1932

Abstract

Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase cells' invasive and metastatic potential. Tumor vessels—while nourishing the tumor—are usually leaky and tortuous, which further decreases perfusion. Hypoperfusion and hypoxia contribute to immune evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression causes a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nanotherapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-105259
2014-07-11
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-105259.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-105259&mimeType=html&fmt=ahah

Literature Cited

  1. Jain RK. 1.  2013. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31:2205–18 [Google Scholar]
  2. Jain RK. 2.  2014. An indirect way to tame cancer. Sci. Am. 310:46–53 [Google Scholar]
  3. Chuong CJ, Fung YC. 3.  1986. On residual stresses in arteries. J. Biomech. Eng. 108:189–92 [Google Scholar]
  4. Skalak R, Zargaryan S, Jain RK, Netti PA, Hoger A. 4.  1996. Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34:889–914 [Google Scholar]
  5. Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B. 5.  et al. 2012. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl. Acad. Sci. USA 109:15101–8 [Google Scholar]
  6. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. 6.  2013. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73:3833–41 [Google Scholar]
  7. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK. 7.  1997. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15:778–83 [Google Scholar]
  8. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. 8.  2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–63 [Google Scholar]
  9. Paszek MJ, Weaver VM. 9.  2004. The tension mounts: Mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9:325–42 [Google Scholar]
  10. Wipff PJ, Hinz B. 10.  2009. Myofibroblasts work best under stress. J. Bodyw. Mov. Ther. 13:121–27 [Google Scholar]
  11. Cheng G, Tse J, Jain RK, Munn LL. 11.  2009. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4:e4632 [Google Scholar]
  12. Demou ZN. 12.  2010. Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann. Biomed. Eng. 38:3509–20 [Google Scholar]
  13. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y. 13.  et al. 2012. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA 109:911–16 [Google Scholar]
  14. Helmlinger G, Yuan F, Dellian M, Jain RK. 14.  1997. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 3:177–82 [Google Scholar]
  15. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK. 15.  1999. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59:3776–82 [Google Scholar]
  16. Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. 16.  2004. Pathology: Cancer cells compress intratumour vessels. Nature 427:695 [Google Scholar]
  17. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. 17.  2012. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–29 [Google Scholar]
  18. Stylianopoulos T, Jain RK. 18.  2013. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 110:18632–37 [Google Scholar]
  19. Koumoutsakos P, Pivkin I, Milde F. 19.  2013. The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid Mech. 45:325–55 [Google Scholar]
  20. Jain RK. 20.  1988. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–58 [Google Scholar]
  21. Jain RK, Baxter LT. 21.  1988. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48:7022–32 [Google Scholar]
  22. Baxter LT, Jain RK. 22.  1989. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37:77–104 [Google Scholar]
  23. Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK. 23.  1996. Effect of transvascular fluid exchange on pressure–flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc. Res. 52:27–46 [Google Scholar]
  24. Baish JW, Netti PA, Jain RK. 24.  1997. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53:128–41 [Google Scholar]
  25. Baxter LT, Jain RK. 25.  1990. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40:246–63 [Google Scholar]
  26. Boucher Y, Baxter LT, Jain RK. 26.  1990. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50:4478–84 [Google Scholar]
  27. Jain RK, Tong RT, Munn LL. 27.  2007. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67:2729–35 [Google Scholar]
  28. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O. 28.  et al. 2012. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7:383–88 [Google Scholar]
  29. Hagendoorn J, Tong R, Fukumura D, Lin Q, Lobo J. 29.  et al. 2006. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res. 66:3360–64 [Google Scholar]
  30. Kaufman LJ, Brangwynne CP, Kasza KE, Filippidi E, Gordon VD. 30.  et al. 2005. Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys. J. 89:635–50 [Google Scholar]
