronic recurrent seizures that are emblematic of epilepsy are drugs that manipulate levels of neuronal excitability in the brain. However, approximately one-third of all epilepsy patients get little to no clinical relief from this therapeutic regimen. The use of electrical stimulation in many forms to treat drug-refractory epilepsy has grown markedly over the past few decades, with some devices and protocols being increasingly used as standard clinical treatment. This article seeks to review the fundamental modes of applying electrical stimulation—from the noninvasive to the nominally invasive to deep brain stimulation—for the control of seizures in epileptic patients. Therapeutic practices from the commonly deployed clinically to the experimental are discussed to provide an overview of the innovative neural engineering approaches being explored to treat this difficult disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104720
2014-07-11
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-104720.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104720&mimeType=html&fmt=ahah

Literature Cited

  1. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. 1.  2010. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51:883–90 [Google Scholar]
  2. Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. 2.  2011. Incidence of epilepsy: a systematic review and meta-analysis. Neurology 77:1005–12 [Google Scholar]
  3. Engel JJ, Van Ness PC, Rasmussen TB, Ojemann LM. 3.  1993. Outcome with respect to epileptic seizures. Surgical Treatment of the Epilepsies J Engel Jr 609–22 New York: Raven [Google Scholar]
  4. Tellez-Zenteno JF, Dhar R, Wiebe S. 4.  2005. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128:1188–98 [Google Scholar]
  5. Heath RG. 5.  1963. Electrical self-stimulation of the brain in man. Am. J. Psychiatry 120:571–77 [Google Scholar]
  6. Penfield W, Jasper H. 6.  1954. Epilepsy and the Functional Anatomy of the Human Brain Boston: Little, Brown
  7. Cooke PM, Snider RS. 7.  1955. Some cerebellar influences on electrically-induced cerebral seizures. Epilepsia 4:19–28 [Google Scholar]
  8. Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. 8.  1976. Chronic cerebellar stimulation in epilepsy: clinical and anatomical studies. Arch. Neurol. 33:559–70 [Google Scholar]
  9. Šramka M, Fritz G, Galanda M, Nadvornik P. 9.  1976. Some observations in treatment stimulation of epilepsy. Acta Neurochir. (Wien) 23:257–62 [Google Scholar]
  10. Chkhenkeli SA, Chkhenkeli IS. 10.  1997. Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy. Stereotact. Funct. Neurosurg. 69:221–24 [Google Scholar]
  11. Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ Jr. 11.  et al. 2007. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 10:521–28 [Google Scholar]
  12. Marshall L, Helgadottir H, Molle M, Born J. 12.  2006. Boosting slow oscillations during sleep potentiates memory. Nature 444:610–13 [Google Scholar]
  13. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. 13.  2012. Driving oscillatory activity in the human cortex enhances motor performance. Curr. Biol. 22:403–7 [Google Scholar]
  14. Chan CY, Nicholson C. 14.  1986. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J. Physiol. 371:89–114 [Google Scholar]
  15. Logothetis NK, Kayser C, Oeltermann A. 15.  2007. In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–23 [Google Scholar]
  16. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E. 16.  et al. 2010. Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci. 30:11476–85 [Google Scholar]
  17. Reato D, Rahman A, Bikson M, Parra LC. 17.  2010. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30:15067–79 [Google Scholar]
  18. Terzuolo CA, Bullock TH. 18.  1956. Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proc. Natl. Acad. Sci. USA 42:687–94 [Google Scholar]
  19. Francis JT, Gluckman BJ, Schiff SJ. 19.  2003. Sensitivity of neurons to weak electric fields. J. Neurosci. 23:7255–61 [Google Scholar]
