1932

Abstract

Inhibiting specific gene expression by short interfering RNA (siRNA) offers a new therapeutic strategy to tackle many diseases, including cancer, metabolic disorders, and viral infections, at the molecular level. The macromolecular and polar nature of siRNA hinders its cellular access to exert its effect. Nanoparticulate delivery systems can promote efficient intracellular delivery. Despite showing promise in many preclinical studies and potential in some clinical trials, siRNA has poor delivery efficiency, which continues to demand innovations, from carrier design to formulation, in order to overcome transport barriers. Previous findings for optimal plasmid DNA delivery cannot be generalized to siRNA delivery owing to significant discrepancy in size and subtle differences in chain flexibility between the two types of nucleic acids. In this review, we highlight the recent advances in improving the stability of siRNA nanoparticles, understanding their intracellular trafficking and release mechanisms, and applying judiciously the promising formulations to disease models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-105119
2014-07-11
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-105119.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-105119&mimeType=html&fmt=ahah

Literature Cited

  1. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1.  1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11 [Google Scholar]
  2. Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. 2.  2006. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2:711–19 [Google Scholar]
  3. Castanotto D, Rossi JJ. 3.  2009. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–33 [Google Scholar]
  4. Oh Y-K, Park TG. 4.  2009. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 61:850–62 [Google Scholar]
  5. Wilson RC, Doudna JA. 5.  2013. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42:217–39 [Google Scholar]
  6. Reischl D, Zimmer A. 6.  2009. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5:8–20 [Google Scholar]
  7. Krieg AM. 7.  2011. Is RNAi dead?. Mol. Ther. 19:1001–2 [Google Scholar]
  8. Judge AD, Bola G, Lee ACH, MacLachlan I. 8.  2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13:494–505 [Google Scholar]
  9. Whitehead KA, Langer R, Anderson DG. 9.  2009. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8:129–38 [Google Scholar]
  10. Lee SJ, Son S, Yhee JY, Choi K, Kwon IC. 10.  et al. 2012. Structural modification of siRNA for efficient gene silencing. Biotechnol. Adv. 31:491–503 [Google Scholar]
  11. Huang Y, Hong J, Zheng S, Ding Y, Guo S. 11.  et al. 2011. Elimination pathways of systemically delivered siRNA. Mol. Ther. 19:381–85 [Google Scholar]
  12. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML. 12.  et al. 2004. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103 [Google Scholar]
  13. Zhao M, Yang H, Jiang X, Zhou W, Zhu B. 13.  et al. 2008. Lipofectamine RNAiMAX: an efficient siRNA transfection reagent in human embryonic stem cells. Mol. Biotechnol. 40:19–26 [Google Scholar]
  14. Ma Z, Li J, He FT, Wilson A, Pitt B, Li S. 14.  2005. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 330:755–59 [Google Scholar]
  15. Palliser D, Chowdhury D, Wang QY, Lee SJ, Bronson RT. 15.  et al. 2006. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89–94 [Google Scholar]
  16. Forbes DC, Peppas NA. 16.  2012. Oral delivery of small RNA and DNA. J. Control. Release 162:438–45 [Google Scholar]
  17. Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. 17.  2008. Innate immune response induced by gene delivery vectors. Int. J. Pharm. 354:9–15 [Google Scholar]
  18. Szebeni J. 18.  2005. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216:106–21 [Google Scholar]
  19. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V. 19.  et al. 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26:561–69 [Google Scholar]
  20. Chono S, Li S-D, Conwell CC, Huang L. 20.  2008. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control. Release 131:64–69 [Google Scholar]
  21. Abrams MT, Koser ML, Seitzer J, Williams SC, DiPietro MA. 21.  et al. 2010. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol. Ther. 18:171–80 [Google Scholar]
  22. Yu B, Hsu SH, Zhou C, Wang X, Terp MC. 22.  et al. 2012. Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials 33:5924–34 [Google Scholar]