  31. Koike C, McKee TD, Pluen A, Ramanujan S, Burton K. 31.  et al. 2002. Solid stress facilitates spheroid formation: potential involvement of hyaluronan. Br. J. Cancer 86:947–53 [Google Scholar]
  32. Rivron NC, Vrij EJ, Rouwkema J, Le Gac S, Van den Berg A. 32.  et al. 2012. Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc. Natl. Acad. Sci. USA 109:6886–91 [Google Scholar]
  33. Roose T, Netti PA, Munn LL, Boucher Y, Jain RK. 33.  2003. Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66:204–12 [Google Scholar]
  34. Sarntinoranont M, Rooney F, Ferrari M. 34.  2003. Interstitial stress and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31:327–35 [Google Scholar]
  35. Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR. 35.  et al. 2013. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumor blood vessels. Nat. Commun. 4:2516 [Google Scholar]
  36. Branton MH, Kopp JB. 36.  1999. TGF-β and fibrosis. Microbes Infect. 1:1349–65 [Google Scholar]
  37. Butcher DT, Alliston T, Weaver VM. 37.  2009. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–22 [Google Scholar]
  38. Egeblad M, Rasch MG, Weaver VM. 38.  2010. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22:697–706 [Google Scholar]
  39. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI. 39.  et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54 [Google Scholar]
  40. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D. 40.  et al. 2011. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–91 [Google Scholar]
  41. Friedland JC, Lee MH, Boettiger D. 41.  2009. Mechanically activated integrin switch controls α5β1 function. Science 323:642–44 [Google Scholar]
  42. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M. 42.  et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906 [Google Scholar]
  43. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. 43.  2007. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179:1311–23 [Google Scholar]
  44. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. 44.  2012. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10:1403–18 [Google Scholar]
  45. Potenta S, Zeisberg E, Kalluri R. 45.  2008. The role of endothelial-to-mesenchymal transition in cancer progression. Br. J. Cancer 99:1375–79 [Google Scholar]
  46. Kalluri R, Weinberg RA. 46.  2009. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 119:1420–28 [Google Scholar]
  47. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK. 47.  2013. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73:2943–48 [Google Scholar]
  48. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A. 48.  et al. 2011. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475:226–30 [Google Scholar]
  49. Goel S, Duda DG, Xu L, Munn LL, Boucher Y. 49.  et al. 2011. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91:1071–121 [Google Scholar]
  50. Wilson WR, Hay MP. 50.  2011. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11:393–410 [Google Scholar]
  51. Carmeliet P, Jain RK. 51.  2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307 [Google Scholar]
  52. Pries AR, Hopfner M, Le Noble F, Dewhirst MW, Secomb TW. 52.  2010. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer 10:587–93 [Google Scholar]
  53. Kamoun WS, Chae SS, Lacorre DA, Tyrrell JA, Mitre M. 53.  et al. 2010. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat. Methods 7:655–60 [Google Scholar]
  54. Baish JW, Stylianopoulos T, Lanning RM, Kamoun WS, Fukumura D. 54.  et al. 2011. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. USA 108:1799–803 [Google Scholar]
  55. Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK. 55.  1991. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 51:6691–94 [Google Scholar]
  56. Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK. 56.  1992. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. 52:6371–74 [Google Scholar]
  57. Ambrosi D, Mollica F. 57.  2002. On the mechanics of a growing tumor. Int. J. Eng. Sci. 40:1297–316 [Google Scholar]
  58. Ambrosi D, Preziosi L. 58.  2009. Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. Mechanobiol. 8:397–413 [Google Scholar]
  59. MacLaurin J, Chapman J, Jones GW, Roose T. 59.  2012. The buckling of capillaries in solid tumours. Proc. R. Soc. A 468:4123–45 [Google Scholar]
  60. Ciarletta P. 60.  2013. Buckling instability in growing tumor spheroids. Phys. Rev. Lett. 110:158102 [Google Scholar]
  61. Byrne H, Preziosi L. 61.  2003. Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20:341–66 [Google Scholar]
  62. Stylianopoulos T, Barocas VH. 62.  2007. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129:611–18 [Google Scholar]