  20. McIntyre CC, Grill WM. 20.  1999. Excitation of central nervous system neurons by nonuniform electric fields. Biophys. J. 76:878–88 [Google Scholar]
  21. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. 21.  2005. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–75 [Google Scholar]
  22. Nitsche MA, Paulus W. 22.  2000. Excitability changes induced in the human motor cortex by weak trans-cranial direct current stimulation. J. Physiol. 527:Pt. 3633–39 [Google Scholar]
  23. Nitsche MA, Paulus W. 23.  2009. Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives. Neurotherapeutics 6:244–50 [Google Scholar]
  24. Fregni F, Pascual-Leone A. 24.  2007. Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3:383–93 [Google Scholar]
  25. Bikson M, Lian J, Hahn PJ, Stacey WC, Sciortino C, Durand DM. 25.  2001. Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. J. Physiol. 531:181–91 [Google Scholar]
  26. Ghai RS, Bikson M, Durand DM. 26.  2000. Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J. Neurophysiol. 84:274–80 [Google Scholar]
  27. Kamida T, Kong S, Eshima N, Abe T, Fujiki M, Kobayashi H. 27.  2011. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behav. Brain Res. 217:99–103 [Google Scholar]
  28. Lian J, Bikson M, Sciortino C, Stacey WC, Durand DM. 28.  2003. Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J. Physiol. 547:427–34 [Google Scholar]
  29. Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA. 29.  et al. 2006. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47:1216–24 [Google Scholar]
  30. Kanai R, Paulus W, Walsh V. 30.  2010. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121:1551–54 [Google Scholar]
  31. Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. 31.  2010. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 16:285–307 [Google Scholar]
  32. Zaghi S, de Freitas Rezende L, de Oliveira LM, El-Nazer R, Menning S. 32.  et al. 2010. Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS). Neurosci. Lett. 479:211–14 [Google Scholar]
  33. Zaehle T, Rach S, Herrmann CS. 33.  2010. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 5:e13766 [Google Scholar]
  34. Krieg T, Mogul DJ. 34.  2013. Transcranial magnetic stimulation. Neural Engineering B He 405–53 New York: Springer, 2nd. ed. [Google Scholar]
  35. Hallett M. 35.  2000. Transcranial magnetic stimulation and the human brain. Nature 406:147–50 [Google Scholar]
  36. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. 36.  2000. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp. Brain Res. 133:425–30 [Google Scholar]
  37. Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Canete C, Catala MD. 37.  1998. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 15:333–43 [Google Scholar]
  38. Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A. 38.  2002. Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin. Neurophysiol. 113:101–7 [Google Scholar]
  39. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. 39.  2005. The plastic human brain cortex. Annu. Rev. Neurosci. 28:377–401 [Google Scholar]
  40. Dhuna A, Gates J, Pascual-Leone A. 40.  1991. Transcranial magnetic stimulation in patients with epilepsy. Neurology 41:1067–71 [Google Scholar]
  41. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM. 41.  et al. 1997. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–403 [Google Scholar]
  42. Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. 42.  2000. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin. Neurophysiol. 111:1002–7 [Google Scholar]
  43. Tergau F, Naumann U, Paulus W, Steinhoff BJ. 43.  1999. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 353:2209 [Google Scholar]
  44. Tergau F, Neumann D, Rosenow F, Nitsche MA, Paulus W, Steinhoff B. 44.  2003. Can epilepsies be improved by repetitive transcranial magnetic stimulation? Interim analysis of a controlled study. Suppl. Clin. Neurophysiol. 56:400–5 [Google Scholar]
  45. Theodore WH, Hunter K, Chen R, Vega-Bermudez F, Boroojerdi B. 45.  et al. 2002. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 59:560–62 [Google Scholar]