  23. Tao W, Davide JP, Cai M, Zhang GJ, South VJ. 23.  et al. 2010. Noninvasive imaging of lipid nanoparticle-mediated systemic delivery of small-interfering RNA to the liver. Mol. Ther. 18:1657–66 [Google Scholar]
  24. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W. 24.  et al. 2010. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. USA 107:1864–69 [Google Scholar]
  25. Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C. 25.  et al. 2009. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol. Ther. 17:872–79 [Google Scholar]
  26. Whitehead KA, Sahay G, Li GZ, Love KT, Alabi CA. 26.  et al. 2011. Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol. Ther. 19:1688–94 [Google Scholar]
  27. Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J. 27.  et al. 2012. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51:8529–33 [Google Scholar]
  28. Alabi CA, Love KT, Sahay G, Yin H, Luly KM. 28.  et al. 2013. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl. Acad. Sci. USA 110:12881–86 [Google Scholar]
  29. Howard KA. 29.  2009. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv. Drug Deliv. Rev. 61:710–20 [Google Scholar]
  30. Dominska M, Dykxhoorn DM. 30.  2010. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123:1183–89 [Google Scholar]
  31. Grayson ACR, Doody AM, Putnam D. 31.  2006. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23:1868–76 [Google Scholar]
  32. Shim MS, Kwon YJ. 32.  2009. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery. Bioconjug. Chem. 20:488–99 [Google Scholar]
  33. Merkel OM, Urbanics R, Bedocs P, Rozsnyay Z, Rosivall L. 33.  et al. 2011. In vitro and in vivo complement activation and related anaphylactic effects associated with polyethylenimine and polyethylenimine-graft-poly(ethylene glycol) block copolymers. Biomaterials 32:4936–42 [Google Scholar]
  34. Owens DE, Peppas NA. 34.  2006. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 [Google Scholar]
  35. Zintchenko A, Philipp A, Dehshahri A, Wagner E. 35.  2008. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug. Chem. 19:1448–55 [Google Scholar]
  36. Bonnet ME, Erbacher P, Bolcato-Bellemin AL. 36.  2008. Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm. Res. 25:2972–82 [Google Scholar]
  37. Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M. 37.  et al. 2000. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J. Biol. Chem. 275:3793–802 [Google Scholar]
  38. Nomoto T, Matsumoto Y, Miyata K, Oba M, Fukushima S. 38.  et al. 2011. In situ quantitative monitoring of polyplexes and polyplex micelles in the blood circulation using intravital real-time confocal laser scanning microscopy. J. Control. Release 151:104–9 [Google Scholar]
  39. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J. 39.  et al. 2006. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem. 17:1209–18 [Google Scholar]
  40. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S. 40.  et al. 2002. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem. 13:845–54 [Google Scholar]
  41. Sutton D, Kim S, Shuai X, Leskov K, Marques JT. 41.  et al. 2006. Efficient suppression of secretory clusterin levels by polymer-siRNA nanocomplexes enhances ionizing radiation lethality in human MCF-7 breast cancer cells in vitro. Int. J. Nanomed. 1:155–62 [Google Scholar]
  42. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K. 42.  et al. 2009. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission computed tomography (SPECT) imaging. J. Control. Release 138:148–59 [Google Scholar]
  43. Beyerle A, Braun A, Banerjee A, Ercal N, Eickelberg O. 43.  et al. 2011. Inflammatory responses to pulmonary application of PEI-based siRNA nanocarriers in mice. Biomaterials 32:8694–701 [Google Scholar]
  44. Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S. 44.  et al. 2012. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. ACS Nano 6:5174–89 [Google Scholar]
  45. Christie RJ, Miyata K, Matsumoto Y, Nomoto T, Menasco D. 45.  et al. 2011. Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines. Biomacromolecules 12:3174–85 [Google Scholar]
  46. Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. 46.  2012. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. Engl. 51:10751–55 [Google Scholar]