  63. Sander E, Stylianopoulos T, Tranquillo R, Barocas V. 63.  2009. Image-based biomechanics of collagen-based tissue equivalents. IEEE Eng. Med. Biol. Mag. 28:10–18 [Google Scholar]
  64. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. 64.  2011. Delivery of molecular and nanomedicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2:281–98 [Google Scholar]
  65. Sevick EM, Jain RK. 65.  1989. Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res. 49:3506–12 [Google Scholar]
  66. Sevick EM, Jain RK. 66.  1989. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49:3513–19 [Google Scholar]
  67. Carmeliet P, Jain RK. 67.  2000. Angiogenesis in cancer and other diseases. Nature 407:249–57 [Google Scholar]
  68. Jain RK. 68.  2005. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62 [Google Scholar]
  69. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE. 69.  et al. 1992. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52:6553–60 [Google Scholar]
  70. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA. 70.  et al. 2009. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15:1219–23 [Google Scholar]
  71. Jain RK. 71.  1987. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–93 [Google Scholar]
  72. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L. 72.  et al. 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95:4607–12 [Google Scholar]
  73. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G. 73.  et al. 2000. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156:1363–80 [Google Scholar]
  74. Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK. 74.  1997. Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4:25–33 [Google Scholar]
  75. Sun C, Jain RK, Munn LL. 75.  2007. Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann. Biomed. Eng. 35:2121–29 [Google Scholar]
  76. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK. 76.  1994. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54:4564–68 [Google Scholar]
  77. Wirtz D, Konstantopoulos K, Searson PC. 77.  2011. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–22 [Google Scholar]
  78. Tarbell JM, Weinbaum S, Kamm RD. 78.  2005. Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33:1719–23 [Google Scholar]
  79. Song JW, Munn LL. 79.  2011. Fluid forces control endothelial sprouting. Proc. Natl. Acad. Sci. USA 108:15342–47 [Google Scholar]
  80. Djonov VG, Kurz H, Burri PH. 80.  2002. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev. Dyn. 224:391–402 [Google Scholar]
  81. Kamiya A, Ando J, Shibata M, Masuda H. 81.  1988. Roles of fluid shear stress in physiological regulation of vascular structure and function. Biorheology 25:271–78 [Google Scholar]
  82. Nagy JA, Dvorak AM, Dvorak HF. 82.  2012. Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb. Perspect. Med. 2:a006544 [Google Scholar]
  83. Kalluri R, Zeisberg M. 83.  2006. Fibroblasts in cancer. Nat. Rev. Cancer 6:392–401 [Google Scholar]
  84. Chary SR, Jain RK. 84.  1989. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl. Acad. Sci. USA 86:5385–89 [Google Scholar]
  85. Pedersen JA, Lichter S, Swartz MA. 85.  2010. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J. Biomech. 43:900–5 [Google Scholar]
  86. Ng CP, Hinz B, Swartz MA. 86.  2005. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–39 [Google Scholar]
  87. Swartz MA, Lund AW. 87.  2012. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12:210–19 [Google Scholar]
  88. Avvisato CL, Yang X, Shah S, Hoxter B, Li W. 88.  et al. 2007. Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. J. Cell Sci. 120:2672–82 [Google Scholar]
  89. Shieh AC. 89.  2011. Biomechanical forces shape the tumor microenvironment. Ann. Biomed. Eng. 39:1379–89 [Google Scholar]
  90. Levick JR. 90.  1987. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72:409–37 [Google Scholar]
  91. Stylianopoulos T, Yeckel A, Derby JJ, Luo XJ, Shephard MS. 91.  et al. 2008. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys. Fluids 20:123601 [Google Scholar]
  92. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. 92.  2000. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–503 [Google Scholar]
  93. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S. 93.  et al. 2010. A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS ONE 5:e9808 [Google Scholar]
  94. Mok W, Boucher Y, Jain RK. 94.  2007. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 67:10664–68 [Google Scholar]
  95. Clayes IL, Brady JF. 95.  1993. Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions. J. Fluid Mech. 251:443–77 [Google Scholar]