  46. Daniele O, Brighina F, Piazza A, Giglia G, Scalia S, Fierro B. 46.  2003. Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia—a preliminary study. J. Neurol. 250:761–62 [Google Scholar]
  47. Fregni F, Thome-Souza S, Bermpohl F, Marcolin MA, Herzog A. 47.  et al. 2005. Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with cortical malformations: an EEG and clinical study. Stereotact. Funct. Neurosurg. 83:57–62 [Google Scholar]
  48. Joo EY, Han SJ, Chung SH, Cho JW, Seo DW, Hong SB. 48.  2007. Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin. Neurophysiol. 118:702–8 [Google Scholar]
  49. Kinoshita M, Ikeda A, Begum T, Yamamoto J, Hitomi T, Shibasaki H. 49.  2005. Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy—a pilot study. Seizure 14:387–92 [Google Scholar]
  50. Menkes DL, Gruenthal M. 50.  2000. Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 41:240–42 [Google Scholar]
  51. Cantello R, Rossi S, Varrasi C, Ulivelli M, Civardi C. 51.  et al. 2007. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia 48:366–74 [Google Scholar]
  52. Fregni F, Otachi PT, Do Valle A, Boggio PS, Thut G. 52.  et al. 2006. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann. Neurol. 60:447–55 [Google Scholar]
  53. Bae EH, Theodore WH, Fregni F, Cantello R, Pascual-Leone A, Rotenberg A. 53.  2011. An estimate of placebo effect of repetitive transcranial magnetic stimulation in epilepsy. Epilepsy Behav. 20:355–59 [Google Scholar]
  54. Kimiskidis VK. 54.  2010. Transcranial magnetic stimulation for drug-resistant epilepsies: rationale and clinical experience. Eur. Neurol. 63:205–10 [Google Scholar]
  55. Hsu WY, Cheng CH, Lin MW, Shih YH, Liao KK, Lin YY. 55.  2011. Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation: a meta-analysis. Epilepsy Res. 96:231–40 [Google Scholar]
  56. Cohen-Gadol AA, Britton JW, Wetjen NM, Marsh WR, Meyer FB, Raffel C. 56.  2003. Neurostimulation therapy for epilepsy: current modalities and future directions. Mayo Clin. Proc. 78:238–48 [Google Scholar]
  57. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z. 57.  et al. 2000. Vagus nerve stimulation: a new tool for brain research and therapy. Biol. Psychiatry 47:287–95 [Google Scholar]
  58. Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K. 58.  2009. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–27 [Google Scholar]
  59. Bailey P, Bremer F. 59.  1938. A sensory cortical representation of the vagus nerve. J. Neurophysiol. 1:405–12 [Google Scholar]
  60. Dell P, Olson R. 60.  1951. Thalamic, cortical and cerebellar projections of vagal visceral afferences. C. R. Seances Soc. Biol. Fil. 145:1084–88 [Google Scholar]
  61. Zabara J. 61.  1985. Time course of seizure control to brief, repetitive stimuli. Epilepsia 26:518 [Google Scholar]
  62. Zabara J. 62.  1985. Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalogr. Clin. Neurophysiol. 61:S162 [Google Scholar]
  63. Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H. 63.  et al. 1994. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 35:616–26 [Google Scholar]
  64. Hammond EJ, Uthman BM, Reid SA, Wilder BJ, Ramsay RE. 64.  1990. Vagus nerve stimulation in humans: neurophysiological studies and electrophysiological monitoring. Epilepsia 31:Suppl. 2S51–59 [Google Scholar]
  65. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK. 65.  et al. 1998. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology 51:48–55 [Google Scholar]
  66. Uthman BM, Wilder BJ, Penry JK, Dean C, Ramsay RE. 66.  et al. 1993. Treatment of epilepsy by stimulation of the vagus nerve. Neurology 43:1338–45 [Google Scholar]
  67. Vagus Nerve Stimul. Study Group 1995. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45:224–30 [Google Scholar]
  68. Binnie CD. 68.  2000. Vagus nerve stimulation for epilepsy: a review. Seizure 9:161–69 [Google Scholar]