  47. Suma T, Miyata K, Ishii T, Uchida S, Uchida H. 47.  et al. 2012. Enhanced stability and gene silencing ability of siRNA-loaded polyion complexes formulated from polyaspartamide derivatives with a repetitive array of amino groups in the side chain. Biomaterials 33:2770–79 [Google Scholar]
  48. Green JJ, Langer R, Anderson DG. 48.  2008. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41:749–59 [Google Scholar]
  49. Green JJ, Zugates GT, Langer R, Anderson DG. 49.  2009. Poly(β-amino esters): procedures for synthesis and gene delivery. Methods Mol. Biol. 480:53–63 [Google Scholar]
  50. Tzeng SY, Guerrero-Cazares H, Martinez EE, Sunshine JC, Quinones-Hinojosa A, Green JJ. 50.  2011. Non-viral gene delivery nanoparticles based on poly(β-amino esters) for treatment of glioblastoma. Biomaterials 32:5402–10 [Google Scholar]
  51. Tzeng SY, Hung BP, Grayson WL, Green JJ. 51.  2012. Cystamine-terminated poly(beta-amino ester)s for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation. Biomaterials 33:8142–51 [Google Scholar]
  52. Tzeng SY, Green JJ. 52.  2013. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv. Healthc. Mater. 2:468–80 [Google Scholar]
  53. Gary DJ, Puri N, Won Y-Y. 53.  2007. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 121:64–73 [Google Scholar]
  54. Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T. 54.  2003. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–31 [Google Scholar]
  55. Zheng M, Pavan GM, Neeb M, Schaper AK, Danani A. 55.  et al. 2012. Targeting the blind spot of polycationic nanocarrier-based siRNA delivery. ACS Nano 6:9447–54 [Google Scholar]
  56. Guo G, Zhou L, Chen Z, Chi W, Yang X. 56.  et al. 2013. Alkane-modified low-molecular-weight polyethylenimine with enhanced gene silencing for siRNA delivery. Int. J. Pharm. 450:44–52 [Google Scholar]
  57. Schroeder A, Dahlman JE, Sahay G, Love KT, Jiang S. 57.  et al. 2012. Alkane-modified short polyethyleneimine for siRNA delivery. J. Control. Release 160:172–76 [Google Scholar]
  58. Han L, Tang C, Yin C. 58.  2013. Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes. Biomaterials 34:5317–27 [Google Scholar]
  59. Zheng M, Librizzi D, Kılıç A, Liu Y, Renz H. 59.  et al. 2012. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials 33:6551–58 [Google Scholar]
  60. Lee SH, Mok H, Lee Y, Park TG. 60.  2011. Self-assembled siRNA-PLGA conjugate micelles for gene silencing. J. Control. Release 152:152–58 [Google Scholar]
  61. Bui L, Abbou S, Ibarboure E, Guidolin N, Staedel C. 61.  et al. 2012. Encapsidation of RNA-polyelectrolyte complexes with amphiphilic block copolymers: toward a new self-assembly route. J. Am. Chem. Soc. 134:20189–96 [Google Scholar]
  62. Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM. 62.  et al. 2012. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 12:287–92 [Google Scholar]
  63. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. 63.  2011. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 156:203–11 [Google Scholar]
  64. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN. 64.  et al. 2011. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10:389–97 [Google Scholar]
  65. Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG. 65.  2013. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 13:1059–64 [Google Scholar]
  66. Fröhlich T, Edinger D, Kläger R, Troiber C, Salcher E. 66.  et al. 2012. Structure–activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J. Control. Release 160:532–41 [Google Scholar]
  67. Salcher EE, Kos P, Fröhlich T, Badgujar N, Scheible M, Wagner E. 67.  2012. Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: impact of building blocks on efficacy. J. Control. Release 164:380–86 [Google Scholar]
  68. Schaffert D, Troiber C, Salcher EE, Fröhlich T, Martin I. 68.  et al. 2011. Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew. Chem. Int. Ed. Engl. 50:8986–89 [Google Scholar]
  69. Shim MS, Kwon YJ. 69.  2011. Dual mode polyspermine with tunable degradability for plasmid DNA and siRNA delivery. Biomaterials 32:4009–20 [Google Scholar]
  70. Fröhlich T, Edinger D, Russ V, Wagner E. 70.  2012. Stabilization of polyplexes via polymer crosslinking for efficient siRNA delivery. Eur. J. Pharm. Sci. 47:914–20 [Google Scholar]
  71. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A. 71.  et al. 2009. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10:119–27 [Google Scholar]