  96. Stylianopoulos T, Diop-Frimpong B, Munn LL, Jain RK. 96.  2010. Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. Biophys. J. 99:3119–28 [Google Scholar]
  97. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. 97.  2000. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60:4324–27 [Google Scholar]
  98. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB. 98.  et al. 2002. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–86 [Google Scholar]
  99. Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK. 99.  2004. Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res. 64:4400–4 [Google Scholar]
  100. Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL. 100.  et al. 2006. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 66:8065–75 [Google Scholar]
  101. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M. 101.  et al. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–25 [Google Scholar]
  102. Alitalo K, Tammela T, Petrova TV. 102.  2005. Lymphangiogenesis in development and human disease. Nature 438:946–53 [Google Scholar]
  103. Berk DA, Swartz MA, Leu AJ, Jain RK. 103.  1996. Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. 270:H330–37 [Google Scholar]
  104. Fischer M, Franzeck UK, Herrig I, Costanzo U, Wen S. 104.  et al. 1996. Flow velocity of single lymphatic capillaries in human skin. Am. J. Physiol. 270:H358–63 [Google Scholar]
  105. Swartz MA, Berk DA, Jain RK. 105.  1996. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am. J. Physiol. 270:H324–29 [Google Scholar]
  106. Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F. 106.  et al. 2004. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ. Res. 95:204–9 [Google Scholar]
  107. Gasheva OY, Zawieja DC, Gashev AA. 107.  2006. Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J. Physiol. 575:821–32 [Google Scholar]
  108. Kajiya K, Huggenberger R, Drinnenberg I, Ma B, Detmar M. 108.  2008. Nitric oxide mediates lymphatic vessel activation via soluble guanylate cyclase α1β1-impact on inflammation. FASEB J. 22:530–37 [Google Scholar]
  109. Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS. 109.  et al. 2011. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl. Acad. Sci. USA 108:18784–89 [Google Scholar]
  110. Kesler CT, Liao S, Munn LL, Padera TP. 110.  2013. Lymphatic vessels in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 5:111–24 [Google Scholar]
  111. Ng CP, Helm CL, Swartz MA. 111.  2004. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68:258–64 [Google Scholar]
  112. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA. 112.  2010. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106:920–31 [Google Scholar]
  113. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. 113.  1994. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352–56 [Google Scholar]
  114. Boucher Y, Jain RK. 114.  1992. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–14 [Google Scholar]
  115. Nathanson SD, Nelson L. 115.  1994. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann. Surg. Oncol. 1:333–38 [Google Scholar]
  116. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL. 116.  et al. 2004. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10:145–47 [Google Scholar]
  117. Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M. 117.  et al. 2009. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary Phase II study. J. Clin. Oncol. 27:3020–26 [Google Scholar]
  118. Young JS, Lumsden CE, Stalker AL. 118.  1950. The significance of the “tissue pressure” of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J. Pathol. Bacteriol. 62:313–33 [Google Scholar]
  119. Stylianopoulos T, Soteriou K, Fukumura D, Jain RK. 119.  2013. Cationic nanoparticles have superior transvascular flux into solid tumors: insights from a mathematical model. Ann. Biomed. Eng. 41:168–77 [Google Scholar]
  120. Pozrikidis C, Farrow DA. 120.  2003. A model of fluid flow in solid tumors. Ann. Biomed. Eng. 31:181–94 [Google Scholar]
  121. Pries AR, Secomb TW, Gaehtgens P, Gross JF. 121.  1990. Blood flow in microvascular networks: experiments and simulation. Circ. Res. 67:826–34 [Google Scholar]
  122. Welter M, Bartha K, Rieger H. 122.  2008. Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. J. Theor. Biol. 250:257–80 [Google Scholar]
  123. Cai Y, Xu S, Wu J, Long Q. 123.  2011. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol. 279:90–101 [Google Scholar]
  124. Wu M, Frieboes HB, McDougall SR, Chaplain MA, Cristini V, Lowengrub J. 124.  2012. The effect of interstitial pressure on tumor growth: coupling with blood and lymphatic vascular systems. J. Theor. Biol. 320:131–51 [Google Scholar]