  69. Fisher RS, Krauss GL, Ramsay E, Laxer K, Gates J. 69.  1997. Assessment of vagus nerve stimulation for epilepsy: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 49:293–97 [Google Scholar]
  70. Uthman BM, Wilder BJ, Hammond EJ, Reid SA. 70.  1990. Efficacy and safety of vagus nerve stimulation in patients with complex partial seizures. Epilepsia 31:Suppl. 2S44–50 [Google Scholar]
  71. Vonck K, Van Laere K, Dedeurwaerdere S, Caemaert J, De Reuck J, Boon P. 71.  2001. The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status. J. Clin. Neurophysiol. 18:394–401 [Google Scholar]
  72. Cox CL, Huguenard JR, Prince DA. 72.  1997. Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc. Natl. Acad. Sci. USA 94:8854–59 [Google Scholar]
  73. Henry TR, Bakay RA, Votaw JR, Pennell PB, Epstein CM. 73.  et al. 1998. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy. I. Acute effects at high and low levels of stimulation. Epilepsia 39:983–90 [Google Scholar]
  74. Van Laere K, Vonck K, Boon P, Versijpt J, Dierckx R. 74.  2002. Perfusion SPECT changes after acute and chronic vagus nerve stimulation in relation to prestimulus condition and long-term clinical efficacy. J. Nucl. Med. 43:733–44 [Google Scholar]
  75. Ben-Menachem E, French JA. 75.  2005. VNS therapy versus the latest antiepileptic drug. Epileptic Disord. 7:Suppl. 122–26 [Google Scholar]
  76. Morris GL III, Mueller WM. 76. Vagus Nerve Stimul. Study Group E01–E05 1999. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. Neurology 53:1731–35 [Google Scholar]
  77. Rychlicki F, Zamponi N, Trignani R, Ricciuti RA, Iacoangeli M, Scerrati M. 77.  2006. Vagus nerve stimulation: clinical experience in drug-resistant pediatric epileptic patients. Seizure 15:483–90 [Google Scholar]
  78. Tanganelli P, Ferrero S, Colotto P, Regesta G. 78.  2002. Vagus nerve stimulation for treatment of medically intractable seizures. Evaluation of long-term outcome. Clin. Neurol. Neurosurg. 105:9–13 [Google Scholar]
  79. Vonck K, Boon P, D'Have M, Vandekerckhove T, O'Connor S, De Reuck J. 79.  1999. Long-term results of vagus nerve stimulation in refractory epilepsy. Seizure 8:328–34 [Google Scholar]
  80. Vonck K, Thadani V, Gilbert K, Dedeurwaerdere S, De Groote L. 80.  et al. 2004. Vagus nerve stimulation for refractory epilepsy: a transatlantic experience. J. Clin. Neurophysiol. 21:283–89 [Google Scholar]
  81. Ben-Menachem E. 81.  2001. Vagus nerve stimulation, side effects, and long-term safety. J. Clin. Neurophysiol. 18:415–18 [Google Scholar]
  82. DeGiorgio CM, Soss J, Cook IA, Markovic D, Gornbein J. 82.  et al. 2013. Randomized controlled trial of trigeminal nerve stimulation for drug-resistant epilepsy. Neurology 80:786–91 [Google Scholar]
  83. Fisher R, Salanova V, Witt T, Worth R, Henry T. 83.  et al. 2010. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908 [Google Scholar]
  84. Lee HC, Kohrman M, Hecox KE, van Drongelen W. 84.  2013. Seizure Prediction New York: Kluwer
  85. Lee HC, van Drongelen W, McGee AB, Frim DM, Kohrman MH. 85.  2007. Comparison of seizure detection algorithms in continuously monitored pediatric patients. J. Clin. Neurophysiol. 24:137–46 [Google Scholar]
  86. Lehnertz K, Mormann F, Osterhage H, Muller A, Prusseit J. 86.  et al. 2007. State-of-the-art of seizure prediction. J. Clin. Neurophysiol. 24:147–53 [Google Scholar]
  87. Litt B, Esteller R, Echauz J, D'Alessandro M, Shor R. 87.  et al. 2001. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30:51–64 [Google Scholar]
  88. Rana P, Lipor J, Lee H, van Drongelen W, Kohrman MH, Van Veen B. 88.  2012. Seizure detection using the phase-slope index and multichannel ECoG. IEEE Trans. Biomed. Eng. 59:1125–34 [Google Scholar]
  89. Savet R. 89.  2003. Predicting Epileptic Seizures Berlin: Springer
  90. Morrell MJ. 90.  2011. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–304 [Google Scholar]
  91. Sillay KA, Rutecki P, Cicora K, Worrell G, Drazkowski J. 91.  et al. 2013. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Brain Stimul. 6:718–26 [Google Scholar]