  72. Hong CA, Kim JS, Lee SH, Kong WH, Park TG. 72.  et al. 2013. Reductively dissociable siRNA-polymer hybrid nanogels for efficient targeted gene silencing. Adv. Funct. Mater. 23:316–22 [Google Scholar]
  73. Nakanishi M, Patil R, Ren Y, Shyam R, Wong P, Mao H-Q. 73.  2011. Enhanced stability and knockdown efficiency of poly(ethylene glycol)-b-polyphosphoramidate/siRNA micellar nanoparticles by co-condensation with sodium triphosphate. Pharm. Res. 28:1723–32 [Google Scholar]
  74. Mok H, Lee SH, Park JW, Park TG. 74.  2010. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat. Mater. 9:272–78 [Google Scholar]
  75. Lee S-Y, Huh MS, Lee S, Lee SJ, Chung H. 75.  et al. 2010. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J. Control. Release 141:339–46 [Google Scholar]
  76. Lee SJ, Huh MS, Lee SY, Min S, Lee S. 76.  et al. 2012. Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment. Angew. Chem. Int. Ed. Engl. 51:7203–7 [Google Scholar]
  77. Liao Z-X, Hsiao C-W, Ho Y-C, Chen H-L, Sung H-W. 77.  2013. Disulfide bond-conjugated dual PEGylated siRNAs for prolonged multiple gene silencing. Biomaterials 34:6930–37 [Google Scholar]
  78. Hong CA, Lee SH, Kim JS, Park JW, Bae KH. 78.  et al. 2011. Gene silencing by siRNA microhydrogels via polymeric nanoscale condensation. J. Am. Chem. Soc. 133:13914–17 [Google Scholar]
  79. Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. 79.  2012. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat. Mater. 11:316–22 [Google Scholar]
  80. Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI. 80.  et al. 2012. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7:389–93 [Google Scholar]
  81. Mishra S, Webster P, Davis ME. 81.  2004. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83:97–111 [Google Scholar]
  82. Kim HJ, Oba M, Pittella F, Nomoto T, Cabral H. 82.  et al. 2012. PEG-detachable cationic polyaspartamide derivatives bearing stearoyl moieties for systemic siRNA delivery toward subcutaneous BxPC3 pancreatic tumor. J. Drug Target. 20:33–42 [Google Scholar]
  83. Yang XZ, Du JZ, Dou S, Mao CQ, Long HY, Wang J. 83.  2012. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano 6:771–81 [Google Scholar]
  84. Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M. 84.  et al. 2011. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–16 [Google Scholar]
  85. Dohmen C, Fröhlich T, Lächelt U, Röhl I, Vornlocher HP. 85.  et al. 2012. Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol. Ther. Nucleic Acids 1:e7 [Google Scholar]
  86. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. 86.  2007. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. USA 104:15549–54 [Google Scholar]
  87. Van Asbeck AH, Beyerle A, McNeill H, Bovee-Geurts PH, Lindberg S. 87.  et al. 2013. Molecular parameters of siRNA–cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano 7:3797–807 [Google Scholar]
  88. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E. 88.  2002. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med. 8:751–55 [Google Scholar]
  89. Dou S, Yao YD, Yang XZ, Sun TM, Mao CQ. 89.  et al. 2012. Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. J. Control. Release 161:875–83 [Google Scholar]
  90. Sato Y, Murase K, Kato J, Kobune M, Sato T. 90.  et al. 2008. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26:431–42 [Google Scholar]
  91. Wang HX, Xiong MH, Wang YC, Zhu J, Wang J. 91.  2013. N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. J. Control. Release 166:106–14 [Google Scholar]
  92. Van den Berg A, Dowdy SF. 92.  2011. Protein transduction domain delivery of therapeutic macromolecules. Curr. Opin. Biotechnol. 22:888–93 [Google Scholar]
  93. Ren Y, Hauert S, Lo JH, Bhatia SN. 93.  2012. Identification and characterization of receptor-specific peptides for siRNA delivery. ACS Nano 6:8620–31 [Google Scholar]
  94. Gabrielson NP, Lu H, Yin L, Kim KH, Cheng J. 94.  2012. A cell-penetrating helical polymer for siRNA delivery to mammalian cells. Mol. Ther. 20:1599–609 [Google Scholar]
  95. Yin L, Song Z, Kim KH, Zheng N, Gabrielson NP, Cheng J. 95.  2013. Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Adv. Mater. 25:3063–70 [Google Scholar]
  96. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N. 96.  et al. 2013. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110:2082–87 [Google Scholar]