  125. Pozrikidis C. 125.  2005. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17:1–14 [Google Scholar]
  126. Sun C, Munn LL. 126.  2005. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophys. J. 88:1635–45 [Google Scholar]
  127. Dupin MM, Halliday I, Care CM, Alboul L, Munn LL. 127.  2007. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707 [Google Scholar]
  128. Pivkin IV, Karniadakis GE. 128.  2008. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105 [Google Scholar]
  129. Li X, Vlahovska PM, Karniadakis GE. 129.  2013. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37 [Google Scholar]
  130. Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR. 130.  et al. 2009. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput. Biol. 5:e1000394 [Google Scholar]
  131. Jackson GW, James DF. 131.  1986. The permeability of fibrous porous media. Can. J. Chem. Eng. 64:364–74 [Google Scholar]
  132. Ethier R. 132.  1994. Flow through mixed fibrous porous materials. AIChE J. 37:1227–36 [Google Scholar]
  133. Mattern KJ, Nakornchai C, Deen WM. 133.  2008. Darcy permeability of agarose-glycosaminoglycan gels analyzed using fiber-mixture and Donnan models. Biophys. J. 95:648–56 [Google Scholar]
  134. Jain RK. 134.  1987. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47:3039–51 [Google Scholar]
  135. Roose T, Swartz MA. 135.  2012. Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45:107–15 [Google Scholar]
  136. Kunert C, Padera TP, Munn LL. 136.  2012. Lattice Boltzmann simulations of lymphatic pumping Presented at Am. Phys. Soc. (APS), Mar. Meet., Feb. 27–Mar. 2 (Abstr. #D42.002)
  137. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D. 137.  et al. 2009. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–61 [Google Scholar]
  138. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N. 138.  et al. 2012. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62:112–20 [Google Scholar]
  139. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S. 139.  et al. 2012. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA 109:16618–23 [Google Scholar]
  140. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. 140.  2011. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 108:2909–14 [Google Scholar]
  141. Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N. 141.  et al. 2010. Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br. J. Cancer 103:1644–48 [Google Scholar]
  142. Wilop S, Von Hobe S, Crysandt M, Esser A, Osieka R, Jost E. 142.  2009. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol. 135:1429–35 [Google Scholar]
  143. Keizman D, Huang P, Eisenberger MA, Pili R, Kim JJ. 143.  et al. 2011. Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur. J. Cancer 47:1955–61 [Google Scholar]
  144. Jain RK. 144.  2001. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–89 [Google Scholar]
  145. Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M. 145.  et al. 2000. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60:5565–70 [Google Scholar]
  146. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. 146.  2002. Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature 416:279–80 [Google Scholar]
  147. Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B. 147.  et al. 2003. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br. J. Cancer 88:1979–86 [Google Scholar]
  148. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. 148.  2004. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64:3731–36 [Google Scholar]
  149. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M. 149.  et al. 2012. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 109:17561–66 [Google Scholar]
  150. Emblem KE, Mouridsen K, Bjornerud A, Farrar C, Jennings D. 150.  et al. 2013. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat. Med. 19:1178–83 [Google Scholar]
  151. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J. 151.  et al. 2013. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc. Natl. Acad. Sci. USA 110:19059–64 [Google Scholar]
  152. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG. 152.  et al. 2007. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95 [Google Scholar]
  153. Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P. 153.  et al. 2009. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69:5296–300 [Google Scholar]
  154. Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H. 154.  et al. 2012. Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion. Cancer Res. 72:402–7 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-105259
Loading
/content/journals/10.1146/annurev-bioeng-071813-105259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error