  92. Osorio I, Frei MG, Sunderam S, Giftakis J, Bhavaraju NC. 92.  et al. 2005. Automated seizure abatement in humans using electrical stimulation. Ann. Neurol. 57:258–68 [Google Scholar]
  93. Kossoff EH, Ritzl EK, Politsky JM, Murro AM, Smith JR. 93.  et al. 2004. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45:1560–67 [Google Scholar]
  94. Cook MJ, O'Brien TJ, Berkovic SF, Murphy M, Morokoff A. 94.  et al. 2013. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12:563–71 [Google Scholar]
  95. Gluckman BJ, Schiff SJ. 95.  2003. Seizure control using feedback and electric fields. Epilepsy as a Dynamic Disease J Milton, P Jung 263–82 Berlin: Springer [Google Scholar]
  96. Velasco F, Carrillo-Ruiz JD, Brito F, Velasco M, Velasco AL. 96.  et al. 2005. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 46:1071–81 [Google Scholar]
  97. Ellis TL, Stevens A. 97.  2008. Deep brain stimulation for medically refractory epilepsy. Neurosurg. Focus 25:E11 [Google Scholar]
  98. Hunter JD, Milton J. 98.  2003. Epilepsy as a dynamic disease. Controlling Neural Synchrony with Periodic and Aperiodic Stimuli J Milton, P. Jung 115–30 Berlin: Springer [Google Scholar]
  99. Chkhenkeli SA, Towle VL, Lortkipanidze GS, Spire JP, Bregvadze E. 99.  et al. 2007. Mutually suppressive interrelations of symmetric epileptic foci in bitemporal epilepsy and their inhibitory stimulation. Clin. Neurol. Neurosurg. 109:7–22 [Google Scholar]
  100. Theodore WH, Fisher RS. 100.  2004. Brain stimulation for epilepsy. Lancet Neurol. 3:111–18 [Google Scholar]
  101. Schiller Y, Bankirer Y. 101.  2007. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J. Neurophysiol. 97:1887–902 [Google Scholar]
  102. Sjöström J, Gerstner W. 102.  2010. Spike-timing dependent plasticity. Scholarpedia 5:1362 [Google Scholar]
  103. Bi G, Poo M. 103.  2001. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24:139–66 [Google Scholar]
  104. Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS. 104.  et al. 2013. Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front. Neural Circuits 7:119 [Google Scholar]
  105. Luders J, Najm I, Luders HO. 105.  2004. Brain stimulation and epilepsy: basic overview and novel approaches. Deep Brain Stimulation and Epilepsy HO Luders 3–17 London: Martin Dunitz [Google Scholar]
  106. Goddard GV. 106.  1967. Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–21 [Google Scholar]
  107. Goddard GV, McIntyre DC, Leech CK. 107.  1969. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25:295–330 [Google Scholar]
  108. Racine RJ, Burnham WM, Gartner JG, Levitan D. 108.  1973. Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and inter-stimulation interval effects. Electroencephalogr. Clin. Neurophysiol. 35:553–56 [Google Scholar]
  109. Gowers WR. 109.  1881. Epilepsy and Other Chronic Convulsive Disorders: Their Causes, Symptoms and Treatment London: Churchill
  110. Ben-Ari Y, Crepel V, Represa A. 110.  2008. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses. Epilepsy Curr. 8:68–72 [Google Scholar]
  111. Sills GJ. 111.  2007. Seizures beget seizures: a lack of experimental evidence and clinical relevance fails to dampen enthusiasm. Epilepsy Curr. 7:103–4 [Google Scholar]
  112. Rogawski MA. 112.  2002. Antiepileptogenesis by deep brain stimulation. Epilepsy Curr. 2:153–54 [Google Scholar]
  113. Fisher RS, McKhann GM II, Stern JM, Quigg MS, Régis J. 113.  et al. 2008. New therapeutic directions. Epilepsy: A Comprehensive Textbook J Engel Jr, TA Pedley 1415–30 Philadelphia: Lippincott Williams & Wilkins, 2nd. ed. [Google Scholar]
  114. Hamani C, Ewerton FI, Bonilha SM, Ballester G, Mello LE, Lozano AM. 114.  2004. Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery 54:191–97 [Google Scholar]
  115. Lado FA. 115.  2006. Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia 47:27–32 [Google Scholar]
  116. Papez JW. 116.  1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:715–43 [Google Scholar]