  97. Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M. 97.  et al. 2010. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18:1357–64 [Google Scholar]
  98. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G. 98.  et al. 2013. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31:638–46 [Google Scholar]
  99. Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S. 99.  et al. 2013. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31:653–58 [Google Scholar]
  100. Fichter KM, Ingle NP, McLendon PM, Reineke TM. 100.  2013. Polymeric nucleic acid vehicles exploit active interorganelle trafficking mechanisms. ACS Nano 7:347–64 [Google Scholar]
  101. Akinc A, Thomas M, Klibanov AM, Langer R. 101.  2005. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7:657–63 [Google Scholar]
  102. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D. 102.  et al. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo-polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297–301 [Google Scholar]
  103. Kichler A, Leborgne C, Coeytaux E, Danos O. 103.  2001. Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 3:135–44 [Google Scholar]
  104. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. 104.  2013. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 21:149–57 [Google Scholar]
  105. ur Rehman Z, Hoekstra D, Zuhorn IS. 105.  2013. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano 7:3767–77 [Google Scholar]
  106. Yu H, Zou Y, Wang Y, Huang X, Huang G. 106.  et al. 2011. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano 5:9246–55 [Google Scholar]
  107. Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH. 107.  1998. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control. Release 53:289–99 [Google Scholar]
  108. Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. 108.  1992. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89:7934–38 [Google Scholar]
  109. Griffith OW. 109.  1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 27:922–35 [Google Scholar]
  110. Kozielski KL, Tzeng SY, Green JJ. 110.  2013. A bioreducible linear poly(β-amino ester) for siRNA delivery. Chem. Commun. (Camb.) 49:5319–21 [Google Scholar]
  111. Kim JS, Oh MH, Park JY, Park TG, Nam YS. 111.  2013. Protein-resistant, reductively dissociable polyplexes for in vivo systemic delivery and tumor-targeting of siRNA. Biomaterials 34:2370–79 [Google Scholar]
  112. Baigude H, Su J, McCarroll J, Rana TM. 112.  2013. In vivo delivery of RNAi by reducible interfering nanoparticles (iNOPs). ACS Med. Chem. Lett. 4:720–23 [Google Scholar]
  113. Dunn SS, Tian S, Blake S, Wang J, Galloway AL. 113.  et al. 2012. Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc. 134:7423–30 [Google Scholar]
  114. Park K, Hong SW, Hur W, Lee M-Y, Yang J-A. 114.  et al. 2011. Target specific systemic delivery of TGF-β siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis. Biomaterials 32:4951–58 [Google Scholar]
  115. Park K, Lee M-Y, Kim KS, Hahn SK. 115.  2010. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 31:5258–65 [Google Scholar]
  116. Kozielski KL, Tzeng SY, Green JJ. 116.  2013. siRNA nanomedicine: the promise of bioreducible materials. Expert Rev. Med. Devices 10:7–10 [Google Scholar]
  117. Alabi CA, Sahay G, Langer R, Anderson DG. 117.  2013. Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles. Integr. Biol. (Camb.) 5:224–30 [Google Scholar]
  118. Alabi CA, Love KT, Sahay G, Stutzman T, Young WT. 118.  et al. 2012. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS Nano 6:6133–41 [Google Scholar]
  119. Shin S, Kwon HM, Yoon KS, Kim DE, Hah SS. 119.  2011. FRET-based probing to gain direct information on siRNA sustainability in live cells: asymmetric degradation of siRNA strands. Mol. Biosyst. 7:2110–13 [Google Scholar]
  120. Collingwood MA, Rose SD, Huang L, Hillier C, Amarzguioui M. 120.  et al. 2008. Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides 18:187–200 [Google Scholar]
  121. Bartlett DW, Davis ME. 121.  2007. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol. Bioeng. 97:909–21 [Google Scholar]
  122. Takahashi M, Nagai C, Hatakeyama H, Minakawa N, Harashima H, Matsuda A. 122.  2012. Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect. Nucleic Acids Res. 40:5787–93 [Google Scholar]
  123. Li L, Wang H, Ong ZY, Xu K, Ee PLR. 123.  et al. 2010. Polymer- and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano Today 5:296–312 [Google Scholar]
  124. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. 124.  2011. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11:59–67 [Google Scholar]
  125. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. 125.  2008. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15:1193–99 [Google Scholar]
  126. Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ. 126.  et al. 2007. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA 104:12982–87 [Google Scholar]
  127. Siegwart DJ, Whitehead KA, Nuhn L, Sahay G, Cheng H. 127.  et al. 2011. Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. USA 108:12996–3001 [Google Scholar]
  128. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B. 128.  et al. 2008. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 105:11915–20 [Google Scholar]
  129. Ren Y, Cheung HW, Von Maltzhan G, Agrawal A, Cowley GS. 129.  et al. 2012. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl. Med. 4:147ra112 [Google Scholar]
  130. Yao YD, Sun TM, Huang SY, Dou S, Lin L. 130.  et al. 2012. Targeted delivery of PLK1-siRNA by ScFv suppresses Her2+ breast cancer growth and metastasis. Sci. Transl. Med. 4:130ra48 [Google Scholar]
  131. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS. 131.  et al. 2011. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29:1005–10 [Google Scholar]
  132. Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J. 132.  2012. Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol. Pharm. 9:2863–74 [Google Scholar]
  133. Sun TM, Du JZ, Yao YD, Mao CQ, Dou S. 133.  et al. 2011. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 5:1483–94 [Google Scholar]
  134. Zhang Y, Peng L, Mumper RJ, Huang L. 134.  2013. Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials 34:8459–68 [Google Scholar]
  135. Zhang Y, Schwerbrock NM, Rogers AB, Kim WY, Huang L. 135.  2013. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol. Ther. 21:1559–69 [Google Scholar]
  136. Li L, Wang R, Wilcox D, Zhao X, Song J. 136.  et al. 2012. Tumor vasculature is a key determinant for the efficiency of nanoparticle-mediated siRNA delivery. Gene Ther. 19:775–80 [Google Scholar]
  137. Yin L, Song Z, Qu Q, Kim KH, Zheng N. 137.  et al. 2013. Supramolecular self-assembled nanoparticles mediate oral delivery of therapeutic TNF-α siRNA against systemic inflammation. Angew. Chem. Int. Ed. Engl. 52:5757–61 [Google Scholar]
  138. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ. 138.  et al. 2012. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 109:11975–80 [Google Scholar]
  139. Burnett JC, Rossi JJ, Tiemann K. 139.  2011. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol. J. 6:1130–46 [Google Scholar]
  140. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A. 140.  et al. 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–70 [Google Scholar]
  141. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK. 141.  et al. 2013. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 3:406–17 [Google Scholar]
  142. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN. 142.  et al. 2013. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369:819–29 [Google Scholar]
  143. Haussecker D. 143.  2012. The business of RNAi therapeutics in 2012. Mol. Ther. Nucleic Acids 1:e8 [Google Scholar]
  144. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V. 144.  et al. 2013. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8:772–81 [Google Scholar]
  145. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M. 145.  et al. 2007. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2:249–55 [Google Scholar]
  146. Chithrani BD, Ghazani AA, Chan WC. 146.  2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–68 [Google Scholar]
  147. Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D. 147.  et al. 2011. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50:11417–20 [Google Scholar]
  148. Jiang X, Qu W, Pan D, Ren Y, Williford JM. 148.  et al. 2013. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv. Mater. 25:227–32 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-105119
Loading
/content/journals/10.1146/annurev-bioeng-071813-105119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error