  117. Loddenkemper T, Pan A, Neme S, Baker KB, Rezai AR. 117.  et al. 2001. Deep brain stimulation in epilepsy. J. Clin. Neurophysiol. 18:514–32 [Google Scholar]
  118. Handforth A, DeSalles AA, Krahl SE. 118.  2006. Deep brain stimulation of the subthalamic nucleus as adjunct treatment for refractory epilepsy. Epilepsia 47:1239–41 [Google Scholar]
  119. Cooper IS, Amin I, Upton A, Riklan M, Watkins S, McLellan L. 119.  1977. Safety and efficacy of chronic stimulation. Neurosurgery 1:203–5 [Google Scholar]
  120. Wright GD, McLellan DL, Brice JG. 120.  1984. A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J. Neurol. Neurosurg. Psychiatry 47:769–74 [Google Scholar]
  121. Chkhenkeli SA, Šramka M, Lortkipanidze GS, Rakviashvili TN, Bregvadze E. 121.  et al. 2004. Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin. Neurol. Neurosurg. 106:318–29 [Google Scholar]
  122. Fisher RS, Uematsu S, Krauss GL, Cysyk BJ, McPherson R. 122.  et al. 1992. Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia 33:841–51 [Google Scholar]
  123. Velasco AL, Velasco F, Jimenez F, Velasco M, Castro G. 123.  et al. 2006. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia 47:1203–12 [Google Scholar]
  124. Velasco F, Velasco M, Jimenez F, Velasco AL, Marquez I. 124.  2001. Stimulation of the central median thalamic nucleus for epilepsy. Stereotact. Funct. Neurosurg. 77:228–32 [Google Scholar]
  125. Andrade DM, Zumsteg D, Hamani C, Hodaie M, Sarkissian S. 125.  et al. 2006. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology 66:1571–73 [Google Scholar]
  126. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. 126.  2002. Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43:603–8 [Google Scholar]
  127. Kerrigan JF, Litt B, Fisher RS, Cranstoun S, French JA. 127.  et al. 2004. Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45:346–54 [Google Scholar]
  128. Lee KJ, Jang KS, Shon YM. 128.  2006. Chronic deep brain stimulation of subthalamic and anterior thalamic nuclei for controlling refractory partial epilepsy. Acta Neurochir. Suppl. 99:87–91 [Google Scholar]
  129. Lim SN, Lee ST, Tsai YT, Chen IA, Tu PH. 129.  et al. 2007. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia 48:342–47 [Google Scholar]
  130. Osorio I, Overman J, Giftakis J, Wilkinson SB. 130.  2007. High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia 48:1561–71 [Google Scholar]
  131. Upton AR, Amin I, Garnett S, Springman M, Nahmias C, Cooper IS. 131.  1987. Evoked metabolic responses in the limbic-striate system produced by stimulation of anterior thalamic nucleus in man. Pacing Clin. Electrophysiol. 10:217–25 [Google Scholar]
  132. Velasco AL, Velasco F, Velasco M, Trejo D, Castro G, Carrillo-Ruiz JD. 132.  2007. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 48:1895–903 [Google Scholar]
  133. Vonck K, Sprengers M, Carrette E, Dauwe I, Miatton M. 133.  et al. 2013. A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int. J. Neural Syst. 23:1250034 [Google Scholar]
  134. Lesser RP, Kim SH, Beyderman L, Miglioretti DL, Webber WR. 134.  et al. 1999. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53:2073–81 [Google Scholar]
  135. Fountas KN, Smith JR, Murro AM, Politsky J, Park YD, Jenkins PD. 135.  2005. Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy. Stereotact. Funct. Neurosurg. 83:153–58 [Google Scholar]
  136. Sun FT, Morrell MJ, Wharen RE Jr. 136.  2008. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5:68–74 [Google Scholar]
  137. Fine AS, Nicholls DP, Mogul DJ. 137.  2010. Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain. J. Neurosci. Methods 186:42–51 [Google Scholar]
  138. Sobayo T, Fine AS, Gunnar E, Kazlauskas C, Nicholls D, Mogul DJ. 138.  2013. Synchrony dynamics across brain structures in limbic epilepsy vary between initiation and termination phases of seizures. IEEE Trans. Biomed. Eng. 60:821–29 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104720
Loading
/content/journals/10.1146/annurev-bioeng-071813-104720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error